Линейные формы от дзета-значений, возникающие из интегралов типа Сорокина

Т. РИВОАЛЬ

Университет им. Ж. Фурье (Гренобль-1), Франция e-mail: rivoal@ujf-grenoble.fr

УДК 511.4

Ключевые слова: дзета-значения, линейные формы, кратные интегралы.

Аннотация

В работе рассматриваются некоторые кратные интегралы, которые представляются в виде линейных комбинаций дзета-значений с рациональными коэффициентами.

Abstract

T. Rivoal, Linear forms in zeta values arising from certain Sorokin-type integrals, Fundamentalnaya i prikladnaya matematika, vol. 16 (2010), no. 5, pp. 1—12.

The paper is devoted to certain multiple integrals which can be represented as from in zeta-values with rational coefficients.

1. Формулировка результата

Для некоторых фиксированных целых чисел $n\geqslant 0$ и $s\geqslant 3$ определим интеграл типа Сорокина:

$$I_n(s) := \int_{[0,1]^s} \frac{\prod_{j=1}^s z_j^n (1-z_j)^n}{\prod_{j=2}^s (1-z_1 z_2 \cdots z_j)^{n+1}} dz_1 \dots dz_s.$$

В. Н. Сорокин доказал в [6], что

$$I_n(3) = a_n \zeta(3) + b_n \in \mathbb{Q}\zeta(3) + \mathbb{Q}, \tag{1.1}$$

где a_n и b_n есть в точности последовательности, полученные Р. Апери [7] при доказательстве иррациональности $\zeta(3)$. Его метод состоит в решении подходящей проблемы аппроксимации Паде и с трудом поддаётся обобщениям.

В настоящей статье мы получим обобщение (1.1) совершенно другим методом. Как обычно, мы полагаем $d_n := HOK\{1,2,\ldots,n\}$.

Фундаментальная и прикладная математика, 2010, том 16, № 5, с. 1—12. © 2010 Центр новых информационных технологий МГУ, Издательский дом «Открытые системы»

Теорема 1. Для любых фиксированных целых чисел $n\geqslant 0$ и $s\geqslant 3$ существуют s-1 последовательностей рациональных чисел $(p_{j,n,s})_{n\geqslant 0},\, j=0,3,\ldots,s,$ таких что

$$I_n(s) = p_{0,n,s} + \sum_{j=3}^s p_{j,n,s}\zeta(j) \in \mathbb{Q} + \mathbb{Q}\zeta(3) + \mathbb{Q}\zeta(4) + \ldots + \mathbb{Q}\zeta(s).$$

Кроме того, $\mathbf{d}_n^{s-j} p_{j,n,s} \in \mathbb{Z}$ для любого j.

Заметим, что коэффициент при $\zeta(2)$ априори равен нулю. Хотя это нетривиальный факт, совершенно не ясно, какие новые диофантовы результаты могут быть получены из этой теоремы. Тем не менее она представляет определённый интерес по следующим причинам. В [3,12] доказано, что интегралы типа Сорокина могут быть представлены в виде линейной формы с рациональными коэффициентами от кратных дзета-значений. Предполагается, что эти формы в общем случае не могут быть сведены к линейным формам от (однократных) дзета-значений (значений дзета-функции Римана в натуральных точках). Например, рассмотрим следующий интеграл типа Сорокина:

$$U_n = \int_{[0,1]^5} \frac{\prod_{j=1}^5 z_j^n (1-z_j)^n}{(1-z_1 z_2 z_3)^{n+1} (1-z_1 z_2 z_3 z_4 z_5)^{n+1}} \, \mathrm{d}z_1 \dots \, \mathrm{d}z_5.$$

При n=0 $U_0=\zeta(3,2)=-11\zeta(5)/2+3\zeta(2)\zeta(3)$, а при n=1,2,3 U_n — линейная форма с рациональными коэффициентами от $\zeta(2)$, $\zeta(3)$, $\zeta(4)$, $\zeta(5)$, $\zeta(2,2)$ и $\zeta(3,2)$. Но согласно предположению Гончарова—Загира $\zeta(3,2)$ и U_n не являются линейными формами с рациональными коэффициентами от дзета-значений.

