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Irrationality exponent, Liouville numbers

Once we have proved our favorite real number £ to be irrational, we may
wonder how to measure its distance to a rational number p/q in terms
of g, ie to obtain an irrationality measure for &.

For instance, consider & = v/2: for any (p,q) € Z x N*, we have
P? —2¢°| > 1,

’f_‘ qlq\flerl % @

for some absolute constant ¢ > 0.

In Eq. (1), the 2 in g? is called an irrationality exponent for /2.

Definition 1
Given £ € R\ Q, set
. P 1
E(€) = eR: 3 ,q) €EZxNst. [ ——| < —
©={nerianpaezxnse - 2< ]

and p(§) := sup E(&) is the irrationality exponent of &.



e Eq. (1) shows that u(v/2) < 2.
e Dirichlet: V¢ e R\ Q, 2 € E() so that u(§) > 2.

e If ¢ is a real algebraic number of degree d > 2, we have p(§) < d
(Liouville 1844) and in fact u(§) < 2 (Roth 1955).

e For almost all real numbers £ (in Lebesgue’ sense), 1u(€) = 2. Because
of this, a folklore belief is that p(&) = 2 for any classical constant & of
analysis.

Definition 2

& € R\ Q is said to be a Liouville number if u(¢) = +oo.
Equivalently, there exist two sequences (py, ¢n) € Z x N* such that
1

< —, Vn>0.
an

o<’g—p”
An

£:=Y k0 10~*" is a Liouville number

ZZ:O 10n!—k!
o 10m

0<‘§




How to obtain an irrationality measure?

To prove the irrationality of some number &, a standard method is to
construct two sequences of integers p, and g, > 1 such that

0<en:=|g§—pn| —0, n— +oco.
An irrationality measure for £ is obtained as follows: for a/b # p,/qn
with b > 0, we have

Pn @

gn b

R

provided 2be, < 1. With n = n(b) minimal satisfying this condition:

‘ a 1 ~In(2qn))

where w(b) := in(b) +1

When the behaviors of g, and ¢, are known, the value of w(b) can be
simplified, and we can also consider the case when a/b = p,/q,.



Examples
e For £ :=3"7° 10~", with g, = 10" and p, = >_1 _, 10" =™, we get

m=0
p c
‘5 - ‘ L)

for some absolute constants b, c > 0.

e For b, k integers > 2, consider £ := > > 1/b¥": with g, = b¥" and
Pn = m_o b K", we get

p c
’5‘>qk2/<k—n

and also pu(§) > k.

More generally, let F(z) € Z[[z]] be a Mahler function. For any integer
b > 2, Bell-Bugeaud-Coons proved in 2015 that F(1/b) cannot be a
Liouville number (when it is defined).

The above example shows that we don't have p(F(1/b)) = 2 in general.



Other examples
Let d, :=1lcm(1,2,...,n) = ento(n)

e Alladi-Robinson 1980. 3p,, g, € Z* such that

1 x"(1 —x)"

4nIn(2) — pn = dn/o de = (e(ﬂ, 1)2)”+0(")

and g, = (e(v/2 4+ 1)2)"+°(" Hence, u(In(2)) < 4.6221.

Best known record: p(In(2)) < 3.5746 by Marcovecchio in 2008.

e Beukers 2000. dp, € Q, g, € Z* such that

1 _2n 2\2n
x"(1 — x?)
qnﬂ—an/_IW"X

Hence, u(m) < 23.271.

Best known record: p(m) < 7.1033 by Zeilberger-Zudilin in 2020.



Irrationality measure of e

o We first seek good sequences of functional approximations of exp(z):
there exist A,, B, € Z[z] not both zero, of degree < n and such that

ord,—o(Bn(z) exp(z) — An(2)) > 2n+ 1.

An/By, is unique and is called the n-th diagonal Padé approximant of the

exponential.
o We have
b k
6.2 =2 k(7)) (") )t Ada = Bi(-2)
k=0
and
Z2n+1 1
B.(z)e* — An(2) o / x"(x — 1)"e®dx.
o Jo
o We get p(e) = 2 because
B pn
B,(1)] = n®a"nl,  [By(1)e — An(1)| = =



Irrationality measure of e, continued
The irrationality measure of a real number £ is deduced from the
sequence of convergents p,/q, of its the continued fraction:

1
g —

o
I+

e=[21,21141161181..]=2+

® p3m—2 = Am(1), g3m—2 = Bm(1), and when n=1 mod 3:

~

’e _ Pn Inln(g,)
an|  2q31n(qgn)

e Davis (1978): for any € > 0 the inequation

p

P . Inin(q)
e q‘<(0.5+ ) (2)

g°In(q)
has infinitely many solutions (p, g) € Z x N while for all (p,q) € Z x N
with g > qo(e), we have the irrationality measure

q*In(q)’
(For e =0, Eq. (3) holds infinitely often, and it also seems to be the case
of Eq. (2).)

