A Roth-type theorem for values of E-functions

Tanguy Rivoal, CNRS and Université Grenoble Alpes

Joint work with Stéphane Fischler, Université Paris Saclay

Conference De rerum natura \& Functional Equations and Interactions

Anglet, june 2024

Irrationality exponent, Liouville numbers

Once we have proved our favorite real number ξ to be irrational, we may wonder how to measure its distance to a rational number p / q in terms of q, ie to obtain an irrationality measure for ξ.
For instance, consider $\xi=\sqrt{2}$: for any $(p, q) \in \mathbb{Z} \times \mathbb{N}^{*}$, we have $\left|p^{2}-2 q^{2}\right| \geq 1$,

$$
\begin{equation*}
\left|\sqrt{2}-\frac{p}{q}\right| \geq \frac{1}{q|q \sqrt{2}+p|}>\frac{c}{q^{2}} \tag{1}
\end{equation*}
$$

for some absolute constant $c>0$.
In Eq. (1), the 2 in q^{2} is called an irrationality exponent for $\sqrt{2}$.
Definition 1
Given $\xi \in \mathbb{R} \backslash \mathbb{Q}$, set

$$
E(\xi):=\left\{\mu \in \mathbb{R}: \exists \infty(p, q) \in \mathbb{Z} \times \mathbb{N}^{*} \text { s.t. }\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{\mu}}\right\}
$$

and $\mu(\xi):=\sup E(\xi)$ is the irrationality exponent of ξ.

- Eq. (1) shows that $\mu(\sqrt{2}) \leq 2$.
- Dirichlet: $\forall \xi \in \mathbb{R} \backslash \mathbb{Q}, 2 \in E(\xi)$ so that $\mu(\xi) \geq 2$.
- If ξ is a real algebraic number of degree $d \geq 2$, we have $\mu(\xi) \leq d$ (Liouville 1844) and in fact $\mu(\xi) \leq 2$ (Roth 1955).
- For almost all real numbers ξ (in Lebesgue' sense), $\mu(\xi)=2$. Because of this, a folklore belief is that $\mu(\xi)=2$ for any classical constant ξ of analysis.

Definition 2

$\xi \in \mathbb{R} \backslash \mathbb{Q}$ is said to be a Liouville number if $\mu(\xi)=+\infty$.
Equivalently, there exist two sequences $\left(p_{n}, q_{n}\right) \in \mathbb{Z} \times \mathbb{N}^{*}$ such that

$$
0<\left|\xi-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n}^{n}}, \quad \forall n \geq 0 .
$$

$\xi:=\sum_{k \geq 0} 10^{-k!}$ is a Liouville number

$$
0<\left|\xi-\frac{\sum_{k=0}^{n} 10^{n!-k!}}{10^{n!}}\right|<\frac{1}{\left(10^{n!}\right)^{n}}, \quad n \geq 0 .
$$

How to obtain an irrationality measure?

To prove the irrationality of some number ξ, a standard method is to construct two sequences of integers p_{n} and $q_{n} \geq 1$ such that

$$
0<\varepsilon_{n}:=\left|q_{n} \xi-p_{n}\right| \rightarrow 0, \quad n \rightarrow+\infty .
$$

An irrationality measure for ξ is obtained as follows: for $a / b \neq p_{n} / q_{n}$ with $b>0$, we have

$$
\left|\xi-\frac{a}{b}\right| \geq\left|\frac{p_{n}}{q_{n}}-\frac{a}{b}\right|-\frac{\varepsilon_{n}}{q_{n}} \geq \frac{1}{b q_{n}}-\frac{\varepsilon_{n}}{q_{n}} \geq \frac{1}{2 b q_{n}}
$$

provided $2 b \varepsilon_{n} \leq 1$. With $n=n(b)$ minimal satisfying this condition:

$$
\left|\xi-\frac{a}{b}\right| \geq \frac{1}{b^{\omega(b)}} \quad \text { where } \quad \omega(b):=\frac{\ln \left(2 q_{n(b)}\right)}{\ln (b)}+1
$$

When the behaviors of q_{n} and ε_{n} are known, the value of $\omega(b)$ can be simplified, and we can also consider the case when $a / b=p_{n} / q_{n}$.

Examples

- For $\xi:=\sum_{n=0}^{\infty} 10^{-n!}$, with $q_{n}=10^{n!}$ and $p_{n}=\sum_{m=0}^{n} 10^{n!-m!}$, we get

$$
\left|\xi-\frac{p}{q}\right|>\frac{c}{q^{b \ln (q) / \ln \ln (q)}}
$$

for some absolute constants $b, c>0$.