Таким образом, $I_n(s)$ представляется в таком виде, можно сказать, случайно. Однако это не единственная случайность. Действительно, обобщения Д. В. Васильева [1] знаменитых интегралов Ф. Бёкерса [9] могут быть выражены через интегралы типа Сорокина и благодаря теореме Зудилина [25] также являются линейными комбинациями очень особого вида от значений дзета-функции: в них могут появляться только нечётные или только чётные дзета-значения в зависимости от чётности размерности интеграла. Эти «дихотомические» линейные формы совпадают с линейными формами, построенными в [8, 22] для доказательства бесконечности числа линейно независимых нечётных дзета-значений. Таким образом, подобные интегралы очень полезны при изучении диофантовой природы кратных дзета-значений, и представляется крайне интересным найти другие семейства интегралов, выражение которых в виде линейных форм от кратных дзета-значений имеет особые свойства. Для этого может быть полезна эффективная реализация [13] в системе компьютерной алгебры PARI/GP алгоритма, описанного в [12]. Действительно, теорема 1 была буквально угадана с помощью применения этого алгоритма к ряду $S_n(s)$, определённого ниже в (1.2), для некоторых s и n. В [11,15] даны другие примеры кратных рядов, свойства которых изначально были обнаружены экспериментально.

Доказательство теоремы 1 непрямое и будет получено с помощью последовательных упрощений. Положим по определению

$$(\alpha)_0 := 1, \quad (\alpha)_m := \alpha(\alpha+1)\cdots(\alpha+m-1)$$
 при $m \geqslant 1.$

Отныне, если не оговорено противное, мы предполагаем, что целые числа n и s удовлетворяют неравенствам $n\geqslant 0$ и $s\geqslant 3$.

1. Сначала, используя общее разложение интегралов типа Сорокина в кратные ряды, доказанное в [12, с. 11, 12, предложение 1], мы получаем, что

$$I_n(s) = n! \sum_{k_1 \geqslant k_2 \geqslant \dots \geqslant k_{s-1} \geqslant 1} \frac{(k_1 - k_2 + 1)_n}{(k_1)_{n+1}^2} \prod_{j=2}^{s-1} \frac{(k_j - k_{j+1} + 1)_n}{(k_j)_{n+1}} =: S_n(s),$$
(1.2)

где по договорённости $k_s = n + 1$.

2. Следующий факт менее очевиден. Мы также имеем

$$S_n(s) = \int_{[0,1]^s} \frac{\prod_{j=1}^s z_j^n (1 - z_j)^n}{(1 - (1 - z_1 \cdots z_{s-1}) z_s)^{n+1}} \, \mathrm{d}z_1 \dots \, \mathrm{d}z_s =: J_n(s), \tag{1.3}$$

откуда следует, что $I_n(s) = J_n(s)$.

3. Далее заменой переменных и n-кратным интегрированием по частям мы доказываем, что

$$J_n(s) = -\int_{[0,1]^{s-1}} \frac{P_n(z_1)P_n(z_2) \prod_{j=3}^{s-1} (1-z_j)^n}{1 - z_1 \cdots z_{s-1}} \times \log(z_1 \cdots z_{s-1}) \, \mathrm{d}z_1 \dots \, \mathrm{d}z_{s-1} =: B_n(s), \quad (1.4)$$

где $P_n(x)=(x^n(1-x)^n)^{(n)}/n!$ обозначает n-й многочлен Лежандра на [0,1] и где при s=3 величина пустого произведения полагается равной 1.

4. От $B_n(s)$ мы совершим последний переход

$$B_n(s) = -n!^{s-3} \sum_{k=1}^{\infty} \frac{\partial}{\partial k} \left(\frac{(k-n)_n^2}{(k)_{n+1}^{s-1}} \right) =: D_n(s)$$
 (1.5)

с помощью процесса, использованного автором в [24] для доказательства того, что (1.5) справедливо при s=3.

5. Наконец, $D_n(s)$ может быть представлено в виде линейной формы от дзета-значений, скажем $Z_n(s)$, которая имеет вид, указанный в теореме 1.

Таким образом, мы получили цепочку нетривиальных равенств

$$I_n(s) = S_n(s) = J_n(s) = B_n(s) = D_n(s) = Z_n(s),$$
 (1.6)

и $I_n(s)=Z_n(s)$ в точности выражает содержание теоремы 1. Заметим, что при s=3 цепочка (1.6) хорошо известна: равенства $I_n(3)=Z_n(3),\ J_n(3)=B_n(3)=Z_n(3)$ и $D_n(3)=Z_n(3)$ более или менее подробно доказаны в [6], [9] и [2,5,10] соответственно. Доказательство равенства $I_n(3)=J_n(3)$ было независимо получено в [14] и [4].

