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1. Statement of the result

For any fixed integers n ≥ 0 and s ≥ 3, let us define the Sorokin-type integral

In(s) :=

∫

[0,1]s

∏s
j=1 zn

j (1− zj)
n

∏s
j=2(1− z1z2 · · · zj)n+1

dz1 · · · dzs.

Sorokin proved in [21] that

In(3) = anζ(3) + bn ∈ Qζ(3) +Q, (1.1)

where an and bn are exactly the sequences originally found by Apéry [1] in his proof of
the irrationality of ζ(3). His method consists of solving a suitable Padé approximation
problem, a method which is not easily generalisable.

In this note, we will prove the following generalisation of (1.1) by a completely different
method. A usual, we set dn := lcm{1, 2, . . . , n}.
Theorem 1. For any fixed integers n ≥ 0 and s ≥ 3, there exist s−1 sequences of rational
(pj,n,s)n≥0, j = 0, 3, . . . , s, such that

In(s) = p0,n,s +
s∑

j=3

pj,n,s ζ(j) ∈ Q+Qζ(3) +Qζ(4) + · · ·+Qζ(s).

Furthermore, we have ds−j
n pj,n,s ∈ Z for all j.

We remark that the coefficient of ζ(2) is a priori 0: though this is a non-trivial fact,
it is not at all clear what new diophantine result could be obtained from this theorem.
Nonetheless, it has some interest for the following reasons. It is proved in [5] and [23] that
a Sorokin-type integral can be expanded in a rational linear form in multiple zeta values
(MZV). Conjecturally this form cannot usually be reduced to a linear form in zeta values.
For example, consider the Sorokin-type integral

Un =

∫

[0,1]5

∏5
j=1 zn

j (1− zj)
n

(1− z1z2z3)n+1(1− z1z2z3z4z5)n+1
dz1 · · · dz5.

For n = 0, U0 = ζ(3, 2) = −11ζ(5)/2 + 3ζ(2)ζ(3) and for n = 1, 2 and 3, Un is a rational
linear form in ζ(2), ζ(3), ζ(4), ζ(5), ζ(2, 2) and ζ(3, 2). But according to the Goncharov-
Zagier conjecture, ζ(3, 2) and Un are unlikely to be rational linear forms in zeta values.
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Thus, In(s) is in some sense accidental but this is not an isolated accident. Indeed,
Vasilyev’s generalisation [22] of Beukers’ famous integrals [3] can be expressed as certain
Sorokin-type integrals and, thanks to a theorem of Zudilin [25], they are also linear in
zeta values of a very special form: only odd or even zeta values can occur, according to
the parity of the dimension of the integral. These “dichotomic” linear forms coincid with
those constructed in [2, 18] for proving that infinitely many odd zeta values are linearly
independent. Thus, such integrals are very useful for studying the diophantine nature of
MZV and it would be very interesting to find other families of integrals whose evaluations
as linear forms in MZV have special properties. The effective implementation [7] under
PARI/GP of the algorithm described in [5] could be usefull for this: indeed, Theorem 1
was literally guessed by applying the algorithm to the series Sn(s) in (1.2) below for a few
values of s and n. See [6, 9] for other examples of multiple series whose properties where
initially detected experimentally.

The proof of Theorem 1 is not straightforward and will be obtained by a certain number
of successive reductions. By definition, (α)0 := 1 and (α)m := α(α + 1) · · · (α + m− 1) for
m ≥ 1. From now on and unless otherwise specified, we assume that the integers n and s
satisfy n ≥ 0 and s ≥ 3.

1) Firstly, using the general decomposition of Sorokin-type integrals in multiple series
proved in [5, p.11-12, Proposition 1], we have that

In(s) = n!
∑

k1≥k2≥···≥ks−1≥1

(k1 − k2 + 1)n

(k1)2
n+1

s−1∏
j=2

(kj − kj+1 + 1)n

(kj)n+1

=: Sn(s), (1.2)

(where ks = n + 1 by convention).
2) Less easy is the next fact: we also have that

Sn(s) =

∫

[0,1]s

∏s
j=1 zn

j (1− zj)
n

(1− (1− z1 · · · zs−1)zs)n+1
dz1 · · · dzs =: Jn(s). (1.3)

Hence, we have In(s) = Jn(s).
3) By a change of variable and n-fold integrations by parts, we will then prove that

Jn(s) = −
∫

[0,1]s−1

Pn(z1)Pn(z2)
∏s−1

j=3(1− zj)
n

1− z1 · · · zs−1

log(z1 · · · zs−1) dz1 · · · dzs−1 =: Bn(s), (1.4)

where Pn(x) = (xn(1−x)n)(n)/n! denotes the n-th Legendre polynomial on [0, 1] and where
for s = 3 the value of the empty product is set to 1.