- For b, k integers ≥ 2, consider $\xi:=\sum_{n=0}^{\infty} 1 / b^{k^{n}}:$ with $q_{n}=b^{k^{n}}$ and $p_{n}=\sum_{m=0}^{n} b^{k^{n}-k^{m}}$, we get

$$
\left|\xi-\frac{p}{q}\right|>\frac{c}{q^{k^{2} /(k-1)}}
$$

and also $\mu(\xi) \geq k$.
More generally, let $F(z) \in \mathbb{Z}[[z]]$ be a Mahler function. For any integer $b \geq 2$, Bell-Bugeaud-Coons proved in 2015 that $F(1 / b)$ cannot be a Liouville number (when it is defined).

The above example shows that we don't have $\mu(F(1 / b))=2$ in general.

Other examples

Let $d_{n}:=\operatorname{lcm}(1,2, \ldots, n)=e^{n+o(n)}$.

- Alladi-Robinson 1980. $\exists p_{n}, q_{n} \in \mathbb{Z}^{*}$ such that

$$
q_{n} \ln (2)-p_{n}=d_{n} \int_{0}^{1} \frac{x^{n}(1-x)^{n}}{(1+x)^{n+1}} d x=\left(e(\sqrt{2}-1)^{2}\right)^{n+o(n)}
$$

and $q_{n}=\left(e(\sqrt{2}+1)^{2}\right)^{n+o(n)}$. Hence, $\mu(\ln (2)) \leq 4.6221$.
Best known record: $\mu(\ln (2)) \leq 3.5746$ by Marcovecchio in 2008.

- Beukers 2000. $\exists p_{n} \in \mathbb{Q}, q_{n} \in \mathbb{Z}^{*}$ such that

$$
q_{n} \pi-p_{n}=\int_{-1}^{1} \frac{x^{2 n}\left(1-x^{2}\right)^{2 n}}{(1+i x)^{3 n+1}} d x
$$

Hence, $\mu(\pi) \leq 23.271$.
Best known record: $\mu(\pi) \leq 7.1033$ by Zeilberger-Zudilin in 2020.

Irrationality measure of e

- We first seek good sequences of functional approximations of $\exp (z)$: there exist $A_{n}, B_{n} \in \mathbb{Z}[z]$ not both zero, of degree $\leq n$ and such that

$$
\operatorname{ord}_{z=0}\left(B_{n}(z) \exp (z)-A_{n}(z)\right) \geq 2 n+1
$$

A_{n} / B_{n} is unique and is called the n-th diagonal Padé approximant of the exponential.

- We have

$$
B_{n}(z)=\sum_{k=0}^{n} k!\binom{n}{k}\binom{n+k}{k}(-z)^{n-k}, \quad A_{n}(z)=B_{n}(-z)
$$

and

$$
B_{n}(z) e^{z}-A_{n}(z)=\frac{z^{2 n+1}}{n!} \int_{0}^{1} x^{n}(x-1)^{n} e^{z x} d x
$$

- We get $\mu(e)=2$ because

$$
\left|B_{n}(1)\right| \asymp n^{\alpha} a^{n} n!, \quad\left|B_{n}(1) e-A_{n}(1)\right| \asymp \frac{n^{\beta} b^{n}}{n!} .
$$

Irrationality measure of e, continued

The irrationality measure of a real number ξ is deduced from the sequence of convergents p_{n} / q_{n} of its the continued fraction:

$$
e=[2 ; 1,2,1,1,4,1,1,6,1,1,8,1, \ldots]=2+\frac{1}{1+\frac{1}{2+\frac{1}{1+\frac{1}{1+\cdots}}}}
$$

- $p_{3 m-2}=A_{m}(1), q_{3 m-2}=B_{m}(1)$, and when $n \equiv 1 \bmod 3:$

$$
\left|e-\frac{p_{n}}{q_{n}}\right| \sim \frac{\ln \ln \left(q_{n}\right)}{2 q_{n}^{2} \ln \left(q_{n}\right)}
$$

- Davis (1978): for any $\varepsilon>0$ the inequation

$$
\begin{equation*}
\left|e-\frac{p}{q}\right|<(0.5+\varepsilon) \frac{\ln \ln (q)}{q^{2} \ln (q)} \tag{2}
\end{equation*}
$$

has infinitely many solutions $(p, q) \in \mathbb{Z} \times \mathbb{N}$ while for all $(p, q) \in \mathbb{Z} \times \mathbb{N}$ with $q \geq q_{0}(\varepsilon)$, we have the irrationality measure

$$
\begin{equation*}
\left|e-\frac{p}{q}\right|>(0.5-\varepsilon) \frac{\ln \ln (q)}{q^{2} \ln (q)} \tag{3}
\end{equation*}
$$

(For $\varepsilon=0$, Eq. (3) holds infinitely often, and it also seems to be the case of Eq. (2).)