2. Обобщения Нестеренко и Рена—Виолы и дальнейшие проблемы

Было бы интересно получить более прямое доказательство равенства $I_n(s)==Z_n(s)$ и обобщить его на случай разных показателей степени, т. е. рассмотреть интегралы

$$I_{\underline{l},\underline{m},\underline{n}}(s) := \int_{[0,1]^s} \frac{\prod_{j=1}^s z_j^{n_j} (1 - z_j)^{m_j}}{\prod_{j=2}^s (1 - z_1 z_2 \cdots z_j)^{l_j + 1}} dz_1 \dots dz_s$$

с подходящими целыми параметрами $l_j, m_j, n_j \geqslant 0$. Независимо от автора Ж. Рен и К. Виола [21] недавно смогли с помощью остроумной замены переменных* доказать, что при определённых условиях имеет место соотношение

$$I_{\underline{l},\underline{m},\underline{n}}(s) = J_{\underline{l}',\underline{m}',\underline{n}'}(s) \in \mathbb{Q} + \mathbb{Q}\zeta(2) + \mathbb{Q}\zeta(3) + \mathbb{Q}\zeta(4) + \ldots + \mathbb{Q}\zeta(s),$$

где

$$J_{l',\underline{m'},\underline{n'}}(s) := \int_{[0,1]^s} \frac{\prod_{j=1}^s z_j^{n'_j} (1 - z_j)^{m'_j}}{(1 - (1 - z_1 \cdots z_{s-1}) z_s)^{l'+1}} \, \mathrm{d}z_1 \dots \, \mathrm{d}z_s$$
 (2.1)

представляет собой соответствующее обобщение нашего $J_n(s)$ и l', m'_j, n'_j зависят от l_j, m_j, n_j . Неясно, когда можно убрать $\zeta(2)$ (даже при s=3 это не всегда возможно для произвольных показателей степеней, см. [20]): в общем случае шаг 3 можно совершить не всегда, поскольку трюк с «n-кратным интегрированием по частям» не всегда работает для произвольного интеграла $J_{l',\underline{m'},\underline{n'}}(s)$. Следовательно, узконаправленные методы Рена—Виолы, развитые в [19, 20], чтобы избежать этой сложности, могут быть полезны для определения естественных ограничений на l_j, m_j, n_j , при которых некоторые коэффициенты при дзета-значениях в разложении $I_{\underline{l},m,n}(s)$ равны 0.

Необходимо также упомянуть, что функциональная версия (с переменной, скажем, x) интеграла (2.1) впервые была изучена Ю. В. Нестеренко [18]. Он доказал, что данный интеграл равен комплексному интегралу типа Барнса

^{*}Наше доказательство равенства $I_n(s)=J_n(s)$ не использует замены переменных. Вместо этого мы следуем методу С. А. Злобина [4]. Мы не пытались убедиться, что общее тождество Рена—Виолы $I_{\underline{l},\underline{m},\underline{n}}(s)=J_{l',\underline{m'},\underline{n'}}(s)$ также может быть доказано этим способом, но, в принципе, проверить это несложно.

(см. [18, с. 547, теорема 2]) при определённых условиях на коэффициенты, из чего он вывел представление в виде линейной формы от полилогарифмов от x. Приравняв x к 1, он получил линейные формы от 1, $\zeta(3)$, $\zeta(4)$ и т. д. Следовательно, как только мы докажем, что «наши» интегралы $I_n(s)$ и $J_n(s)$ равны, мы сможем применить теоремы Ю. В. Нестеренко для завершения доказательства. Наш подход представляется нам интересным потому, что он проще, чем метод Ю. В. Нестеренко, и потому, что он помогает по-новому посмотреть на эти задачи.

Другой подход к выражению $I_{l,\underline{m},\underline{n}}(s)$ в терминах дзета-значений может быть следующим. Заметим, что тождество $S_n(s)=D_n(s)$ связывает кратный гипергеометрический ряд с «дифференцированным» гипергеометрическим рядом. Оно, таким образом, похоже на предельные случаи тождества Эндрюса, которые были рассмотрены в [16] для получения нового доказательства упомянутой выше теоремы Зудилина. Эти тождества связывают кратный гипергеометрический ряд с вполне уравновешенным гипергеометрическим рядом. Хотя, строго говоря, $D_n(s)$ не является гипергеометрическим рядом, из [17, гл. 16] можно позаимствовать трюк, позволяющий взглянуть на $D_n(3)$ как на предельный случай линейной комбинации двух гипергеометрических рядов. Поэтому представляется разумным ожидать существования тождества, связывающего $S_{\underline{l},\underline{m},\underline{n}}(s)$ (т. е. кратный интеграл, «тривиально» равный $I_{\underline{l},\underline{m},\underline{n}}(s)$) с подходящим гипергеометрическим рядом, предельным случаем которого будет $D_n(s)$.

3. Доказательство равенства (1.3): $S_n(s) = J_n(s)$

Приведённое ниже доказательство достаточно длинное, но не сложное. Это модификация оригинального метода С. А. Злобина [4] (см. также [16, с. 215, предложение 2]). Положим

$$Q_s(z_1, z_2, \dots, z_s) = 1 - (1 - z_s z_{s-1} \cdots z_2) z_1$$
 при $s \geqslant 2$.