4) From Bn(s), we will obtain the final reduction

Bn(s) = −n!s−3

∞∑

k=1

∂

∂k

(
(k − n)2

n

(k)s−1
n+1

)
=: Dn(s), (1.5)

by the process used by the author (in [20]) to prove that (1.5) holds for s = 3.
5) Finally, Dn(s) can be expressed as a linear form in zeta values, say Zn(s), which is of

the form announced in Theorem 1.
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We thus have obtained the chain of non-trivial equalities

In(s) = Sn(s) = Jn(s) = Bn(s) = Dn(s) = Zn(s) (1.6)

and In(s) = Zn(s) is exactly the content of Theorem 1. We note that for s = 3, the
chain (1.6) is well-known : the equalities In(3) = Zn(3), Jn(3) = Bn(3) = Zn(3) and
Dn(3) = Zn(3) are proved more or less explicitly in [21], [3] and [4, 10, 13] respectively.
Proofs of In(3) = Jn(3) were obtained in [8] and [24] independently.

2. Nesterenko and Rhin-Viola generalisations and further problems

It would be interesting to obtain a more direct proof that In(s) = Zn(s) and to generalise
it to different exponents, i.e., to consider the integrals

I`,m,n(s) :=

∫

[0,1]s

∏s
j=1 z

nj

j (1− zj)
mj

∏s
j=2(1− z1z2 · · · zj)`j+1

dz1 · · · dzs

for suitable integers `j,mj, nj ≥ 0. Independently of the present work, Rhin-Viola [17]
recently managed by ingenious changes of variables to prove that under certain conditions
we have (1)

I`,m,n(s) = J`′,m′,n′(s) ∈ Q+Qζ(2) +Qζ(3) +Qζ(4) + · · ·+Qζ(s).

where

J`′,m′,n′(s) :=

∫

[0,1]s

∏s
j=1 z

n′j
j (1− zj)

m′
j

(1− (1− z1 · · · zs−1)zs)`′+1
dz1 · · · dzs (2.1)

is a suitable generalisation of our Jn(s) and the `′, m′
j, n′j are related to the `j, mj, nj.

It is not clear when ζ(2) can be removed (even for s = 3, this is not always possible for
general exponents, see [16]): in general, step 3) above can not be done because the “n-fold
integrations by parts” trick does not always work for a general integral J`′,m′,n′(s). Hence,
the ad hoc methods of Rhin-Viola developped in [15, 16] to avoid this difficulty could be
useful to provide natural conditions on the `j,mj, nj under which certain coefficients of the
zeta values are 0 in the expansion of I`,m,n(s).

We also mention that a functional version (the variable being x, say) of the integral (2.1)
was first studied by Nesterenko [14]. He proved that this integral is equal to a complex
Barnes type integral (see Theorem 2, page 547 of [14]) under suitable conditions on the
coefficients, from which he deduced a representation as a linear form in polylogarithms in
x. Specialising x to 1, he obtained a linear form in 1, ζ(3), ζ(4), etc. Hence, once we have
proved that “our” integrals In(s) and Jn(s) are equal, we could apply Nesterenko’s theorems
to conclude the proof. However, we feel that our approach is of interest, particularly
because it is more elementary than Nesterenko’s method and because it might shed new
light on these problems.

1Our proof that In(s) = Jn(s) does not use changes of variable. Instead, we follow Zlobin’s method [24].
We did not try to see if the general Rhin-Viola’s identity I`,m,n(s) = J`′,m′,n′(s) can also be proved this
way but in principle this should not be difficult to check.
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Another approach to the evaluation of I`,m,n(s) in terms of zeta values could be the
following. We note that the identity Sn(s) = Dn(s) relates a multiple hypergeometric
series and a “differenciated” hypergeometric series. It is thus similar to the limiting cases
of Andrews identity which were proved in [12] to give a new proof of the theorem of Zudilin
mentioned above. These identities relate a multiple hypergeometric series to a a very-well-
poised hypergeometric series. Although strictly speaking Dn(s) is not a hypergeometric
series, one can also find in [11, Chapitre 16] a trick enabling us to see Dn(3) as a limiting
case of a linear combination of two hypergeometric series. Therefore, it seems reasonable
to expect the existence of an identity relating S`,m,n(s) (= the multiple series “trivially”
equal to I`,m,n(s)) and suitable hypergeometric series, of which Dn(s) would be a suitable
limiting case.

