E-FUNCTIONS OF ORDER 2 AND UNITS OF E-VALUES
T. RIVOAL AND J. ROQUES

ABSTRACT. Siegel introduced and studied the class of E-functions in 1929. They are
power series, solutions of some linear differential equations, whose Taylor coefficients sat-
isfy certain arithmetic and growth conditions. From the work of Siegel and Shidlovskii,
and its refinement by Beukers, we know that E-functions solutions of a given differential
system of order 1 satisfy diophantine properties that generalize the Lindemann-Weierstrass
Theorem. In this paper, we give the complete classification of the vector solutions of two
dimensional differential systems of order 1 whose components are algebraically dependent
E-functions over Q(z). As a consequence, we obtain a result that goes in the direction
of a positive answer to the following question: is the group of units of the ring of val-
ues of E-functions at algebraic points equal to Q@ exp(Q)? Our approach relies on the
recent theory of E-operators developped by André, and on Beukers’ refinement of the
Siegel-Shidlovskii Theorem.

1. INTRODUCTION

An E-function is a power series

fz) = 2 e Q]

with coefficients in the field of algebraic numbers Q such that

(1) f(z) satisfies a nonzero linear differential equation with coefficients in Q(z);
(2) there exists C' > 0 such that
(a) the maximum of the moduli of the galoisian conjuguates of a,, is bounded by
CnJrl;
(b) there exists a sequence of positive integers d,, such that d, < C"*! and d,a,,
is an algebraic integers for all m < n.

The prototypical example is the exponential function. The class of E-functions was first
introduced by Siegel (!) to generalize the diophantine properties of exp(z), in particular
the Lindemann-Weierstrass Theorem, which we now recall because it will be used later in
this paper.

Theorem 1 (Lindemann-Weierstrass Theorem). Consider as, ..., a, € Q.
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(3) If au,...,qn are pairwise distinct, then the numbers e*',... e are Q-linearly
independent. o
(ii) If aq, ..., are Q-linearly independent, then the numbers e*',... e are alge-

braically independent over Q.

The work of Siegel [11] and Shidlovskii [12] culminated with the following theorem, which
can be seen as vast generalization of the Lindemann-Weierstrass Theorem.

Theorem 2 (Siegel-Shidlovskii). Let fi(z), ..., fu(2) be E-functions such that

fiz) fi(2)
L =AR) |

fn(2) fn(2)

for some A(z) € M,,(Q(z)). Denote the common denominator of the entries of A(z) by
T(z). Then, for any £ € Q such that £T(€) # 0, we have

deg tr@@(fl(f), s fn(g)) = deg trg,) Q(z) (fl(z), s fn(z))

An alternative proof of the Siegel-Shidlovskii Theorem was given by Bertrand in [2] using
Laurent’s determinants.

In the seminal paper [1], André elucidated the structure of “E-operators” by means
of their relations with G-operators. Any FE-function is in the kernel of an E-operator
and we recall in Section 2 some of their properties which are important for the proof of
our results. Using these results, André obtained a completely new proof of the Siegel-
Shidlovskii Theorem. Beukers [4] was even able to deduce from the work of André the
following important refinement of a theorem of Nesterenko and Shidlovskii [8], which is
itself a refinement of the above-mentioned Siegel-Shidlovskii Theorem.

Theorem 3 (Beukers). With the notations and hypothesis of Theorem 2, let us consider
€ € Q such that £T(&) # 0. For any polynomial relation

with P € @[Xl, vy Xpl, there exists Q) € @[2] (X1, ..., X, such that

Q(f1(2), -, fu(2)) =0 and P(Xi,...,Xn) = Q(X1, ..., Xn)joe-

In order to apply the above transcendence results, the first naive question is: when are
f1(2), ..., fa(2) algebraically dependent over Q(2)# The first main result of this paper gives
a complete answer to this question when n = 2. In what follows, for any v € Q \ Z<, we
denote by 1 Fi(1;7; z) the hypergeometric function (which is an E-function) defined by:

o0}

Ry (Ly;2) =)

v+ (r+n—1)

Zn

Note that 1 F1(1; 1; 2) = exp(2).