Можно немедленно убедиться, что при $s\geqslant 3$ имеют место равенства

$$Q_s(z_1, z_2, \dots, z_s) = Q_{s-1}(z_1, \dots, z_{s-1}) - (1 - z_s)z_{s-1} \cdots z_1 =$$

$$= Q_{s-1}(z_1, \dots, z_{s-1}) \left(1 - \frac{(1 - z_s)z_{s-1} \cdots z_1}{Q_{s-1}(z_1, \dots, z_{s-1})} \right).$$

Заметим, что

$$0 \leqslant (1 - z_s)z_{s-1} \cdots z_1 \leqslant Q_{s-1}(z_1, z_2, \dots, z_{s-1})$$

и второе равенство возможно тогда и только тогда, когда $z_1=1$ и $z_2=z_3=\ldots=z_s$, т. е. на множестве A меры 0 в $[0,1]^s$. На множестве $[0,1]^s\setminus A$ можно использовать разложение

$$\frac{1}{\left(1 - \frac{(1 - z_s)z_{s-1} \cdots z_1}{Q_{s-1}(z_1, \dots, z_{s-1})}\right)^{n+1}} = \sum_{l_s=0}^{\infty} \binom{n + l_s}{n} \frac{(1 - z_s)^{l_s} z_{s-1}^{l_s} \cdots z_1^{l_s}}{Q_{s-1}(z_1, \dots, z_{s-1})^{l_s}}.$$

После умножения этого ряда на

$$\frac{\prod_{j=1}^{s} z_{j}^{n} (1 - z_{j})^{n}}{Q_{s-1}(z_{1}, \dots, z_{s-1})^{n+1}}$$

и интегрирования по $[0,1]^s$ благодаря положительности можно поменять местами суммирование и интегрирование. При $s\geqslant 3$ получаем

$$J_{n}(s) = \int_{[0,1]^{s}} \frac{\prod_{j=1}^{s} z_{j}^{n} (1 - z_{j})^{n}}{Q_{s-1}(z_{1}, \dots, z_{s-1})^{n+1} \left(1 - \frac{(1 - z_{s})z_{s-1} \cdots z_{1}}{Q_{s-1}(z_{1}, \dots, z_{s-1})}\right)^{n+1}} dz_{1} \dots dz_{s} =$$

$$= \sum_{l_{s}=0}^{\infty} \binom{n+l_{s}}{n} \int_{0}^{1} z_{s}^{n} (1 - z_{s})^{n+l_{s}} dz_{s} \times$$

$$\times \int_{[0,1]^{s-1}} \frac{\prod_{j=1}^{s-1} z_{j}^{n+l_{s}} (1 - z_{j})^{n}}{Q_{s-1}(z_{1}, \dots, z_{s-1})^{n+l_{s}+1}} dz_{1} \dots dz_{s-1} =$$

$$= \sum_{l_{s}=0}^{\infty} \frac{\binom{n+l_{s}}{n}}{\binom{2n+l_{s}}{n+l_{s}} (2n+l_{s}+1)} \int_{[0,1]^{s-1}} \frac{\prod_{j=1}^{s-1} z_{j}^{n+l_{s}} (1 - z_{j})^{n}}{Q_{s-1}(z_{1}, \dots, z_{s-1})^{n+l_{s}+1}} dz_{1} \dots dz_{s-1}.$$

Очевидно, этот процесс можно применить к последнему интегралу и получить равенство

$$J_{n}(s) = \sum_{l_{3},\dots,l_{s} \geqslant 0} \frac{\binom{n+l_{s}}{l_{s}}\binom{n+l_{s}+l_{s-1}}{l_{s-1}}\cdots\binom{n+l_{s}+l_{s-1}+\dots+l_{3}}{l_{3}}}{\binom{2n+l_{s}}{n+l_{s}}\binom{2n+l_{s}+l_{s-1}}{n+l_{s-1}}\cdots\binom{2n+l_{s}+l_{s-1}+\dots+l_{3}}{n+l_{3}}} \times \frac{1}{(2n+l_{s}+1)(2n+l_{s}+l_{s-1}+1)\cdots(2n+l_{s}+l_{s-1}+\dots+l_{3}+1)} \times \int_{[0,1]^{2}} \frac{z_{1}^{n+l_{s}+\dots+l_{3}}(1-z_{1})^{n}z_{2}^{n+l_{s}+\dots+l_{3}}(1-z_{2})^{n}}{Q_{2}(z_{1},z_{2})^{n+l_{s}+\dots+l_{3}+1}} dz_{1} dz_{2}.$$

Осталось вычислить двойной интеграл. Для простоты положим

$$m = l_s + \ldots + l_3$$
.