3. Proof of (1.3): Sn(s) = Jn(s)

The proof given below is somewhat long but it is not difficult. It is an adaptation of
Zlobin’s original method [24], see also [12, p. 215, Proposition 2]. Set Qs(z1, z2, . . . , zs) =
1− (1− zszs−1 · · · z2)z1 for s ≥ 2. One checks immediately that for all s ≥ 3, we have

Qs(z1, z2, . . . , zs) = Qs−1(z1, . . . , zs−1)− (1− zs)zs−1 · · · z1

= Qs−1(z1, . . . , zs−1)

(
1− (1− zs)zs−1 · · · z1

Qs−1(z1, . . . , zs−1)

)
.

We remark that 0 ≤ (1 − zs)zs−1 · · · z1 ≤ Qs−1(z1, z2, . . . , zs−1) and the second equality
holds if and only if z1 = 1 and z2 = z3 = · · · = zs, which is a set A of measure 0 in [0, 1]s.
On the set [0, 1]s \ A, we can expand

1(
1− (1− zs)zs−1 · · · z1

Qs−1(z1, . . . , zs−1)

)n+1 =
∞∑

`s=0

(
n + `s

n

)
(1− zs)

`sz`s
s−1 · · · z`s

1

Qs−1(z1, . . . , zs−1)`s
.

After multiplication of this series by
Qs

j=1 zn
j (1−zj)

n

Qs−1(z1,...,zs−1)n+1 and integration over [0, 1]s, positivity

ensures that we can exchange the
∑

and
∫

signs. This yields that, for s ≥ 3, we have

Jn(s)

=

∫

[0,1]s

∏s
j=1 zn

j (1− zj)
n

Qs−1(z1, . . . , zs−1)n+1
(
1− (1−zs)zs−1···z1

Qs−1(z1,...,zs−1)

)n+1 dz1 · · · dzs

=
∞∑

`s=0

(
n + `s

n

) ∫ 1

0

zn
s (1− zs)

n+`sdzs ·
∫

[0,1]s−1

∏s−1
j=1 zn+`s

j (1− zj)
n

Qs−1(z1, . . . , zs−1)n+`s+1
dz1 · · · dzs−1

=
∞∑

`s=0

(
n+`s

n

)
(
2n+`s

n+`s

)
(2n + `s + 1)

∫

[0,1]s−1

∏s−1
j=1 zn+`s

j (1− zj)
n

Qs−1(z1, . . . , zs−1)n+`s+1
dz1 · · · dzs−1.
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Clearly, we can apply this process to the last integral and by iteration we obtain that

Jn(s) =
∑

`3,...,`s≥0

(
n+`s

`s

)(
n+`s+`s−1

`s−1

) · · · (n+`s+`s−1+···+`3
`3

)
(
2n+`s

n+`s

)(
2n+`s+`s−1

n+`s−1

) · · · (2n+`s+`s−1+···+`3
n+`3

)

· 1

(2n + `s + 1)(2n + `s + `s−1 + 1) · · · (2n + `s + `s−1 + ·+ `3 + 1)

·
∫

[0,1]2

zn+`s+···+`3
1 (1− z1)

nzn+`s+···+`3
2 (1− z2)

n

Q2(z1, z2)n+`s···+`3+1
dz1dz2.

It remains to evaluate the double integral. To simplify, let m = `s + · · · + `3. Since
Q2(z1, z2) = 1− (1− z1)z2, by changing z1 in 1− z1, we see that

∫

[0,1]2

zn+m
1 (1− z1)

nzn+m
2 (1− z2)

n

Q2(z1, z2)n+m+1
dz1dz2

=

∫

[0,1]2

zn
1 (1− z1)

n+mzn+m
2 (1− z2)

n

(1− z1z2)n+m+1
dz1dz2

=
∞∑

`2=0

(
n + m + `2

`2

) ∫ 1

0

z`2+n
1 (1− z1)

n+mdz1

∫ 1

0

zn+m+`2
2 (1− z1)

ndz2

=
∞∑

`2=0

(
n+m+`2

`2

)
(
2n+m+`2

n+`2

)(
2n+m+`2

n

) · 1

(2n + m + `2 + 1)2
.