Theorem 4. Let f(z),g(z) € Q[[2]] be E-functions such that

f’ ) (f (Z)>
9(2)
for some E(z) € My(Q(2)). If f(z ) and g(z) are algebraically dependent over Q(z), then
one of the following cases occurs:

(i) There exist a(z),b(z),c(2),d(z) € Q[z,27'] and a, B € Q such that
f(2) = a(2)e** + b(z)e™,
g(2) = c(2)e®* + d(z)e".
(i3) There exist a(z),b(2),c(2),d(z) € Q[z,27Y], v € Q\ Z and o € Q such that
f(2) = a(z)1 Fi(1;7; az) + b(2),
9(2) = c(2h Fi(1;7; az) + d(2).
Remark. Let f(z) be an E-function such that
f'(z) = u(2)f(2) + v(2)
for some u(z) _@(2) and v(z) € Q(2). In particular, f(z) and f'(z) are algebraically
dependent over Q(z). Using Theorem 4, it is easily seen that

f(z) = a(z)1 Fa(1;7;az) + 0(z)
for some a(z),b(z) € Q[z,27Y, v € {1} UQ\ Z and o € Q. This provides a complete

proof of a result suggested by André in [1, Section 4.5], which answers a question asked by
Shidlovskii.

/\

We now come to the second main result of this paper. In [5], Fischler and the first
author took another point of view at E-functions. They defined the set E of all the values
taken by E-functions at algebraic points. Since E-functions are entire and form a ring, it
is immediate that E is a ring. It is very unlikely that E is a field and a natural problem is

then to determine E*| the group of units of E. It is trivial that Q" exp(Q) is a subgroup
of EX. (3) It is an open problem to prove or disprove that EX = Q" exp(Q). We prove a
result that goes in direction of the equality EX = Q" exp(Q).

Theorem 5. Let F(z),G(z2) € Q[[2]] be E-functions such that
F'(z)\ F(z)
(G’(z)) = E) (G(z))
for some E(z) € My(Q(2)). Let us assume that € € Q" is such that
FEG(E) = 1.
Then F(€) and G(€) are both in Q" exp(Q).

2 André proved in [1] that the units of the ring of E-functions are of the form Be®*, where o € Q and

seqQ”.



The proof of Theorem 5 uses, as a starting point, Beukers’ refinement of the Siegel-
Shidlovskii Theorem stated above, which enables us to use Theorem 4.

It would be very interesting to extend Theorem 4 to higher order differential systems.
There are immediate difficulties if one tries to generalize our method. For instance, the
polynomial relation (3.3) below reduces one case in the proof of Theorem 4 to a linear
differential equation of order 1, which is then easily solved; it is not clear how this could be
generalized even with only three functions. In [9, 10], Salikhov studied hypergeometric E-
functions solutions of a linear differential equation of order n > 1 with coefficients in @(z)
and algebraically dependent of their first n — 1 derivatives. See [3] for further results in this
direction. Theorem 4 shows that hypergeometric functions enable one to describe any FE-
function solution of a linear differential equation of order at most 2 with coefficients in Q(2)
which is algebraically dependent of its first derivative over Q(z). However, hypergeometric
functions are not enough for linear differential equations of order 3 already, as shown by
the E-function

1
n

00 1
n!
n=0
which is solution of the inhomogeneous differential equation

2'(2)+ (1 =22)y'(2) + (2 = Dy(z) = 1

but is not hypergeometric.

2. FIRST STEPS OF THE PROOF OF THEOREM 4

According to the cyclic vector lemma, there exist a linear differential operator 2 of
order 2 with coefficients in Q(z), a series h(z) € Q[[z]] such that Zh(z) = 0, and a matrix

(p1<z> pz<z>> € GLy(Q(2))

p3(2) pa(2)

such that
f(2) = p1(2)h(2) + p2(2)1'(2)
9(2) = p3(2)h(2) + pa(2)h'(2)
Hence,
hz)=q(2)f(2) + q2(2)g(2)
W(z) = q3(2) f(2) + qa(2)g(2)
where

0(z) @)\ _ (mi) pz)\" _
(0 20) = () 1) com@e
Let A(z) € Q[2] be a common denominator of the g;(z). Then,
)

k(2) == A(2)h(z) = A(2)qu(2) f(2) + A(2)ga(2)9(2)
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is an E-function (we remind the reader that the set of E-functions is a sub-Q|z]-algebra of
Q[[z]]), and is a solution of a linear differential operator with coefficients in Q(z) of order
2, namely ZA~!

By André’s [1, Theorem 4.3], k(z) is solution of a monic linear differential operator .#
with coefficients in Q(z) of order v = 1 or 2 which is a right factor of an E-operator.

