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1 Introduction

The Hurwitz zeta function is defined by

ζ(s, x) =
∞∑
n=0

1

(n+ x)s

for any s, x such that Re(s) > 1 and x ∈ R \ Z≤0. For any fixed integer s, ζ(s, x) is
meromorphic in C \ Z≤0, with poles of order s at each non-negative integer. For any
fixed ε > 0, ζ(s, x) has an asymptotic expansion when x → ∞ in the angular sector
| arg(x)| < π − ε:

ζ(s, x) ∼ x1−s

s− 1
+
∞∑
k=1

(s)k−1
k!

Bk

xk+s−1
,

where (Bk)k≥0 is the sequence of Bernoulli numbers.

In this paper, we address the following problem: Given two integers m,n ≥ 0, determine
two polynomials A(x) and B(x) ∈ Q[x], of degree ≤ n, such that

A(x)ζ(4, x) +B(x) = O
( 1

xm+1

)
(1)

as x→∞ in any angular sector | arg(x)| < π − ε.
Stated in this form, this is an analytic problem. However, using the asymptotic expan-

sion of ζ(s, x) at x =∞, Eq. (1) can also be interpreted as a Padé type problem at x =∞
for the formal series

2x−3 +
∞∑
k=0

(k + 2)(k + 3)Bk+1 x
−k−4.

See [10, Sec. 2] for details. This Padé problem amounts to solving a linear system with
2n+ 2 indeterminates (the polynomial coefficients) and m+n+ 1 equations (the vanishing
conditions): provided m ≤ n, this system has at least one non-zero solution. The case
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m = n corresponds to the usual diagonal Padé approximation. The explicit polynomials
obtained below are automatically solutions of the associated Padé type problem. Our main
result is the explicit determination of a non-zero analytic solution of (1) when m ≤ n/2
(essentially). Unicity of the solution is obviously not guaranteed.

Theorem 1. For any integer n ≥ 0, consider the following Padé type problem: determine
two polynomials Q0,n(x) and Q2,n(x) ∈ Q[x], of degree ≤ 4n, such that

Sn(x) := 3Q0,n(x)ζ(4, x) +Q2,n(x) = O
( 1

x2n+3

)
(2)

Problem (2) admits the following solution:

Sn(x) = −
∞∑
k=0

∂

∂k

((
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

)
. (3)

The series converges for all x ∈ C \ {0,−1,−2,−3, . . .}.
Moreover, for the series on the right-hand side of (3), we have

Q0,n(x) =
n∑
j=0

∂

∂ε

((n
2
− j + ε

) (x+ j − n− ε)2n(x− j + ε)2n
(1− ε)4j(1 + ε)4n−j

)
|ε=0

and

Q2,n(x) =

− 1

6

n∑
j=0

( ∂
∂ε

)3((n
2
− j + ε

) (x+ j − n− ε)2n(x− j + ε)2n
(1− ε)4j(1 + ε)4n−j

j−1∑
k=0

1

(x+ k − ε)2

)
|ε=0

.

Diagonal Padé approximants are known for ζ(2, x) and ζ(3, x): the formulas are given
in [8] and [10, Theorem 2]. However diagonal Padé approximants are not explicitely known
for ζ(4, x) and Theorem 1 offers a weaker alternative. The polynomial Q0,n(x) can also be
written more symbolically in the form

Q0,n(x) =
n∑
j=0

∂

∂j

((n
2
− j
)(n

j

)4(
x+ j − 1

n

)2(
x+ n− j − 1

n

)2)
.

We now let

Q1,n(x) =

− 1

6

n∑
j=0

( ∂
∂ε

)3((n
2
− j + ε

) (x+ j − n− ε)2n(x− j + ε)2n
(1− ε)4j(1 + ε)4n−j

j−1∑
k=0

1

x+ k − ε

)
|ε=0
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which is also a polynomial of degree ≤ 4n. Then, our proof will also show that

Rn(x) := Q0,n(x)ζ(3, x) +Q1,n(x) =
∞∑
k=0

(
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

.

As x→∞, (
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

∼ 4n(k + 1)2n
x2n+3

(4)

and this suggests that Rn(x) = O( 1
x2n+3 ) as Sn(x). However, this is false and in fact one can

not prove anything better than Rn(x) = O( 1
x2

). Therefore, the property Sn(x) = O( 1
x2n+3 )

is a non-trivial property, which is not a simple consequence of (4).