P . Inin(q)
e q’>(o.5 ) 3)



E-functions

Siegel defined E-functions to generalize the Lindemann-Weierstrass
Theorem: Given any pairwise distinct algebraic numbers aq, . .., a,, the
numbers e, ... e® are Q-linearly independent. His program
culminated with the Siegel-Shidlovskii Theorem (1929-1956).

Definition 3 B
A power series F(z) =" anz"/n! € Q[[z]] is a (strict) E-function if

(i) F(z) is solution of a non-zero linear differential equation with
coefficients in Q(z).

(ii)  There exists C > 0 such that [a,] < C"*1 for all n > 0.

(iif)  There exists a sequence of positive integers d,, with d, < C"*1,
such that d,a,, are algebraic integers for all m < n.

If a, € Q, (ii) and (iii) read |a,| < C"*! and d,a,, € Z.

Siegel's definition is more general: the two bounds (---) < C"*1 are
replaced by: for all ¢ >0, (---) < n!® for all n > N(g).



Examples
Polynomials in Q[z], hypergeometric functions:
dl,...,da —p+1 > (al)n"'(ap)n n(g—p+1
F P. 24Pt . _\9l)n"""\9pJn _n(q—p+1)
P q|:b1""7bq z ] nZ:on!(bl)n"'(bq)nZ 7

when g > p>1,a; € Qand bj € Q\ Z<, for all j. For instance
exp(z) = 3%, 2 and Bessel's function

n=0 n!
0 z 2n

Jo(2) == Z(*l) ! é,2) =oF1 [ —(2/2) }
n=0 ’

S (S ()5 - emman e,

S(Eh)g - nlid
n=0 ™ k=1 n

E-functions are not all polynomials in hypergeometric functions
(Fresén-Jossen 2021).



Bessel's function J

The E-functions Jy et J} are Q(z)-algebraically independent and

() - (5 ()

o Siegel 1929: For any P € Z[Xy, Xz] \ {0} of degree §, any € > 0 and
any o € Q" of degree d, 3¢ = c(a, ,£) > 0 such that

Cc

[PUs(), BN > fpymrarss:

For any r € Q* and any € > 0, 3¢ = ¢(r,€) > 0 such that for all
(u,v,w) € Z3\ {0},

lu+ vdo(r) + wlg(r)| > <

(4)

max([ul, [v|, [w[)?+<’

e The exponent 2 is optimal in Eq. (4). In particular, p(Jo(r)) < 3 and
Lang asked in 1965 if u(Jo(r)) < 2.



Shidlovskii's measure

Theorem 1 (Shidlovskii 1966)

Y =(F1,...,Fn) a vector of E-functions in Q[[z]] and A € My(Q(z))
such that Y' = AY. Let T € Q[z] \ {0} be a common denominator of
the entries of A.

If Fi,..., Fn are linearly independent over Q(z), then for all r € Q such
that rT(r) # 0, for any € > 0, 3¢ > 0 such that
N c
N
V(ay,...,an) € Z7\ {0}, ;aij(r) >W~ (5)

The exponent N — 1 is optimal.

e When r is not a singularity of the minimal inhomogeneous equation
M of order m > 1 satisfied by a transcendental E-function F € Q[[z]],
the value F(r) is not a Liouville number: we have F(r) € R\ Q and
u(F(r)) <m+1.

e His proof does not work with Q replaced by a number field K. The
qualitative part ZJN:1 ajFj(r) # 0 (with aj, r € K) was proved by Beukers
in 2006.



Measure over a number field K of degree d

Theorem 2 (Fischler-R, 2023)

Y =*Y(F,..., Fn) a vector of E-functions in K[[z]], solution of Y' = AY
with A € My(K(z)). For all « € K, for any € > 0, 3¢ > 0 such that
V(a1,...,an) € OF \ {0}, either

c
(max W)d/\ld—ua‘

N
L:=> ajFi(a)=0 or |L|> (6)
j=1
o If Fi,..., Fy are linearly independent over K(z) and aT(a) # 0,
Beukers' theorem (2006) implies that L # 0.

e André & Beukers ensure 1) that L7 := ZJN:1 o(a)F (o(a)) # 0 for all
embedding o of K into C if L # 0, and 2) enable to deal with singular

a's. Then (when K is Galoisian)

Nd
0#£L:=][L7 =) A1), AecZ
o Jj=0

where ®; are independent E-functions in Q[[z]] solutions of a differential
system not singular at 1. To get (6), we apply Shidlovskii's lower bound
(5) to £ and trivial upper bounds for L% when o #-id.