Let us first assume that v = 1. Then, it is well-known that k(z) = ¢(z)e** for some
q(z) € Q[z] and a € Q. Therefore, there exist a(z),c(z) € Q(z) such that

f(z) = a(z)e™,
g(z) = c(2)e*.

Since f(z) and g(z) are entire functions, we have a(z),c(z) € Q[z], whence the desired
result.
We shall now assume that v = 2. By André’s [1, Theorem 4.3], the differential operator

A has the following properties, that will be freely used in the rest of this paper:

(1) A has only apparent singularities on C* i.e. it has a basis of analytic solutions

near any ¢ € C*;
(2) A is regular singular at 0, and its exponents at 0 are rational;
(3) . admits a basis of formal solutions at oo of the form

(@1(2)e™?, ax(2)e™?) = (fl(z),fg(z))zp‘x’em
where the f;(z) € Q[[1] are Gevrey-1 series of arithmetic type, I's, € M(Q) is
upper-triangular and
[0 0 -
A= (0 a2> € My(Q).

Let us recall that a Gevrey-1 series of arithmetic type is a power series
f(z) = ) nlanz" € Q[[2]]
n=0

with coefficients in Q such that

(1) f(z) satisfies a nonzero linear differential equation with coefficients in Q(z);
(2) there exists C' > 0 such that
(a) the maximum of the moduli of the galoisian conjuguates of a, is bounded by
Cn-i—l;
(b) there exists a sequence of positive integers d,, such that d, < C"*! and d,a,,
is an algebraic integers for all m < n.
The prototypical example is Euler’s series

(o]
Zn!z".
n=0
To complete the proof of Theorem 4, we shall now consider several cases in the next
sections.



3. PROOF OF THEOREM 4 IN THE CASE a7 # Qg

In what follows, we will freely use several terminologies and results from the resummation
theory of linear differential equations; see [6] and the references therein for instance. The
set of singular directions of . is

Y ={xd+27Z}

where d = arg(as — a1); we set ¥ = {d;,i € Z} with d; < d;41. Moreover, . is of level
1. Therefore, the f;(z) are 1-sommable in any direction not in 3. We denote by C* the
Riemann surface of the logarithm, and by M, the field whose elements are the functions

defined and meromorphic on some domain of the form {z € C* : |z| > R}. For any real
numbers 6; < 6, we consider the angular sector

S(6,05) = {z € C* : 0; < arg(1/z) < 65}

For any 0 € (d; — §,diy1 + %), there exists a unique fig(z) € Moo which is 1-Gevrey
asymptotic to fi(z) at oo in any closed sector included in S(d; — 7, d;1 + 5) and which is
such that
(alvg(z)ealz, CLQﬁ(Z)@OQZ) = (f179(2>, fgyg(z))zF‘”eAz
is a basis of solutions of ./ .
For any § € R\ %, we let ¢; 4, co9 € C be such that (%)

k(z) = c19a1,0(2)e* + copagg(2)e*?.

We consider several cases.

3.1. There exists § € R\ ¥ such that ¢;yp = 0 or ¢y = 0. Assume for instance that
c2,0 = 0. Then, we have k(z) = ¢19a1,0(2)e** and, hence, k(z)e™™* = ¢y 9a1(z) has at
most polynomial growth at infinity on any closed sector included in S(d; — 5, diy1 + 3),
where d; is such that 6 € (d; — §,diy1 + 5). Since k(z), and hence k(z)e™'?, is an
entire function with at most exponential growth of order 1 at infinity, it follows from
the Phragmén-Lindel6f theorem that k(z)e~*'# has at most polynomial growth at infinity.
Therefore, k(z)e=®* € C[z]. Hence, k(2)e=** € C[z] N Q[[z]] = Q[2]. It follows that there
exist a(2),c(z) € Q(z) such that

f(z) = a(z)e™%,
g(z) = c(z)e™”.

Since f(z) and g(z) are entire functions, we have a(z),c(z) € Q|z], whence the desired
result.

32. For all e R\ %, ¢;9 # 0 and ¢39 # 0. We choose some § € R\ 3, for instance in
(do— 5,di +5).

3The results of [5] show that 14, cop (and similar connection constants in other sections) are in a
certain “arithmetical” subset S of C defined in terms of G-values and I'-values, but this precision will not
used here.
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3.2.1. a3 #0 and ay # 0. Since f(2) and g(z) are algebraically dependent over Q(z), the
functions h(z) and A'(z) are algebraically dependent over Q(z) and, hence, k(z) and &'(2)
are algebraically dependent over Q(z). Let Q(X,Y) € Q(2)[X, Y]\ {0} be such that

Q(k(2),K'(2)) = 0.