Поскольку

$$Q_2(z_1, z_2) = 1 - (1 - z_1)z_2,$$

то, заменяя z_1 на $1-z_1$, мы находим, что

$$\int_{[0,1]^2} \frac{z_1^{n+m} (1-z_1)^n z_2^{n+m} (1-z_2)^n}{Q_2(z_1, z_2)^{n+m+1}} \, \mathrm{d}z_1 \, \mathrm{d}z_2 =$$

$$= \int_{[0,1]^2} \frac{z_1^n (1-z_1)^{n+m} z_2^{n+m} (1-z_2)^n}{(1-z_1 z_2)^{n+m+1}} \, \mathrm{d}z_1 \, \mathrm{d}z_2 =$$

$$= \sum_{l_2=0}^{\infty} \binom{n+m+l_2}{l_2} \int_0^1 z_1^{l_2+n} (1-z_1)^{n+m} \, \mathrm{d}z_1 \int_0^1 z_2^{n+m+l_2} (1-z_1)^n \, \mathrm{d}z_2 =$$

$$= \sum_{l_2=0}^{\infty} \frac{\binom{n+m+l_2}{l_2}}{\binom{(2n+m+l_2)}{n+l_2} \binom{(2n+m+l_2)}{n}} \frac{1}{(2n+m+l_2+1)^2}.$$

Тогда

$$J_{n}(s) = \sum_{l_{2},\dots,l_{s} \geqslant 0} \frac{\binom{n+l_{s}}{l_{s}}\binom{n+l_{s}+l_{s-1}}{l_{s-1}} \cdots \binom{n+l_{s}+l_{s-1}+\dots+l_{2}}{l_{2}}}{\binom{2n+l_{s}}{n+l_{s}}\binom{2n+l_{s}+l_{s-1}}{n+l_{s-1}} \cdots \binom{2n+l_{s}+l_{s-1}+\dots+l_{2}}{n+l_{2}}} \times \frac{1}{(2n+l_{s}+1)(2n+l_{s}+l_{s-1}+1)\cdots(2n+l_{s}+l_{s-1}+\dots+l_{2}+1)} \times \frac{1}{\binom{n+l_{s}+l_{s-1}+\dots+l_{2}}{n}}(2n+l_{s}+l_{s-1}+\dots+l_{2}+1)}$$

а это абсолютно сходящийся ряд.

Теперь сделаем замену индексов $K_j=l_{j+1}+l_{j+2}+\ldots+l_s$ при $j=1,\ldots,s-1$ и получим

$$J_{n}(s) = \sum_{1 \leqslant K_{s-1} \leqslant \dots \leqslant K_{1}} \frac{\binom{n+K_{s-1}}{K_{s-1}} \binom{n+K_{s-2}}{K_{s-2}-K_{s-1}} \cdots \binom{n+K_{1}}{K_{1}-K_{2}}}{\binom{2n+K_{s-1}}{n+K_{s-1}} \binom{2n+K_{s-2}}{n+K_{s-2}} \cdots \binom{2n+K_{1}}{n+K_{1}-K_{2}}} \times \frac{1}{(2n+K_{s-1}+1)(2n+K_{s-2}+1)\cdots(2n+K_{1}+1)} \frac{1}{\binom{n+K_{1}}{n}(2n+K_{1}+1)} =$$

$$= n! \sum_{1 \leqslant K_{s-1} \leqslant \dots \leqslant K_{1}} \frac{(K_{s-1}+1)_{n}(K_{s-2}-K_{s-1}+1)_{n}\cdots(K_{1}-K_{2}+1)_{n}}{(K_{e}+n+1)_{n+1}\cdots(K_{2}+n+1)_{n+1}(K_{1}+n+1)_{n+1}^{2}} =$$

$$= n! \sum_{1 \leqslant k_{s-1} \leqslant \dots \leqslant k_{1}} \frac{(k_{s-1}-n)_{n}(k_{s-2}-k_{s-1}+1)_{n}\cdots(k_{1}-k_{2}+1)_{n}}{(k_{s-1})_{n+1}\cdots(k_{2})_{n+1}(k_{1})_{n+1}^{2}} =: S_{n}(s).$$

В последнем равенстве мы положили $k_j = K_j + n + 1$ при $j = 1, \dots, s - 1$.