Measure over a number field K, continued

Corollary 1

For any E-function F and any a € Q, the number F(«) is not a Liouville
number.

o Take F; =1, F, = F in Theorem 2 and oo € Q. If F(a) € Q, then
F(«) is not a Liouville number. If F(a) ¢ Q, then a3 + axF(«a) # 0 for
all a1, a; € Z not both 0, and (6) implies the result.

e When F(a) ¢ Q, u(F(a)) < d(m+1)? where m is the order of M.
In particular, for all a € @* of degree d > 1,

C

_ Pl ¢
g (m=1),

b= 2| > 5 m=2 0

e - ‘ >
e®: Lang-Galochkin 4d? + 1, Kappe 4d? — 2d. Eq. (7) is better for
d e {2,3}.

Jo(a): Siegel 123d® + 1 and 3 for d = 1, Lang-Galochkin 1643 + 1 and
Zudilin 2 for d = 1. Eq. (7) is better for d € {2,3,4,5}.



Roth-type measure in the rational case

Theorem 3 (Fischler-R, 2023)

Let F be an E-function in Q[[z]] and r € Q*. Then either F(r) € Q or
u(F(r)) =2.

e Announced in 1984 by Chudnovsky but there were gaps in the proof.
o Zudilin (1995) filled in these gaps under other assumptions: F is a

strict E-function, r is not a singularity of Mg of order m > 1, and either
m<2orF,F,...,F(™1 are algebraically independent. He obtained

pP C

His assumptions apply to Jy for all r € Q*, answering Lang’s 1965
question. Eq. (8) is not known for E-functions in Siegel's sense.

e The hypergeometric E-function

— /2 5
g(z) =1F2 [1/3,2/3'2 ] '
does not satisfy Zudilin’s assumptions because m = 3 and

4g(z)? — g'(2)> +92°(4g(2) — g"(2))" = 4



e The possibility that F(r) € Q can not be dropped even when F is
transcendental: consider the trivial example (z — 1)e* at z = 1.

e Non-trivial exotic hypergeometric rational evaluations (Bostan-R-Salvy
2024):

f[12]_5 o[ 6 12]_ 1309
1 7/3: 3 —277 11 72/5! 5 - 6251
1/4,3/4 9] _
2F2 [5/4,—9/4'_4} =0

e If ris not a singularity of Mg of order > 1, then F(r) ¢ Q, by
Beukers' theorem (2006).

If ris a singularity of Mg, Adamczewski-R'’s algorithm (2018), refined
and implemented by Bostan-R-Salvy (2024), enables to decide weither
F(r) € Q or not.



Hermite-Padé approximants

o For any integer n > 0, there exist Pi ,,..., Pn,» € Z[z] not all zero, of
degree < n such that

ord,— O(ZPJ n(2)F; z)) >N(n+1)—1.

j=1

o Shidlovskii constructed N “independent” functions
Rkn ZIDJI(” k:].,...,N

using the differential system Y’ = AY', where deg(P;j «.») < n+ ¢ and
ord,—o(Rk.n) > Nn — [en]. When rT(r) #0,

Pikn(r) < a™n™ e R (r) < b"/nNC=2) " det( Pj k.n(r)) #0.

Shidlovskii's linear independence measure “follows”.



Graded Padé approximants for F with M £ of order 2
e With F; =1 and F, = F € Q[[z]], Shidlovskii gives u(F(r)) <3
because we also have to consider F3 = F'.

e We construct 2M + 1 polynomials A; , and B; , in Z[z] not all zero of
degree < n such that B_;, = By, =0, and for j =0,..., M:

ord,—o(Ajn(2)+ Bi-1.4(2)F(2) + Bjn(2)F'(2)) = (2= 2w, em = 7.
o Setting Ru.n(r) := Am.n(r) + Bm—1,n(r)F(r), we have

Aun(r) < a"n*™v and Ry ,(r) < b"/nit=em,
If we could prove |Ru.n(r)| > ¢™/n1t=5m, 1(F(r)) < 2 would follow by

taking n, then M, large enough (as for ). But we can't prove that.

o We then proceed as Siegel and Shidlovskii, and construct other
“independent” approximations, using the differential system satisfied by
Y1, F, F).

e Crucial, and very difficult, is the proof that a certain matrix has
maximal rank (Shidlovskii-type lemma).We use our generalization of
Bertrand-Beukers' 1985 multiplicity estimate to Nilsson-Gevrey series.



Beyond Theorem 3

e The graded Padé construction can be carried over a number field K in
a straightforward way. But we cannot prove that u(F(a)) = 2 when

a €K, FeK][z]] and F(a) ¢ Q. It is not even possible to deduce that
u(F(a)) is finite (but it is a consequence of our other result); this is the
same difficulty as with Shidlovskii's construction.

e We proved in 2016 that if e* = F(r) for r € Q and an E-function
F € Q[[z]], then a € Q.

Hence, Theorem 3 can not be applied directly to prove that u(eﬁ) =2,
which remains conjectural.

o Nonetheless:
Kappe with d = 2: p(eV?) < 12.
Eq. (7) with d = 2: p(eV?) < 8.

Zudilin with F(z) := V2% + e=V22 ¢ Q[[2]]: u(F(1)) = 2 hence
p(ev?) < 4.