Let K be the field extension of C(z) generated by ajg(z)e®?, asg(z)e*?* and their
derivatives. Then, K is a Picard-Vessiot extension for .# over C(z). The differential
Galois group G of .# over C(z) is

G = {o € Aut(K/C(2)) | Vz € K, o(2) = o(2)},

i.e. its elements are the field automorphisms of the extension C(z) C K commuting with
the action of the usual derivative. For any o € GG, we have

Qo(k(=)). o (k(2))) = 7(Q(k(2). K(2)) = 0. (3.1)

A special subgroup of G is given by Ramis’ exponential torus, whose elements can be
described as follows (see [7]). For any x € Hom(Zoy + Zag, C*) (here, Hom refers to
the group homomorphisms), there exists a unique element o, of G whose action on K is
determined by

oy (ain(2)e™*) = aip(z)e™*x ().
Let us now describe Hom(Zay + Zagy, C*). Consider relatively prime relative integers p, ¢
such that a;/ag = p/q. Note that p,q # 0 because ay, as # 0 and p # ¢ because oy # .

Up to renumbering, one can assume that p > ¢. Then, the elements of Hom(Zay +Zay, C*)
are the maps

Xst © Loy + Zag — C*

maoy + noag — sM"

for s,t € C* such that s? = t?. For all t € C*, the algebraic relation (3.1) in the special

Case 0 = Oy p q) 1S

Q(c1,0a1,0(2)e™ P + ca0a2,0(2)e*27t, 1 9(a1,0(2)e™?) 't + co9(az,0(2)e**)'t?) = 0. (3.2)
We write
Q(X,Y) = Z i (2) XY,
i,J
and denote by J the total degree of Q(X,Y’). The term of higher degree in t of (3.2) is
equal to

Ay Y 02 (@ra(2)e) ((aro(2)e))’
i+j=9
and, hence,

Z Gij(z (Z19 1Z) ((al o(2)e alz),)j =0. (3.3)

i+j=9
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We now have a non trivial homogeneous algebraic relation with coefficients in Q(z) between
arp(z)e*? and (al,g(z)ealz)’ and, hence, their quotient

(a10(2)ex?)"  dfy(2)

ayp(z)e? N a1,0(2)

aq

is algebraic over Q(2). It follows that the logarithmic derivative

L @/1,9(Z>

T ae(z)

u\z

is algebraic over Q(z). We have a; 9(z) = exp([u(z)). Consider the Puiseux expansion of

u(z) at oo:
u(z) = Z gz ke
k=—N

for some integer £ > 1. We have
00 /-1

U _ U _
/u(z) _ Z 1__le FE 4 uglog(z) + Z 1_—le k/e

k=041 k=—N

up to some additive constant. Since a;(z) has at most polynomial growth at infinity in
any closed sector included in S(dy — 5, d1 + 5), we see that u, = 0 for k < £—1 and, hence,

o0

u
aro(z) = Cz" exp ( Z 1_—’;Wzl_k/é>, (3.4)
k=0+1

for some C' € C*. Since ay ¢(z)e™* is a solution of .#, it is analytic on C* and has at most
polynomial growth at 0 in any sector with finite aperture (recall that .# is regular on C*

and regular singular at 0). Therefore, a; ¢(2) is analytic on C* and has at most polynomial
growth at 0 in any sector with finite aperture. Moreover, the equation (3.4) shows that
ayp(2%)/2" (has trivial monodromy at oo and) is analytic near co. Therefore, a; o(2*) /2"
is analytic on C*U{oo} and has at most polynomial growth at 0. It follows that a; g(2*) /2
is of the form p(z~!) for some p(X) € C[X]. Hence, a;4(2)e®* = 2°q(z'/*)e*1* for some
c € C and ¢(X) € C[X]. By analytic continuation, 2¢q(e*™/*2'/*)e®* is also a solution of
. This solution is a linear combination with coefficients in C of the a;(z)e“*. Since
a1 # a, we conclude that there exists A € C such that z¢q(e?™/21/%)e** = \zeq(2/)e.
This implies that q(z'/*) = z™/‘r,(2) for some relative integer m and some r,(z) € Clz].