We give the proof of Theorem 1 in Section 2 while we make connections with other
results in the literature in Section 3.

I warmly thank Pierre Bel for his careful reading of a previous version of this paper.

2 Proof of Theorem 1

We follow the method used in [10] and split the proof in three parts. We also include the
case of ζ(3, x) in the first part of the proof.

2.1 Linear forms in 1, ζ(3, x), respectively 1, ζ(4, x)

We define the rational function

ρ(t) =
(
t+ x+

n

2

) (t+ 1)2n(t+ 2x)2n
(t+ x)4n+1

.

By partial fraction expansion, we have

ρ(t) =
4∑
s=1

n∑
j=0

Ej,n,s(x)

(t+ x+ j)s

with

Ej,n,s(x) =
1

(4− s)!

( ∂
∂t

)4−s(
ρ(t) (t+ x+ j)4

)
|k=−j−x.

Exchanging summations, we thus get

∞∑
k=0

(
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

=
4∑
s=2

( n∑
j=0

Ej,n,s(x)
)
ζ(s, x)−

4∑
s=1

n∑
j=0

j−1∑
k=0

Ej,n,s(x)

(k + x)s
. (5)
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Here we must explain how we have disposed of the divergent series
∑∞

k=0
1

k+x
in (5), i.e.

why the first sum over s does not start at s = 1. The series on the left-hand side of (5)
being convergent, this forces to assign the value−

∑n
j=0Ej,n,1(x))

∑j−1
k=0

1
k+x

to the divergent

expression (
∑n

j=0Ej,n,1(x))
∑∞

k=0
1

k+x+j
. Indeed we have

∑n
j=0Ej,n,1(x) = 0 because this is

the sum over the residues at all the finite poles of ρ(k), hence also equal to minus its residue

at infinity, which is zero. Formally, one should introduce the Lerch series
∑∞

k=0
zk

(k+x)s
with

|z| < 1 and eventually to let z → 1; see [10, Sec. 3.2] for details.
We now observe that ρ(k) = −ρ(−k − 2x− n). Since

ρ(−k − 2x− n) =
4∑
s=1

n∑
j=0

Ej,n,s(x)

(−k − x− n+ j)s
=

4∑
s=1

n∑
j=0

(−1)s
En−j,n,s(x)

(k + x+ j)s
,

we then deduce that En−j,n,s(x) = (−1)s+1Ej,n,s(x). Therefore

n∑
j=0

Ej,n,s(x) = (−1)s+1

n∑
j=0

Ej,n,s(x)

which is thus equal to 0 for s = 2 and s = 4, and consequently, the first sum in (5) is for
s = 3 only:

∞∑
k=0

(
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

=
( n∑
j=0

Ej,n,3(x)
)
ζ(3, x)−

4∑
s=1

n∑
j=0

j−1∑
k=0

Ej,n,s(x)

(k + x)s
. (6)

Similarly,

−
∞∑
k=0

(
∂

∂k

(
k+x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

)
= −

4∑
s=1

n∑
j=0

Ej,n,s(x)
∞∑
k=0

∂

∂k

1

(k + x+ j)s

=
4∑
s=1

( n∑
j=0

Ej,n,s(x)
)
sζ(s+ 1, x)−

4∑
s=1

n∑
j=0

j−1∑
k=0

sEj,n,s(x)

(k + x)s+1

so that

−
∞∑
k=0

(
∂

∂k

(
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

)

=
( n∑
j=0

Ej,n,3(x)
)

3ζ(4, x)−
4∑
s=1

n∑
j=0

j−1∑
k=0

sEj,n,s(x)

(k + x)s+1
. (7)

4



2.2 The coefficients are polynomials of degree ≤ 4n

We set Q0,n(x) :=
n∑
j=0

Ej,n,3(x) and

Q1,n(x) := −
4∑
s=1

n∑
j=0

j−1∑
k=0

Ej,n,s(x)

(k + x)s
, Q2,n(x) := −

4∑
s=1

n∑
j=0

j−1∑
k=0

sEj,n,s(x)

(k + x)s+1

so that the right-hand sides of (6) and (7) are respectively equal to

Q0,n(x)ζ(3, x) +Q1,n(x) and 3Q0,n(x)ζ(4, x) +Q2,n(x).