Therefore,

Jn(s) =
∑

`2,...,`s≥0

(
n+`s

`s

)(
n+`s+`s−1

`s−1

) · · · (n+`s+`s−1+···+`2
`2

)
(
2n+`s

n+`s

)(
2n+`s+`s−1

n+`s−1

) · · · (2n+`s+`s−1+···+`2
n+`2

)

· 1

(2n + `s + 1)(2n + `s + `s−1 + 1) · · · (2n + `s + `s−1 + · · ·+ `2 + 1)

· 1(
n+`s+`s−1+···+`2

n

)
(2n + `s + `s−1 + · · ·+ `2 + 1)

,

which is a perfectly convergent series.
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We now make a change of indices Kj = `j+1 + `j+2 + · · · + `s for j = 1, . . . , s − 1 and
obtain

Jn(s) =
∑

1≤Ks−1≤···≤K1

(
n+Ks−1

Ks−1

)(
n+Ks−2

Ks−2−Ks−1

) · · · ( n+K1

K1−K2

)
(
2n+Ks−1

n+Ks−1

)(
2n+Ks−2

n+Ks−2−Ks−1

) · · · ( 2n+K1

n+K1−K2

)

· 1

(2n + Ks−1 + 1)(2n + Ks−2 + 1) · · · (2n + K1 + 1)
· 1(

n+K1

n

)
(2n + K1 + 1)

= n!
∑

1≤Ks−1≤···≤K1

(Ks−1 + 1)n(Ks−2 −Ks−1 + 1)n · · · (K1 −K2 + 1)n

(Ke + n + 1)n+1 · · · (K2 + n + 1)n+1(K1 + n + 1)2
n+1

= n!
∑

1≤ks−1≤···≤k1

(ks−1 − n)n(ks−2 − ks−1 + 1)n · · · (k1 − k2 + 1)n

(ks−1)n+1 · · · (k2)n+1(k1)2
n+1

=: Sn(s).

In the last equality, we set kj = Kj + n + 1 for j = 1, . . . , s− 1.

4. Proof of (1.4): Jn(s) = Bn(s)

We follow closely Beukers’ method (case s = 3, see [3]). We have

log(z1 · · · zs−1)

1− z1 · · · zs−1

= −
∫ 1

0

dw

(1− z1 · · · zs−1)w

and therefore

Bn(s) := −
∫

[0,1]s

Pn(z1)Pn(z2)
∏s−1

j=3(1− zj)
n

1− z1 · · · zs−1

log(z1 · · · zs−1) dz1 · · · dzs−1

=

∫

[0,1]s

Pn(z1)Pn(z2)
∏s−1

j=3(1− zj)
n

1− (1− z1 · · · zs−1)w
dz1 · · · dzs−1dw.

We now integrate n times by parts in the last integral with respect to z1: we obtain that

Bn(s) = (−1)n

∫

[0,1]s

zn
1 (1− z1)

nzn
2 Pn(z2)

∏s−1
j=3 zn

j (1− zj)
n

(1− (1− z1 · · · zs−1)w)n+1
dz1 · · · dzs−1dw.

The change of variable zs = (1− w)/(1− (1− z1 · · · zs−1)w) yields that

Bn(s) = (−1)n

∫

[0,1]s

(1− z1)
nPn(z2)

∏s−1
j=3(1− zj)

n

1− (1− z1 · · · zs−1)zs

dz1 · · · dzs−1dzs.

Finally, integrating n times by parts with respect to z2, we get

Bn(s) =

∫

[0,1]s

∏s
j=1 zn

j (1− zj)
n

(1− (1− z1 · · · zs−1)zs)n+1
dz1 · · · dzs =: Jn(s)

as claimed.
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5. Proof of (1.5): Bn(s) = Dn(s)

As in the previous section, we start with an alternative expression for log(z1 · · · zs−1)/(1−
z1 · · · zs−1). However, to avoid technicalities, we introduce a complex parameter x such that
|x| < 1 and we will let x → 1 in the end. The alternative expression we will use is:

log(z1 · · · zs−1)

1− xz1 · · · zs−1

=
d

dt

(
(z1 · · · zs−1)

t

1− xz1 · · · zs−1

)

|t=0

.