Therefore,

a1z a1z

ap(z)e™* = z%r(2)e
for some ¢; € C. Since the exponents of .#Z at 0 are rational, we must have ¢; € Q.
Using a similar argument for as ¢(z), we see that

as.p(2)e"?* = 2%ry(2)e***

for some ¢; € Q and 7(z2) € C[z].



Hence, we have
k(z) = 297r1(2)e™* + z%ry(z)e*?* (3.5)
for some ¢; € Q and r;(z) € C(z)*. By analytic continuation along a simple loop around
0, we get
k(z) = ™ 2% (2)e™* + 2™ 22y (7)€, (3.6)
Equating the right-hand side of (3.5) with the the right-hand side of (3.6), we get e?™t =
e2me2 = 1 j.e. ¢, cy € Z. It follows that

f(z) = s1(2)e™® + s9(2)e™?* (3.7)

for some s;(z) € C(z). A simple linear algebra argument shows that s;(z) € Q(2). We
claim that we actually have s;(2), s2(2) € Q[z, 27!]. Assume at the contrary that s;(z) or

s2(z) has a pole £ € @X. Let us denote by n the maximum between the order of ¢ as a
pole of s1(2) and of s9(2). Then, multiplying equation (3.7) by (z — &)™ and letting z = &,

we obtain a non trivial linear relation with coefficients in Q between e®'¢ and e®2¢, which
contradicts Lindemann’s Theorem.
The same kind of arguments proves a similar result for g(z).

3.2.2. a1 =0 or ag = 0. Assume for instance that ap = 0 (so that a; # 0). Arguing as in
Section 3.2.1, we see that

aro(z) = 27p(2)

for some v € Q and some p(z) € Clz]. In particular, ayg(2)e** is solution of some
differential equation y'(z) = a(z)y(z) with a(z) € C(z). By euclidean division, it follows

that
M= (d% - b(z)) (dilz - a(z)>

for some b(z) € C(z). Since k(z) is a solution of .#, the function
v(2) = K(2) — a(2)k(2)

a1z

satisfies v/(z) = b(z)v(z) and, hence, v(z) = eP*) where B(2) is some primitive of the
rational function b(z) (note that v(z) # 0 because the order of .# is equal to 2). Using
the fact that v(z) is a meromorphic function on C, we see that

v(z) = ’I“(Z)GQ(Z)
for some r(z) € C(z) and ¢(z) € 2C[z]. Since agg(z) is a solution of .Z, the function

w(z) = agy(z) — a(z)aze(2)

satisfies w'(z) = b(z)w(z). Moreover, w(z) is non zero (otherwise, a;g(2)e** and ag(2)

would be solutions of y/'(z) = a(2)y(z) and, hence, would be linearly dependent over C).
It follows that

w(z) = Kko(z)
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for some k € C*. But w(z) has at most polynomial growth at co in any closed sector
included in S(dy — §,d; + 5), so that v(z) has the same property and, hence, belongs to
C(z). Using the variation of constants method, we get that there exists C' € C* such that

k(z) = 27p(2)e* ( / ) (@) e dr + c), (3.8)

20

where zy € C* is not a pole of p(z) 'v(z) € C(z). We shall now express (3.8) by means of
hypergeometric series. For this, we need some lemmas.

Lemma 1. For all v € Z, for all Q(z) € C(z), for any zy € C* which is not a pole of
Q(z), there ezists R(z) € C(z) with at most simple poles on C* and whose set of poles in
C* s included in the set of poles in C* of Q(2), and there exist A(2),u(z) € C(z) and
v € C such that

z

/ v Q(w)e M dr = Nz)z e M + ,u(z)/ r 7R(z)e” " dr + v.

20 20

Proof. Using the decomposition in partial fractions of Q(z), we see that it is sufficient to

prove the lemma for Q(z) = @ with £ € C* and n € N*. We proceed by induction on
n. The result is obvious for n = 1. Assume that the result is true for some n € N*. Set
1
Q(2) (z — &)t

An integration by parts shows that

/Z r7Q(x)e” " dx

20

- =Er]
= |z Ve M — +/ — (g +yx DN Ve dy
|: n (SC - é‘)n:| =20 2 N (1: - é)n

EXCE

# 1 # 1
—ﬂ/ —x‘”e_o‘lxd:v—z/ — T lem Ty,
n S, (@—=8)" n S, (x—=86"

The induction hypothesis leads to the desired result. O

Lemma 2. For all Q(z) € C(z), for all zy € C* which is not a pole of Q(z), there exists
R(z) € C(z) with at most simple poles on C and whose set of poles in C* is included in
the set of poles in C* of Q(2), and there exist A(z), u(z) € C(z) and v € C such that

/Z Qz)e " dr = Mz)e”™ ™ + u(z) /Z R(x)e” " dzx + v.