4. Доказательство равенства (1.4): $J_n(s) = B_n(s)$

Мы строго следуем методу Бёкерса (случай s=3 рассмотрен в [9]). Имеем

$$\frac{\log(z_1 \cdots z_{s-1})}{1 - z_1 \cdots z_{s-1}} = -\int_0^1 \frac{\mathrm{d}w}{(1 - z_1 \cdots z_{s-1})w},$$

и следовательно,

$$B_n(s) := -\int_{[0,1]^s} \frac{P_n(z_1)P_n(z_2) \prod_{j=3}^{s-1} (1-z_j)^n}{1-z_1 \cdots z_{s-1}} \log(z_1 \cdots z_{s-1}) dz_1 \dots dz_{s-1} =$$

$$= \int_{[0,1]^s} \frac{P_n(z_1)P_n(z_2) \prod_{j=3}^{s-1} (1-z_j)^n}{1-(1-z_1 \cdots z_{s-1})w} dz_1 \dots dz_{s-1} dw.$$

Мы n раз интегрируем по частям выражение в последнем интеграле относительно z_1 . Получаем

$$B_n(s) = (-1)^n \int_{[0,1]^s} \frac{z_1^n (1-z_1)^n z_2^n P_n(z_2) \prod_{j=3}^{s-1} z_j^n (1-z_j)^n}{(1-(1-z_1\cdots z_{s-1})w)^{n+1}} dz_1 \dots dz_{s-1} dw.$$

Замена переменной $z_s = (1-w)/(1-(1-z_1\cdots z_{s-1})w)$ даёт

$$B_n(s) = (-1)^n \int_{[0,1]^s} \frac{(1-z_1)^n P_n(z_2) \prod_{j=3}^{s-1} (1-z_j)^n}{1-(1-z_1\cdots z_{s-1})z_s} dz_1 \dots dz_{s-1} dz_s.$$

Наконец, n раз интегрируя по частям относительно z_2 , получаем

$$B_n(s) = \int_{[0,1]^s} \frac{\prod_{j=1}^s z_j^n (1 - z_j)^n}{(1 - (1 - z_1 \cdots z_{s-1}) z_s)^{n+1}} dz_1 \dots dz_s =: J_n(s),$$

что и требовалось.

5. Доказательство равенства (1.5): $B_n(s) = D_n(s)$

Как и в предыдущем разделе, мы начинаем с альтернативного выражения для $\log(z_1\cdots z_{s-1})/(1-z_1\cdots z_{s-1})$. Однако, чтобы избежать технических сложностей, мы вводим комплексный параметр x, такой что |x|<1, а в конце доказательства положим $x\to 1$. Альтернативное выражение, которое мы будем

использовать, имеет следующий вид:

$$\frac{\log(z_1\cdots z_{s-1})}{1-xz_1\cdots z_{s-1}} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(z_1\cdots z_{s-1})^t}{1-xz_1\cdots z_{s-1}} \right) \Big|_{t=0}.$$

Более того, когда все z_i принадлежат [0,1], можно воспользоваться разложением

$$\frac{1}{1 - xz_1 \cdots z_{s-1}} = \sum_{k=1}^{\infty} (xz_1 \cdots z_{s-1})^{k-1}$$

и получить, что

$$\frac{\log(z_1 \cdots z_{s-1})}{1 - x z_1 \cdots z_{s-1}} = \frac{\mathrm{d}}{\mathrm{d}t} \left(\sum_{k=1}^{\infty} x^{k-1} (z_1 \cdots z_{s-1})^{k+t-1} \right) \Big|_{t=0}.$$
 (5.1)

Определим интеграл

$$B_n(s,x) := -\int_{[0,1]^s} \frac{P_n(z_1)P_n(z_2) \prod_{j=3}^{s-1} (1-z_j)^n}{1-xz_1\cdots z_{s-1}} \log(z_1\cdots z_{s-1}) dz_1 \dots dz_{s-1},$$

для которого верно

$$\lim_{n \to \infty} B_n(s, x) = B_n(s, 1) = B_n(s).$$

Из (5.1) мы выводим, что

$$B_n(s,x) = -\sum_{k=1}^{\infty} x^{k-1} \times \frac{\mathrm{d}}{\mathrm{d}t} \left(\int_0^1 z_1^{k+t-1} P_n(z_1) \, \mathrm{d}z_1 \int_0^1 z_2^{k+t-1} P_n(z_2) \, \mathrm{d}z_2 \prod_{j=3}^{s-1} \int_0^1 z_j^{k+t-1} (1-z_j)^n \, \mathrm{d}z_j \right) \Big|_{t=0}.$$

Различные перестановки интегрирования, суммирования и дифференцирования возможны, поскольку |x|<1 и интегралы ограниченны независимо от k.