Let us prove that for s ∈ {0, 1, 2}, the Qs,n(x) are in Q[x] and of degree ≤ 4n. We have

Q0,n(x) =
n∑
j=0

∂

∂k

(
ρ(k) (k + x+ j)4

)
|k=−j−x =

n∑
j=0

∂

∂`

(
`4ρ(`− j − x)

)
|`=0

=
n∑
j=0

∂

∂`

((n
2
− j + `

) (x+ j − n− `)2n(x− j + `)2n
(1− `)4j(1 + `)4n−j

)
|`=0

. (8)

Eq. (8) shows that Q0,n(x) ∈ Q[x] and deg(Q0,n) ≤ 4n. Furthermore, by Leibniz’ formula

Q1,n(x) = −
4∑
s=1

n∑
j=0

[
1

(4− s)!

( ∂
∂`

)4−s(
`4ρ(`− j − x)

)
× 1

(s− 1)!

( ∂
∂`

)s−1( j−1∑
k=0

1

k − `+ x

)]
|`=0

= −1

6

n∑
j=0

( ∂
∂`

)3(
`4ρ(`− j − x)

j−1∑
k=0

1

k − `+ x

)
|`=0

= −1

6

n∑
j=0

( ∂
∂`

)3((n
2
− j + `

) (x+ j − n− `)2n(x− j + `)2n
(1− `)4j(`+ 1)4n−j

j−1∑
k=0

1

k − `+ x

)
|`=0

and similarly,

Q2,n(x) = −
4∑
s=1

n∑
j=0

[
(−1)4−s

(4− s)!

( ∂
∂`

)4−s(
`4R(`− j − x)

)
× 1

(s− 1)!

( ∂
∂`

)s−1( j−1∑
k=0

1

(x+ k − `)2

)]
|`=0

= −1

6

n∑
j=0

( ∂
∂`

)3(
`4R(`− j − x)

j−1∑
k=0

1

(k − `+ x)2

)
|`=0

= −1

6

n∑
j=0

( ∂
∂`

)3((n
2
− j + `

) (x+ j − n− `)2n(x− j + `)2n
(1− `)4j(`+ 1)4n−j

j−1∑
k=0

1

(x+ k − `)2

)
|`=0

.
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It follows that Q1,n(x) and Q2,n(x) are in Q[x] and of degree ≤ 4n, because for all j ∈
{0, . . . , n}, k ∈ {0, . . . , j − 1} and any `, we have that

(x+ j − n− `)n
x+ k − `

∈ Q[x].

2.3 Proof that Sn(x) = O
(

1
x2n+3

)
We shall prove that Sn(x) = O

(
1

x2n+3

)
as x→∞ in any open angular sector that does not

contain the negative real axis. The methods of [10, Sec. 3.1] can not be used here because
they lead to divergent series.

We first observe that it is enough to consider the case x→ +∞ on the real axis. Indeed,
Sn(x) = 3Q0,n(x)ζ(4, x) + Q2,n(x) so that we know a priori that Sn(x) has an asymptotic
expansion in any angular sector that does not contain the negative real axis. Thus the
leading power of this expansion can be determined by letting x→ +∞ on the real positive
axis.

LetN ≥ 0 be an integer. We assume that x ≥ 1. Consider the positively oriented square
CN with sides [−1

2
− iN,N + 1

2
− iN ], [N + 1

2
− iN,N + 1

2
+ iN ], [N + 1

2
+ iN,−1

2
+ iN ],

[−1
2

+ iN,−1
2
− iN ]. Then by the residues theorem,

1

2iπ

∫
CN

π2

sin(πt)2
ρ(t)dt =

N∑
k=0

∂

∂k

((
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

)
.

(The only poles of the integrand inside CN are those of π2

sin(πt)2
because x ≥ 1.)

For any fixed real number u, π2

sin(π(u+iv))2
= O(e−2π|v|) as the real number v → ±∞, and

ρ(t) = O(1/t3) as t→∞. Letting N → +∞, it follows that

1

2iπ

− 1
2
+i∞∫

− 1
2
−i∞

π2

sin(πt)2
ρ(t)dt = −

∞∑
k=0

∂

∂k

((
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

)
= Sn(x).