E-functions

Siegel defined E-functions to generalize the Lindemann-Weierstrass Theorem: Given any pairwise distinct algebraic numbers $\alpha_{1}, \ldots, \alpha_{n}$, the numbers $e^{\alpha_{1}}, \ldots, e^{\alpha_{n}}$ are $\overline{\mathbb{Q}}$-linearly independent. His program culminated with the Siegel-Shidlovskii Theorem (1929-1956).

Definition 3

A power series $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n} / n!\in \overline{\mathbb{Q}}[[z]]$ is a (strict) E-function if
(i) $F(z)$ is solution of a non-zero linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.
(ii) There exists $C>0$ such that $\mid a_{n} \leq C^{n+1}$ for all $n \geq 0$.
(iii) There exists a sequence of positive integers d_{n}, with $d_{n} \leq C^{n+1}$, such that $d_{n} a_{m}$ are algebraic integers for all $m \leq n$.

If $a_{n} \in \mathbb{Q}$, (ii) and (iii) read $\left|a_{n}\right| \leq C^{n+1}$ and $d_{n} a_{m} \in \mathbb{Z}$.
Siegel's definition is more general: the two bounds $(\cdots) \leq C^{n+1}$ are replaced by: for all $\varepsilon>0,(\cdots) \leq n!^{\varepsilon}$ for all $n \geq N(\varepsilon)$.

Examples

Polynomials in $\overline{\mathbb{Q}}[z]$, hypergeometric functions:

$$
{ }_{p} F_{q}\left[\begin{array}{l}
a_{1}, \ldots, a_{p} \\
b_{1}, \ldots, z_{q}^{q-p+1}
\end{array}\right]:=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{n!\left(b_{1}\right)_{n} \cdots\left(b_{q}\right)_{n}} z^{n(q-p+1)},
$$

when $q \geq p \geq 1, a_{j} \in \mathbb{Q}$ and $b_{j} \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}$ for all j. For instance $\exp (z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!}$ and Bessel's function

$$
\begin{gathered}
J_{0}(z):=\sum_{n=0}^{\infty}(-1)^{n} \frac{(z / 2)^{2 n}}{n!^{2}}={ }_{0} F_{1}\left[\begin{array}{c}
\cdot \\
1
\end{array} ;-(z / 2)^{2}\right] \\
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k}\binom{n+k}{n}\right) \frac{z^{n}}{n!}=e^{(3-2 \sqrt{2}) z} \cdot{ }_{1} F_{1}\left[\begin{array}{c}
1 / 2 \\
1
\end{array} ; 4 \sqrt{2} z\right] \\
\sum_{n=0}^{\infty}\left(\sum_{k=1}^{n} \frac{1}{k}\right) \frac{z^{n}}{n!}=z e^{z} \cdot{ }_{2} F_{2}\left[\begin{array}{c}
1,1 \\
2,2
\end{array},-z\right]
\end{gathered}
$$

E-functions are not all polynomials in hypergeometric functions (Fresán-Jossen 2021).

Bessel's function J_{0}

The E-functions J_{0} et J_{0}^{\prime} are $\overline{\mathbb{Q}}(z)$-algebraically independent and

$$
\binom{J_{0}}{J_{0}^{\prime}}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-1 & -\frac{1}{z}
\end{array}\right)\binom{J_{0}}{J_{0}^{\prime}} .
$$

- Siegel 1929: For any $P \in \mathbb{Z}\left[X_{1}, X_{2}\right] \backslash\{0\}$ of degree δ, any $\varepsilon>0$ and any $\alpha \in \overline{\mathbb{Q}}^{*}$ of degree $d, \exists c=c(\alpha, \delta, \varepsilon)>0$ such that

$$
\left|P\left(J_{0}(\alpha), J_{0}^{\prime}(\alpha)\right)\right|>\frac{c}{H(P)^{123 \delta^{2} d^{3}+\varepsilon}}
$$

For any $r \in \mathbb{Q}^{*}$ and any $\varepsilon>0, \exists c=c(r, \varepsilon)>0$ such that for all $(u, v, w) \in \mathbb{Z}^{3} \backslash\{0\}$,

$$
\begin{equation*}
\left|u+v J_{0}(r)+w J_{0}^{\prime}(r)\right|>\frac{c}{\max (|u|,|v|,|w|)^{2+\varepsilon}}, \tag{4}
\end{equation*}
$$

- The exponent 2 is optimal in Eq. (4). In particular, $\mu\left(J_{0}(r)\right) \leq 3$ and Lang asked in 1965 if $\mu\left(J_{0}(r)\right) \leq 2$.