Теперь мы вычислим два рассматриваемых интеграла. Во-первых,

$$\int_{0}^{1} z^{k+t-1} (1-z)^{n} dz = \frac{n!}{(k+t)(k+t+1)\cdots(k+t+n)}.$$
 (5.2)

Во-вторых, интегрируя n раз по частям и затем используя (5.2), мы получаем

$$\int_{0}^{1} z^{k+t-1} P_{n}(z) dz = \frac{n!}{(k+t-1)\cdots(k+t-n)} \int_{0}^{1} z^{k+t-1} (1-z)^{n} dz =$$

$$= \frac{(k+t-1)\cdots(k+t-n)}{(k+t)(k+t+1)\cdots(k+t+n)}.$$

Таким образом, имеем

$$\begin{split} B_n(s,x) &= \\ &= -\sum_{k=1}^{\infty} x^{k-1} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(k+t-1)^2 \cdots (k+t-n)^2}{(k+t)^2 \cdots (k+t+n)^2} \frac{n!^{s-3}}{(k+t)^{s-3} \cdots (k+t+n)^{s-3}} \right) \bigg|_{t=0} = \\ &= -n^{s-3} \sum_{k=1}^{\infty} x^{k-1} \frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{(k+t-1)^2 \cdots (k+t-n)^2}{(k+t)^{s-1} \cdots (k+t+n)^{s-1}} \right) \bigg|_{t=0}. \end{split}$$

Используя теорему Абеля, теперь мы можем положить $x \to 1$ и получить $B_n(s) = D_n(s)$.

6. Доказательство теоремы 1

Итак, мы доказали, что $I_n(s)=D_n(s)$. Теперь действительно можно легко завершить доказательство теоремы 1, используя стандартные рассуждения. Мы докажем немного больше, чем требуется, и для этого определим полилогарифмические функции

$$\mathrm{Li}_s(z) = \sum_{k=1}^\infty rac{z^n}{n^s}$$
 для $|z| \leqslant 1, \; s \geqslant 1, \; (z,s)
eq (1,1).$

Положим

$$R(k) := n!^{s-3} \frac{(k-1)^2 \cdots (k-n)^2}{k^{s-1} (k+1)^{s-1} \cdots (k+n)^{s-1}}.$$

R(k) — рациональная функция от k. Разложение R(k) на простейшие дроби имеет вид

$$R(k) = \sum_{j=0}^{n} \sum_{t=1}^{s-1} \frac{C(j,t)}{(k+j)^{t}},$$

где коэффициенты $C(j,t)\in\mathbb{Q}$ зависят от $s,\ n$ и могут быть выписаны явно. Следовательно, мы имеем

$$\frac{\partial}{\partial k}R(k) = -\sum_{j=0}^{n}\sum_{t=2}^{s} \frac{(t-1)C(j,t-1)}{(k+j)^{t}}.$$

Рассмотрим ряд

$$V(z) = -\sum_{k=1}^{\infty} R^{(1)}(k)z^{-k},$$

который сходится абсолютно при $|z|\geqslant 1.$ В частности, при z=1 получаем $V(1)=D_n(s).$ При $|z|\geqslant 1$ имеем

$$\begin{split} V(z) &= \sum_{j=0}^n \sum_{t=2}^s (t-1)C(j,t-1) \sum_{k=1}^\infty \frac{z^{-k}}{(k+j)^t} = \\ &= \sum_{j=0}^n \sum_{t=2}^s (t-1)C(j,t-1) \bigg(z^j \mathrm{Li}_t \left(\frac{1}{z}\right) - \sum_{k=1}^j \frac{z^{j-k}}{k^t} \bigg) = P_0(z) + \sum_{t=2}^s P_t(z) \mathrm{Li}_s \left(\frac{1}{z}\right), \end{split}$$

где при $t\geqslant 2$

$$P_t(z) = \sum_{i=0}^{n} (t-1)C(j, t-1)z^j \in \mathbb{Q}[z]$$

И

$$P_0(z) = -\sum_{j=0}^n \sum_{t=2}^s (t-1)C(j,t-1) \sum_{k=1}^j \frac{z^{j-k}}{k^t} \in \mathbb{Q}[z].$$

Теперь заметим, что

$$P_2(1) = \sum_{j=0}^{n} C(j,1) = 0,$$

так как полная степень R(k) не превосходит -2. Таким образом,

$$D_n(s) = V(1) = P_0(1) + \sum_{t=3}^{s} P_t(1) \operatorname{Li}_t(1) = P_0(1) + \sum_{t=3}^{s} P_t(1) \zeta(t).$$

Мы не доказываем последнее утверждение теоремы, т. е. что $\mathbf{d}_n^{s-t}P_t(1)\in\mathbb{Z}$, поскольку аналогичные доказательства имеются в [8,22,23,25,26].