Then for any t ∈ [−1
2
− i∞,−1

2
+ i∞] and any x ≥ 1, we have |x2n+3ρ(t)| ≤ cn|(t + 1)2n|

for some constant cn > 0 independent of x and t. Since
∫
−1/2+iR |

π2

sin(πt)2
(t + 1)2n||dt| < ∞

for any n, and limx→+∞ x
2n+3ρ(t) = 4n(t + 1)2n, it follows by the dominated convergence

theorem that

lim
x→+∞

x2n+3Sn(x) =
4n

2iπ

− 1
2
+i∞∫

− 1
2
−i∞

π2

sin(πt)2
(t+ 1)2ndt.

Similarly, we can prove that

1

2iπ

− 1
2
−i∞∫

− 1
2
+i∞

π cot(πt)ρ(t)dt =
∞∑
k=0

(
k + x+

n

2

)(k + 1)2n(k + 2x)2n
(k + x)4n+1

= Rn(x).
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However, we can not deduce from this representation that limx→+∞ x
2n+3Rn(x) is finite

by the method above, because
∫ − 1

2
+i∞

− 1
2
−i∞ π cot(πt)(t + 1)2ndt is divergent. In fact, it turns

out that limx→+∞ x
2n+3Rn(x) is not finite when n ≥ 1, because it can be proved that

limx→+∞ x
2Rn(x) is finite and non-zero.

3 Connections with other works

3.1 Cohen’s continued fraction for ζ(4, x)

In [6], Cohen presented certain continued fractions for values of the Riemann zeta function
and the Gamma function. In particular he stated the following one (in his notations):

ζ(4, x+ 1) ≈ (2x+ 1)/3
1Px(1)

+
182x(2x+ 2)

3Px(2)
+

28(2x− 1)(2x+ 3)
5Px(3)

+ · · · (9)

where

Px(`) = 2x4 + 4x3 + (2`2 − 2`+ 4)x2 + (2`2 − 2`+ 2)x− `(`− 1)(`2 − `+ 1).

He wrote that ≈ means “asymptotic expansion as the integer x→∞”, and that it is not
an equality.

Maple implementation of Zeilberger’s algorithm shows that our sequences (Sn(x +
1))n≥0, (Q0,n(x+ 1))n≥0 and (Q2,n(x+ 1))n≥0 are solutions of the linear recurrence

n5Un + (2n− 1)Px(n)Un−1 + (n+ 1)3(n+ 2x)(n− 2− 2x)Un−2 = 0.

It is then not difficult to prove that Q2,n(x+1)

3Q0,n(x+1)
are the convergents of Cohen’s continued

fraction (9). See also Lange’s paper [7] for many continued fractions related to Hurwitz
zeta function, though (9) does not seem to be listed.

Cohen then mentioned that Apéry’s “continued fraction acceleration” method shows

ζ(4) =
13
C(1)

+
2 · 3 · 4 · 17

C(2)
+

5 · 6 · 7 · 27

C(3)
+ · · · (10)

where
C(n) = 3(2n− 1)(45n4 − 90n3 + 72n2 − 27n+ 4). (11)

He also wrote that the convergents an
bn

of the continued fraction (10) are such that

ζ(4)− an
bn
≈ c(−1)n

(2 +
√

3)6n

for some constant c 6= 0, which is not enough to prove the irationality of ζ(4). The
continued fraction (10) had been announced before in [4], with details given in [5].
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3.2 Zudilin’s approximations to ζ(4)

In [12, Section 2], Zudilin showed that for any integer n ≥ 0

Zn := −
∞∑
k=0

∂

∂k

((
k +

n

2

)(k − n)2n(k + n+ 1)2n
(k)4n+1

)
= un3ζ(4) + vn

where un and vn are rational numbers. In particular,

un =
n∑
j=0

∂

∂j

((n
2
− j
)(n

j

)4(
n+ j

n

)2(
2n− j
n

)2)
and the expression for vn is more complicated. He also proved that (Zn)n, (un)n and (vn)n
are solutions of the linear recurrence

n5Un + C(n)Un−1 − 3(3n− 2)(3n− 4)(n− 1)3Un−2 = 0

where Q(n) is Cohen’s polynomial (11). It can be verified that un
vn

coincide with the
convergents an

bn
of (10); see [12, Section 2, Theorem 2].