Furthermore, provided all zj ∈ [0, 1], we can expand

1

1− xz1 · · · zs−1

=
∞∑

k=1

(xz1 · · · zs−1)
k−1

and we obtain that

log(z1 · · · zs−1)

1− xz1 · · · zs−1

=
d

dt

( ∞∑

k=1

xk−1(z1 · · · zs−1)
k+t−1

)

|t=0

(5.1)

We now define the integral

Bn(s, x) := −
∫

[0,1]s

Pn(z1)Pn(z2)
∏s−1

j=3(1− zj)
n

1− xz1 · · · zs−1

log(z1 · · · zs−1) dz1 · · · dzs−1,

which is such that limx→1 Bn(s, x) = Bn(s, 1) = Bn(s). From (5.1), we deduce that

Bn(s, x) =

−
∞∑

k=1

xk−1 d

dt

( ∫ 1

0

zk+t−1
1 Pn(z1) dz1 ·

∫ 1

0

zk+t−1
2 Pn(z2) dz2 ·

s−1∏
j=3

∫ 1

0

zk+t−1
j (1−zj)

n dzj

)

|t=0

.

The various exchanges of integrals, summations and derivations are all justified because
|x| < 1 and the integrals are bounded independently of k.

We now compute the two types of integrals occuring. Firstly, we have

∫ 1

0

zk+t−1(1− z)n dz =
n!

(k + t)(k + t + 1) · · · (k + t + n)
. (5.2)

Secondly, integrating n times by parts and then using (5.2), we have

∫ 1

0

zk+t−1Pn(z) dz =
n!

(k + t− 1) · · · (k + t− n)

∫ 1

0

zk+t−1(1− z)n dz

=
(k + t− 1) · · · (k + t− n)

(k + t)(k + t + 1) · · · (k + t + n)
.
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Therefore, we have

Bn(s, x) = −
∞∑

k=1

xk−1 d

dt

(
(k + t− 1)2 · · · (k + t− n)2

(k + t)2 · · · (k + t + n)2
· n!s−3

(k + t)s−3 · · · (k + t + n)s−3

)

|t=0

= −ns−3

∞∑

k=1

xk−1 d

dt

(
(k + t− 1)2 · · · (k + t− n)2

(k + t)s−1 · · · (k + t + n)s−1

)

|t=0

.

Using Abel’s theorem, we can now let x → 1 and we finally obtain that Bn(s) = Dn(s).

6. Proof of Theorem 1

So far, we have proved that In(s) = Dn(s). It is now fairly easy to complete the proof
of Theorem 1 by standard arguments. We will prove a little more than needed and, for
this, we define the polylogarithmic functions by Lis(z) =

∑∞
k=1 zn/ns for |z| ≤ 1, s ≥ 1

and (z, s) 6= (z, 1).
Set

R(k) := n!s−3 (k − 1)2 · · · (k − n)2

ks−1(k + 1)s−1 · · · (k + n)s−1
,

which is a rational function of k. The partial fraction expansion of R(k) reads

R(k) =
n∑

j=0

s−1∑
t=1

C(j, t)

(k + j)t
,

where the coefficients C(j, t) ∈ Q depend on s, n and could in principle made explicit.
Therefore, we have

∂

∂k
R(k) = −

n∑
j=0

s∑
t=2

(t− 1)C(j, t− 1)

(k + j)t
.

Consider now the series V (z) = −∑∞
k=1 R(1)(k)z−k, which converges absolutely for |z| ≥

1; in particular for z = 1, we have V (1) = Dn(s). For |z| ≥ 1, we have

V (z) =
n∑

j=0

s∑
t=2

(t− 1)C(j, t− 1)
∞∑

k=1

z−k

(k + j)t

=
n∑

j=0

s∑
t=2

(t− 1)C(j, t− 1)

(
zjLit(1/z)−

j∑

k=1

zj−k

kt

)

= P0(z) +
s∑

t=2

Pt(z)Lis(1/z)
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where, for t ≥ 2, Pt(z) =
n∑

j=0

(t− 1)C(j, t− 1)zj ∈ Q[z] and

P0(z) = −
n∑

j=0

s∑
t=2

(t− 1)C(j, t− 1)

j∑

k=1

zj−k

kt
∈ Q[z].

We now remark P2(1) =
∑n

j=0 C(j, 1) = 0 because the total degree of R(k) is ≤ −2.
Therefore, we have

Dn(s) = V (1) = P0(1) +
s∑

t=3

Pt(1)Lit(1) = P0(1) +
s∑

t=3

Pt(1)ζ(t).

We don’t prove the last assertion of the theorem, i.e. that ds−t
n Pt(1) ∈ Z: see [2, 18, 19,

26, 25] for similar proofs.
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