Shidlovskii's measure

Theorem 1 (Shidlovskii 1966)
$Y={ }^{t}\left(F_{1}, \ldots, F_{N}\right)$ a vector of E-functions in $\mathbb{Q}[[z]]$ and $A \in M_{N}(\mathbb{Q}(z))$ such that $Y^{\prime}=A Y$. Let $T \in \mathbb{Q}[z] \backslash\{0\}$ be a common denominator of the entries of A.

If F_{1}, \ldots, F_{N} are linearly independent over $\mathbb{Q}(z)$, then for all $r \in \mathbb{Q}$ such that $r T(r) \neq 0$, for any $\varepsilon>0, \exists c>0$ such that

$$
\begin{equation*}
\forall\left(a_{1}, \ldots, a_{N}\right) \in \mathbb{Z}^{N} \backslash\{0\}, \quad\left|\sum_{j=1}^{N} a_{j} F_{j}(r)\right|>\frac{c}{\left(\max \left|a_{j}\right|\right)^{N-1+\varepsilon}} . \tag{5}
\end{equation*}
$$

The exponent $N-1$ is optimal.

- When r is not a singularity of the minimal inhomogeneous equation \mathcal{M}_{F} of order $m \geq 1$ satisfied by a transcendental E-function $F \in \mathbb{Q}[[z]]$, the value $F(r)$ is not a Liouville number: we have $F(r) \in \mathbb{R} \backslash \mathbb{Q}$ and $\mu(F(r)) \leq m+1$.
- His proof does not work with \mathbb{Q} replaced by a number field \mathbb{K}. The qualitative part $\sum_{j=1}^{N} a_{j} F_{j}(r) \neq 0$ (with $a_{j}, r \in \mathbb{K}$) was proved by Beukers in 2006.

Measure over a number field \mathbb{K} of degree d

Theorem 2 (Fischler-R, 2023)
$Y={ }^{t}\left(F_{1}, \ldots, F_{N}\right)$ a vector of E-functions in $\mathbb{K}[[z]]$, solution of $Y^{\prime}=A Y$ with $A \in M_{N}(\mathbb{K}(z))$. For all $\alpha \in \mathbb{K}$, for any $\varepsilon>0, \exists c>0$ such that $\forall\left(a_{1}, \ldots, a_{N}\right) \in \mathcal{O}_{\mathbb{K}}^{N} \backslash\{0\}$, either

$$
\begin{equation*}
L:=\sum_{j=1}^{N} a_{j} F_{j}(\alpha)=0 \quad \text { or } \quad|L|>\frac{c}{\left(\max \mid a_{j}\right)^{d N^{d}-1+\varepsilon}} . \tag{6}
\end{equation*}
$$

- If F_{1}, \ldots, F_{N} are linearly independent over $\mathbb{K}(z)$ and $\alpha T(\alpha) \neq 0$, Beukers' theorem (2006) implies that $L \neq 0$.
- André \& Beukers ensure 1) that $L^{\sigma}:=\sum_{j=1}^{N} \sigma\left(a_{j}\right) F_{j}^{\sigma}(\sigma(\alpha)) \neq 0$ for all embedding σ of \mathbb{K} into \mathbb{C} if $L \neq 0$, and 2) enable to deal with singular α 's. Then (when \mathbb{K} is Galoisian)

$$
0 \neq \mathcal{L}:=\prod_{\sigma} L^{\sigma}=\sum_{j=0}^{N^{d}} A_{j} \Phi_{j}(1), \quad A_{j} \in \mathbb{Z}
$$

where Φ_{j} are independent E-functions in $\mathbb{Q}[[z]]$ solutions of a differential system not singular at 1 . To get (6), we apply Shidlovskii's lower bound (5) to \mathcal{L} and trivial upper bounds for L^{σ} when $\sigma \neq i d$.