Proof. Similar to the proof of Lemma 1. O
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In what follows, for any v € C\ Z and « € C, we set:

z o 0 (_a)nzn+l
Eu(z) =2 Yemorgy — N M 2
" (2) Z/(;KIJ € v ;(n—’y—kl)n!
and, for v € Z, we set
Eqalz) =
If v € Q and o € Q, then Ea(2) is an E-function.

Lemma 3. Consider v € C, R(z) € C(z), zo € C* which is not a pole of R(z), C € C,
and p(z) = z”(fz'z rVR(z)e~**dx+C'). Assume that p(z) is meromorphic over C. Then,
there exists A(z2), u(z) € C(z) such that

p(2) = Mz)e” ™" + u(2),0,(2) tf v € Z
and
p(2) = Az)e” ™" + p(2) if v € Z.

Proof. Let us first assume that v € Z. By Lemma 1, there exists R(z) € C(z) with at most
simple poles on C* and whose set of poles in C* is included in the set of poles in C* of
Q(z), and there exist A(z), u(z) € C(z) and C" € C such that

o(z) = Mz)em ™% + u(z)z"’/ T R(x)e”“dx + C'27.
20
If u(z) = 0, then we must have C’ = 0 because ¢(z) — A(z)e"*** is meromorphic over
C and v ¢ Z, and, hence, the result is proved. We now assume that pu(z) # 0. If
¢ € C* is a (simple) pole of R(z), then ¢ is a logarithmic singularity of fzzo r'R(x)e” 1 dx
(because x~YR(x)e~*7 itself has a simple pole at £), and this contradicts the fact that

©(z) is meromorphic over C. Therefore, R(z) = z7"S(z) for some integer n > 0 and some
S(z) € C[z]. Hence,

p(z) = A(z)e™ ™ + ,u(z)zv/ xS (x)e” M dr + C'2.

20

But, f;o 7 77"S(x)e” " dx is a linear combination with coefficients in C of functions of
the form fzzo x7 7 Remaiz gy for k € N. Using integrations by parts, we conclude that

;O xS (x)e” 1 dx is, up to an additive constant in C, a linear combination with coef-

ficients in C(z) of z77e~** and f; z Ve~ 1%dz. Hence, there exist A(2), 7i(z), 7(z) € C(z)
such that

p(2) = AM2)e™ ™ + [1(2)€y .01 (2) +¥(2)27.
We must have 7(z) = 0 because ¢(z) — A(z)e™®1% — f(2)E, .0, (2) is meromorphic over C.
This yields the desired result.
Let us assume that v € Z. By Lemma 2, there exists R(z) € C(z) with at most simple
poles on C and whose set of poles in C* is included in the set of poles in C* of Q(z), and
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there exist A(z), u(2) € C(z) and C" € C such that

o(z) = Mz)e” ™ + pu(z) /Z R(x)e **dx + C'2".

20
If u(z) = 0, the result is proved. Therefore, we now assume that p(z) # 0. If £ € C
is a (simple) pole of R(z), then ¢ is a logarithmic singularity of f;o R(z)e **dz (because
R(z)e~** itself has a simple pole at £), and this contradicts the fact that ¢(z) is meromor-
phic over C. Hence, R(z) € C[z]. Using integration by parts, we see that f; R(x)e~**dx
is, up to an additive constant in C, of the form n(z)e~*# for some 7(z) € C|z], which gives
the desired result. U

Let us first assume that v ¢ Z. Using (3.8) and Lemma 3, we see that there exist
A(z), pu(z) € C(z) such that

k(2) = A(2) + 1(2) €50 (2) €™, (3.9)

A simple linear algebra argument shows that A(z) and pu(z) belong to Q(z).
Therefore, there exist a(z),b(2),c(2),d(z) € Q(z) such that
)

f(2) = a(2)&y 0, (2)e™ + b(2),
9(2) = c(2)€y.a, (2)€™* + d(2).
We have the following relation
a? a1z
Exan (7)€ = - <1F1(13'Y —apz) — 1+ L>,
z v
this is a direct consequence of the fact that they satisfy the same nonhomogenous differ-
ential of order one, namely:

2y'(2) + (v + ar2)y(z) = 2.
Therefore,
f(2) = a(2)1 Fi(1;9; —aq2) + b(z), (3.10)
g(z) =c(z)1 F1(1;y; —ag2) + c?(z) (3.11)

for some a(2),b(2),e(2),d(z) € Q(z). Assume that £(€ Q) is a non-zero pole of a(z) or
b(z). Let us denote by n the order of £ as a pole of a(z). Let us denote by m the order

of £ as a pole of and of g(z) Let us first assume that m > n. Then, multiplying equation
(3.10) by (z — &)™ and letting z = &£, we get

0= ((==&"b(2))

and this is a contradiction because ((z — §)mg(z)>| # 0. So, we have n < m. Then,
z=¢

lz=¢

multiplying equation (3.10) by (z — &)™ and letting z = &, we obtain that 1 F}(1;7v; —a1§)
belongs to Q, and this is a contradiction by [12, p. 192, Theorem 3]. Hence, a(z) and b(z)
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do not have poles on C* and, hence, belong to Q[z, 27|, whence the desired result. A
similar argument shows that ¢(z) and d(z) belong to Q[z, z71].
We shall now assume that v € Z. Using (3.8) and Lemma 3, we see that there exists
A(z), p(z) € C(2) such that
k(z) = A(2) 4+ pu(z)e*?. (3.12)

It is easily seen that A(2),u(z) € Q(z). Therefore, there exist a(z),b(z),c(z),d(z) € Q(2)
such that

f(z) = a(z)e™* + b(z),
g(z) = c(z)e™* 4 d(z).

The proof of the fact that a(z),b(z),c(z) and d(z) actually belong to Q[z, z7'] is similar to
the proof of the similar result in the case v ¢ Z, using Lindemann’s Theorem.

4. PROOF OF THEOREM 4 IN THE CASE &1 = Qi

In this case, fi(z) and fa(z) are convergent at co. We let &« = a3 = az. One can
decompose k(z) as a linear combination with coefficients in C of the a;(z)e®* and, hence,
as a linear combination with coefficients in C of functions of the form z*(In(z)) f;(2)e*
with A € Q and p € {0,1}. The entire function k(z)e~** has at most polynomial growth
at 0o and, hence, k(z)e™®* € Cl[z]. So, k(2)e~** € C[z] N Q][[2]] = Q[2]. Therefore, there
exist a(z),c(z) € Q(z) such that

Since f(z) and g(z) are entire functions, we have a(z),c(z) € Q[z], whence the desired
result.

5. A REMARK ON THE PROOF OF THEOREM 4

An essential ingredient in the proof of Theorem 4 is the fact that some nonzero solution
u(z) of M has an algebraic logarithmic derivative u'(z)/u(z) over Q(z). The existence
of such a solution can be easily derived using differential Galois theory. Indeed, we know
that the functions k(z) and k'(z) are algebraically dependent over Q(z). Therefore, the

differential Galois group of .# over Q(z) does not contain SLy(Q). It follows that .# is
reducible over the algebraic closure Q(z) of Q(z) i.e. there exist a(z),b(z) € Q(z) such

that
M= (diz - b(z)) (diz - a(z)).

Therefore, any nonzero u(z) such that v'(z) = a(z)u(z) has the required property. It is
very likely that we can use this fact a starting point for a variant of the proof of Theorem
4, but this would not led to substantial simplifications of the proof we have given.
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6. PROOF OF THEOREM b

If F(z) and G(z) are @(z)—li_nearly dependent, then both satisfy a differential equation
of order 1 with coefficients in Q(z). Using André’s theory, we deduce that F(z) = p(z)e®*
and G(z) = q(z)e** for some p(z),q(z) € Q[z,27!] and a € Q. Hence, F(¢) and G(§) are
both in Q" exp(Q) as expected. Actually, the equation F(£)G(€) = 1 forces that o = 0 by
Lindemann’s theorem, so that F(£) and G(€) are in fact in Q.