We observe that Zn = Sn(n+1) and un = Q0,n(n+1). Since ζ(4, n+1) = ζ(4)−
∑n

j=1
1
j4

,
the specialization of Theorem 1 at x = n+ 1:

Sn(n+ 1) = 3Q0,n(n+ 1)ζ(4, n+ 1) +Q2,n(n+ 1)

becomes

Zn = un3ζ(4) +Q2,n(n+ 1)− 3un

n∑
j=1

1

j4

and thus we recover Zudilin’s sequence (vn)n by the identity

vn = Q2,n(n+ 1)− 3un

n∑
j=1

1

j4
.

3.3 Prévost’s remainder Padé approximants for ζ(s, x)

In [8], Prévost showed a very original method to prove the irrationality of ζ(2) and ζ(3).
We present the slightly modified approach he recently presented in [9]. For any integer
x ≥ 1, we have

ζ(s) =
x−1∑
k=1

1

ks
+ ζ(s, x).

He then computed explicitly the Padé approximants [n + 1/n](x) at x = ∞ of ζ(2, x),
respectively the Padé approximants [n+2/n](x) at x =∞ of ζ(3, x). After taking x = n+1,
he obtained Apéry’s famous sequences for ζ(2) and ζ(3).

8



For s = 2, the denominators of [n+ 1/n](x) are

Pn(x) =
n∑
j=0

(
n+ 1

j + 1

)(
n+ j + 2

j + 1

)(
x− 1

j

)
, n ≥ 0,

and they satisfy the orthogonality relation∫
iR
Pn(x)Pm(x)

x2

sin(πx)2
dx = 0, n 6= m.

For s = 3, the denominators Qn(x) of [n+ 2/n](x) are such that

Qn(x2) =
n∑
j=0

1

j + 1

(
n+ 1

j + 1

)(
n+ j + 2

j + 1

)(
x− 1

j

)(
x+ 1

j

)
, n ≥ 0,

and they satisfy the orthogonality relation∫
iR
Qn(x)Qm(x)

x5 cos(πx)

sin(πx)3
dx = 0, n 6= m.

The two families of orthogonal polynomials (Pn)n and (Qn)n are specializations of Wilson’s
orthogonal polynomials [11].

Recently, Prévost [9] proved that the Padé approximants [n + 1/n](x) of ζ(s, x) at
x = ∞ converge to ζ(s, x) for any fixed real number s > 1, but convergence is still an
open problem when s is a complex number. Moreover, except for s = 2, 3, no expression of
these approximants is known, even for s = 4. In this case, the problem is to find explicit
expressions for polynomials An(x) (of degree n) such that∫

iR
An(x)Am(x)

x8(2 + cos(2πx))

sin(πx)4
dx = 0, n 6= m.

Unfortunately, the weight function x8(2+cos(2πx))
sin(πx)4

is not of the form studied by Wilson.

The sequence (Q0,n(x))n is not orthogonal for this weight, but it is bi-orthogonal in the
following sense: for any n and m such that 0 ≤ m ≤ 2n− 1, we have∫

iR
xm+5Q0,n(x)

cos(πx)

sin(πx)3
dx = 0 =

∫
iR
xm+8Q0,n(x)

2 + cos(2πx)

sin(πx)4
dx.

3.4 Beukers and Bel’s p-adic irrationality proofs

In [3], Calegari proved the irrationality of the 2-adic numbers ζ2(2) and ζ2(3), as well as
of the 3-adic numbers ζ2(3). His proof used overconvergent p-adic modular forms. Later,
Beukers [2] obtained another proof of these facts, of a more classical flavor. In fact, he
essentially used Prévost’s Padé approximants for ζ(2, x) and ζ(3, x), though his formulas
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are written differently. The Padé type approximants constructed in [10] for ζ(s, x) contain
as initial cases Beukers and Prévost approximants; Bel [1] used them to prove certain linear
independence results for values of p-adic Hurwitz zeta functions. It would be interesting
to know if Theorem 1 or its generalization could be used to prove the irrationality of the
numbers ζp(4) for some p. The arithmetic and asymptotic properties of Zudilin’s series Zn
are not good enough to imply the irrationality of ζ(4), but a modification of Zn conjecturally
proves that ζ(4) /∈ Q.
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