Литература

- [1] Васильев Д. В. Аппроксимации нуля линейными формами от значений дзета-функции Римана // Докл. Нац. акад. наук Беларуси. 2001. 7.45, 1.45 1.
- [2] Гутник Л. А. Об иррациональности некоторых величин, содержащих $\zeta(3)$ // Успехи мат. наук. 1979. Т. 34, № 3. С. 190.
- [3] Злобин С. А. Интегралы, представляемые в виде линейных форм от обобщённых полилогарифмов // Мат. заметки. 2002. Т. 71, № 5. С. 782—787.
- [4] Злобин С. А. О некоторых интегральных тождествах // Успехи мат. наук. 2002. Т. 57, № 3. С. 153—154.
- [5] Нестеренко Ю. В. Некоторые замечания о $\zeta(3)$ // Мат. заметки. 1996. Т. 59, № 6. С. 865—880.
- [6] Сорокин В. Н. Теорема Апери // Вестн. Моск. ун-та. Сер. 1. Математика, механика. — 1998. — № 3. — С. 48—53.
- [7] Apéry R. Irrationalité de $\zeta(2)$ et $\zeta(3)$ // Astérisque. 1979. Vol. 61. P. 11—13.
- [8] Ball K., Rivoal T. Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs // Invent. Math. -2001. Vol. 146, no. 1. P. 193-207.
- [9] Beukers F. A note on the irrationality of $\zeta(2)$ and $\zeta(3)$ // Bull. London Math. Soc. 1979. Vol. 11. P. 268—272.

- [10] Beukers F. Padé-approximations in number theory // Padé Approximation and Its Applications: Amsterdam 1980. Proc. Conference Held in Amsterdam, The Netherlands, October 29—31, 1980 / M. G. de Bruin, H. van Rossum, eds. Berlin: Springer, 1981. (Lect. Notes Math.; Vol. 888). P. 90—99.
- [11] Cresson J., Fischler S., Rivoal T. Phénomènes de symétrie dans des formes linéaires en polyzêtas // J. Reine Angew. Math. 2008. Vol. 617. P. 109—151.
- [12] Cresson J., Fischler S., Rivoal T. Séries hypergéométriques multiples et polyzêtas // Bull. Soc. Math. France. -2008. Vol. 136, no. 1. P. 97-145.
- [13] Cresson J., Fischler S., Rivoal T. http://www.math.u-psud.fr/~fischler/algo.html.
- [14] Fischler S. Groupes de Rhin—Viola et intégrales multiples // J. Théor. Nombres Bordeaux. — 2003. — Vol. 15, no. 2. — P. 479—534.
- [15] Fischler S. Multiple series connected to Hoffman's conjecture on multiple zeta values: Preprint. 2006. http://front.math.ucdavis.edu/math.NT/0609799.
- [16] Krattenthaler C., Rivoal T. An identity of Andrews, multiple integrals, and very-well-poised hypergeometric series // Ramanujan J. -2007. Vol. 13, no. 1-3. P. 203-219.
- [17] Krattenthaler C., Rivoal T. Hypergéométrie et fonction zêta de Riemann. Amer. Math. Soc., 2007. — (Mem. Amer. Math. Soc.; Vol. 186).
- [18] Nesterenko Yu. V. Integral identities and constructions of approximations to zeta-values // J. Théor. Nombres Bordeaux. 2003. Vol. 15. P. 535–550.
- [19] Rhin G., Viola C. On a permutation group related to $\zeta(2)$ // Acta Arith. 1996. Vol. 77. P. 23—56.
- [20] Rhin G., Viola C. The group structure for $\zeta(3)$ // Acta Arith. -2001.- Vol. 97, no. 3.- P. 269-293.
- [21] Rhin G., Viola C. Multiple integrals and linear forms in zeta-values // Funct. Approx. 2007. Vol. 37. P. 429—444.
- [22] Rivoal T. La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs // C. R. Acad. Sci. Paris, Sér. I. Math. -2000.- Vol. 331, no. 4.- P. 267-270.
- [23] Rivoal T. Irrationalité d'au moins un des neuf nombres $\zeta(5),\zeta(7),\ldots,\zeta(21)$ // Acta Arith. -2002. Vol. 103, no. 2. P. 157-167.
- [24] Rivoal T. Valeurs aux entiers de la fonction zêta de Riemann // Quadrature. 2003. Vol. 49. http://www-fourier.ujf-grenoble.fr/~rivoal/articles/quaddefi.pdf.
- [25] Zudilin W. Well-poised hypergeometric service for diophantine problems of zeta values // J. Théor. Nombres Bordeaux. 2003. Vol. 15, no. 2. P. 593—626.
- [26] Zudilin W. Arithmetic of linear forms involving odd zeta values // J. Théor. Nombres Bordeaux. -2004. Vol. 16. -P. 251-291.