Let us now assume that F(z) and G(z) are Q(z)-linearly independent. By Beukers’
Theorem 1.5 in [4], there exist

M) = (S ) € an@l)

m271 (Z) m272 (Z)

and two E-functions f(z),g(z) € Q[[2]] satisfying a differential system

(b)) === (55)

for some matrix £(z) € My(Qlz, 27"]), such that

We have
F(&G(E) = (m11(€) F(&) +mu2(€)g(E)) (M2, (6) F(€) +maa(€)g(€)) = 1.

In other words, we have

p(f(€),9(8)) = 0.

where

p(X)Y) = (ml,l(f)X + m1,2<5)Y) (m2,1(§)X + mz,Q(f)Y) —-1le @[X> Y]\ {0}

By Beukers’ Theorem 1.3 inkl], one can lift this algebraic relation to an algebraic relation
between f(z) and g(z) over Q(z) i.e. there exists for P(X,Y) € Q[z][X, Y] such that

P(f(z),g(z)) = 0 and P(X, Y)|z=§ =p(X,Y).

By Theorem 4, one of the following cases occurs :
(1) There exist a(z),b(2),c(2),d(z) € Q[z,27!] and a, 8 € Q such that

£(2) = al2)e + b(z)e™,

g(2) = c(2)e* + d(z)e*
(2) There exists a(z),b(z), c(z) € Qlz,27Y],y € Q\ Z and a € Q such that
= a(2)1F1(1;7; 02) + b(2),
= c(2)1 F1(L;y; az) + d(2).

L
N
~—
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6.1. Assume that we are in case (1). Then, we have
f(€) = are® 4 be® and g(&) = e + dye*

where a; = a(€), by = b(€), ¢1 = c(€) and d; = d(€) belong to Q. Note that o # 3 because
F(z) and G(z) are linearly independent over Q(z). The connection between (F,G) and
(f,g) implies that

F(&) = ae® + be’, G(€) = ce® + dePs

with a,b,c,d € Q such that {a,b} # {0} and {c,d} # {0} (because F(¢),G(£) # 0). The
condition F(£)G(§) = 1 becomes

ace® + bde®™ + (ad + be)e @t — 0 = 0. (6.1)

We first consider the case af = 0. At most one of «, 5 can be equal to 0. Let us assume
that 5 =0 and a # 0. Then, (6.1) reads

ace®* + (ad + bc)e™ +bd — 1 = 0.

Hence, if at least one of ac and ad + bc is # 0, e*¢ is an algebraic number, which forces
aé = 0 (Lindemann’s Theorem again): impossible. Hence, ac = 0, ad + bc = 0 and, thus,
bd = 1. These three conditions implies that if a = 0, resp. ¢ = 0, then ¢ = 0, resp. a = 0,
so that F(§) = b and G(&) = d in both cases. The case § # 0 and o = 0 is similar and
leads to F'(§) = a and G(§) = c.

We now consider the case af # 0. If a4 # 0, the four algebraic numbers 2a&, 26¢, (a+
B)E, 0 are pairwise distinct and, by the Lindemann-Weierstrass Theorem, (6.1) is impos-
sible. Hence, o + 8 = 0 and the same theorem applied to (6.1) implies in this case that
ac =0, bd = 0 and ad + bc = 1. The first and third equations implies that exactly one of
a and ¢ is 0. Assume that a # 0 and ¢ = 0: then ad = 1 and thus d # 0 and b = 0, so that
F(&) = ae®® and G(€) = de ¢, If a =0 and ¢ # 0: then be = 1 and thus b # 0 and d = 0,
so that F(£) = be™*¢ and G(&) = ce®t.

In all cases, the conclusion is that F(¢) and G(€) are in Q" exp(Q).

6.2. Assume that we are in case (2). Then, we have
f(&) = ar-1Fi(1;v;08) + by and g(§) = ¢1 - 1 F1(1;7; ) + d;.
where a; = a(€), by = b(€), ¢; = ¢(€) and d; = d(€) belong to Q. Note that o # 3 because

F(z) and G(z) are linearly independent over Q(z). The connection between (F,G) and
(f,g) implies that

F)=a-1Fi(;v;aé) +band G(&) =c-1Fi(1;7;,0é) +d

with a,b,c,d € Q such that {a,b} # {0} and {c,d} # {0} (because F (&), G(£) # 0).
If a =c=0, then F(§) and G(§) are algebraic. If a or ¢ is nonzero, then the equation
F(&)G(&) = 1 implies that 1 F1(1;7y; af) is algebraic, and hence F'(§) and G(§) are algebraic.
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