Measure over a number field \mathbb{K}, continued

Corollary 1

For any E-function F and any $\alpha \in \overline{\mathbb{Q}}$, the number $F(\alpha)$ is not a Liouville number.

- Take $F_{1}=1, F_{2}=F$ in Theorem 2 and $\alpha \in \overline{\mathbb{Q}}$. If $F(\alpha) \in \mathbb{Q}$, then $F(\alpha)$ is not a Liouville number. If $F(\alpha) \notin \mathbb{Q}$, then $a_{1}+a_{2} F(\alpha) \neq 0$ for all $a_{1}, a_{2} \in \mathbb{Z}$ not both 0 , and (6) implies the result.
- When $F(\alpha) \notin \mathbb{Q}, \mu(F(\alpha)) \leq d(m+1)^{d}$ where m is the order of \mathcal{M}_{F}. In particular, for all $\alpha \in \overline{\mathbb{Q}}^{*}$ of degree $d \geq 1$,

$$
\begin{equation*}
\left|e^{\alpha}-\frac{p}{q}\right|>\frac{c}{q^{d 2^{d}+\varepsilon}} \quad(m=1), \quad\left|J_{0}(\alpha)-\frac{p}{q}\right|>\frac{c}{q^{d 3^{d}+\varepsilon}} \quad(m=2) . \tag{7}
\end{equation*}
$$

e^{α} : Lang-Galochkin $4 d^{2}+1$, Kappe $4 d^{2}-2 d$. Eq. (7) is better for $d \in\{2,3\}$.
$J_{0}(\alpha)$: Siegel $123 d^{3}+1$ and 3 for $d=1$, Lang-Galochkin $16 d^{3}+1$ and Zudilin 2 for $d=1$. Eq. (7) is better for $d \in\{2,3,4,5\}$.

Roth-type measure in the rational case

Theorem 3 (Fischler-R, 2023)
Let F be an E-function in $\mathbb{Q}[[z]]$ and $r \in \mathbb{Q}^{*}$. Then either $F(r) \in \mathbb{Q}$ or $\mu(F(r))=2$.

- Announced in 1984 by Chudnovsky but there were gaps in the proof.
- Zudilin (1995) filled in these gaps under other assumptions: F is a strict E-function, r is not a singularity of \mathcal{M}_{F} of order $m \geq 1$, and either $m \leq 2$ or $F, F^{\prime}, \ldots, F^{(m-1)}$ are algebraically independent. He obtained

$$
\begin{equation*}
\left|F(r)-\frac{p}{q}\right|>\frac{c}{q^{2+a / \ln \ln (q)^{b}}} . \tag{8}
\end{equation*}
$$

His assumptions apply to J_{0} for all $r \in \mathbb{Q}^{*}$, answering Lang's 1965 question. Eq. (8) is not known for E-functions in Siegel's sense.

- The hypergeometric E-function

$$
g(z):={ }_{1} F_{2}\left[\begin{array}{c}
1 / 2 \\
1 / 3,2 / 3
\end{array} z^{2}\right] .
$$

does not satisfy Zudilin's assumptions because $m=3$ and

$$
4 g(z)^{2}-g^{\prime}(z)^{2}+9 z^{2}\left(4 g(z)-g^{\prime \prime}(z)\right)^{2}=4 .
$$

- The possibility that $F(r) \in \mathbb{Q}$ can not be dropped even when F is transcendental: consider the trivial example $(z-1) e^{z}$ at $z=1$.
- Non-trivial exotic hypergeometric rational evaluations (Bostan-R-Salvy 2024):

$$
\begin{gathered}
{ }_{1} F_{1}\left[\begin{array}{c}
1 \\
7 / 3
\end{array}-\frac{2}{3}\right]=\frac{5}{27}, \quad{ }_{1} F_{1}\left[\begin{array}{c}
6 \\
-2 / 5
\end{array}-\frac{12}{5}\right]=\frac{1309}{625} \\
{ }_{2} F_{2}\left[\begin{array}{c}
1 / 4,3 / 4 \\
5 / 4,-9 / 4 ;-\frac{9}{4}
\end{array}\right]=0
\end{gathered}
$$

- If r is not a singularity of \mathcal{M}_{F} of order ≥ 1, then $F(r) \notin \mathbb{Q}$, by Beukers' theorem (2006).

If r is a singularity of \mathcal{M}_{F}, Adamczewski-R's algorithm (2018), refined and implemented by Bostan-R-Salvy (2024), enables to decide weither $F(r) \in \mathbb{Q}$ or not.

Hermite-Padé approximants

- For any integer $n \geq 0$, there exist $P_{1, n}, \ldots, P_{N, n} \in \mathbb{Z}[z]$ not all zero, of degree $\leq n$ such that

$$
\operatorname{ord}_{z=0}\left(\sum_{j=1}^{N} P_{j, n}(z) F_{j}(z)\right) \geq N(n+1)-1
$$

- Shidlovskii constructed N "independent" functions

$$
R_{k, n}(z):=\sum_{j=1}^{N} P_{j, k, n}(z) F_{j}(z), \quad k=1, \ldots, N
$$

using the differential system $Y^{\prime}=A Y$, where $\operatorname{deg}\left(P_{j, k, n}\right) \leq n+c$ and $\operatorname{ord}_{z=0}\left(R_{k, n}\right) \geq N n-[\varepsilon n]$. When $r T(r) \neq 0$,

$$
P_{j, k, n}(r) \ll a^{n} n!^{1+\varepsilon}, \quad R_{k, n}(r) \ll b^{n} / n!^{N(1-\varepsilon)}, \quad \operatorname{det}\left(P_{j, k, n}(r)\right) \neq 0 .
$$

Shidlovskii's linear independence measure "follows".

Graded Padé approximants for F with \mathcal{M}_{F} of order 2

- With $F_{1}=1$ and $F_{2}=F \in \mathbb{Q}[[z]]$, Shidlovskii gives $\mu(F(r)) \leq 3$ because we also have to consider $F_{3}=F^{\prime}$.
- We construct $2 M+1$ polynomials $A_{j, n}$ and $B_{j, n}$ in $\mathbb{Z}[z]$ not all zero of degree $\leq n$ such that $B_{-1, n}=B_{M, n} \equiv 0$, and for $j=0, \ldots, M$:

$$
\operatorname{ord}_{z=0}\left(A_{j, n}(z)+B_{j-1, n}(z) F(z)+B_{j, n}(z) F^{\prime}(z)\right) \geq\left(2-\varepsilon_{M}\right) n, \quad \varepsilon_{M} \asymp \frac{1}{M}
$$

- Setting $R_{M, n}(r):=A_{M, n}(r)+B_{M-1, n}(r) F(r)$, we have

$$
A_{M, n}(r) \ll a^{n} n!^{1+\varepsilon_{M}} \quad \text { and } \quad R_{M, n}(r) \ll b^{n} / n!^{1-\varepsilon_{M}} .
$$

If we could prove $\left|R_{M, n}(r)\right| \gg c^{n} / n!^{1-\varepsilon_{M}}, \mu(F(r)) \leq 2$ would follow by taking n, then M, large enough (as for e). But we can't prove that.

- We then proceed as Siegel and Shidlovskii, and construct other "independent" approximations, using the differential system satisfied by ${ }^{t}\left(1, F, F^{\prime}\right)$.
- Crucial, and very difficult, is the proof that a certain matrix has maximal rank (Shidlovskii-type lemma). We use our generalization of Bertrand-Beukers' 1985 multiplicity estimate to Nilsson-Gevrey series.

Beyond Theorem 3

- The graded Padé construction can be carried over a number field \mathbb{K} in a straightforward way. But we cannot prove that $\mu(F(\alpha))=2$ when $\alpha \in \mathbb{K}, F \in \mathbb{K}[[z]]$ and $F(\alpha) \notin \mathbb{Q}$. It is not even possible to deduce that $\mu(F(\alpha))$ is finite (but it is a consequence of our other result); this is the same difficulty as with Shidlovskii's construction.
- We proved in 2016 that if $e^{\alpha}=F(r)$ for $r \in \mathbb{Q}$ and an E-function $F \in \mathbb{Q}[[z]]$, then $\alpha \in \mathbb{Q}$.

Hence, Theorem 3 can not be applied directly to prove that $\mu\left(e^{\sqrt{2}}\right)=2$, which remains conjectural.

- Nonetheless:

Kappe with $d=2: \mu\left(e^{\sqrt{2}}\right) \leq 12$.
Eq. (7) with $d=2: \mu\left(e^{\sqrt{2}}\right) \leq 8$.
Zudilin with $F(z):=e^{\sqrt{2} z}+e^{-\sqrt{2} z} \in \mathbb{Q}[[z]]: \mu(F(1))=2$ hence $\mu\left(e^{\sqrt{2}}\right) \leq 4$.

