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Abstract. Siegel introduced and studied the class of E-functions in 1929. They are
power series, solutions of some linear differential equations, whose Taylor coefficients sat-
isfy certain arithmetic and growth conditions. From the work of Siegel and Shidlovskii,
and its refinement by Beukers, we know that E-functions solutions of a given differential
system of order 1 satisfy diophantine properties that generalize the Lindemann-Weierstrass
Theorem. In this paper, we give the complete classification of the vector solutions of two
dimensional differential systems of order 1 whose components are algebraically dependent
E-functions over Q(z). As a consequence, we obtain a result that goes in the direction
of a positive answer to the following question: is the group of units of the ring of val-

ues of E-functions at algebraic points equal to Q×
exp(Q)? Our approach relies on the

recent theory of E-operators developped by André, and on Beukers’ refinement of the
Siegel-Shidlovskii Theorem.

1. Introduction

An E-function is a power series

f(z) =
∞∑
n=0

an
n!
zn ∈ Q[[z]]

with coefficients in the field of algebraic numbers Q such that

(1) f(z) satisfies a nonzero linear differential equation with coefficients in Q(z);
(2) there exists C > 0 such that

(a) the maximum of the moduli of the galoisian conjuguates of an is bounded by
Cn+1;

(b) there exists a sequence of positive integers dn such that dn ≤ Cn+1 and dnam
is an algebraic integers for all m ≤ n.

The prototypical example is the exponential function. The class of E-functions was first
introduced by Siegel (1) to generalize the diophantine properties of exp(z), in particular
the Lindemann-Weierstrass Theorem, which we now recall because it will be used later in
this paper.

Theorem 1 (Lindemann-Weierstrass Theorem). Consider α1, . . . , αn ∈ Q.
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1His definition was slightly less restrictive, but it is now believed that both definitions define the same

class of functions.
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(i) If α1, . . . , αn are pairwise distinct, then the numbers eα1 , . . . , eαn are Q-linearly
independent.

(ii) If α1, . . . , αn are Q-linearly independent, then the numbers eα1 , . . . , eαn are alge-
braically independent over Q.

The work of Siegel [11] and Shidlovskii [12] culminated with the following theorem, which
can be seen as vast generalization of the Lindemann-Weierstrass Theorem.

Theorem 2 (Siegel-Shidlovskii). Let f1(z), ..., fn(z) be E-functions such thatf ′1(z)
...

f ′n(z)

 = A(z)

f1(z)
...

fn(z)


for some A(z) ∈ Mn(Q(z)). Denote the common denominator of the entries of A(z) by
T (z). Then, for any ξ ∈ Q such that ξT (ξ) 6= 0, we have

deg trQ Q
(
f1(ξ), ..., fn(ξ)

)
= deg trQ(z) Q(z)

(
f1(z), ..., fn(z)

)
.

An alternative proof of the Siegel-Shidlovskii Theorem was given by Bertrand in [2] using
Laurent’s determinants.

In the seminal paper [1], André elucidated the structure of “E-operators” by means
of their relations with G-operators. Any E-function is in the kernel of an E-operator
and we recall in Section 2 some of their properties which are important for the proof of
our results. Using these results, André obtained a completely new proof of the Siegel-
Shidlovskii Theorem. Beukers [4] was even able to deduce from the work of André the
following important refinement of a theorem of Nesterenko and Shidlovskii [8], which is
itself a refinement of the above-mentioned Siegel-Shidlovskii Theorem.

Theorem 3 (Beukers). With the notations and hypothesis of Theorem 2, let us consider
ξ ∈ Q such that ξT (ξ) 6= 0. For any polynomial relation

P
(
f1(ξ), ..., fn(ξ)

)
= 0

with P ∈ Q[X1, ..., Xn], there exists Q ∈ Q[z][X1, ..., Xn] such that

Q
(
f1(z), ..., fn(z)

)
= 0 and P (X1, ..., Xn) = Q(X1, ..., Xn)|z=ξ.

In order to apply the above transcendence results, the first naive question is: when are
f1(z), ..., fn(z) algebraically dependent over Q(z)? The first main result of this paper gives
a complete answer to this question when n = 2. In what follows, for any γ ∈ Q \ Z≤0, we
denote by 1F1(1; γ; z) the hypergeometric function (which is an E-function) defined by:

1F1(1; γ; z) =
∞∑
n=0

zn

γ(γ + 1) · · · (γ + n− 1)
.

Note that 1F1(1; 1; z) = exp(z).
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Theorem 4. Let f(z), g(z) ∈ Q[[z]] be E-functions such that(
f ′(z)
g′(z)

)
= E(z)

(
f(z)
g(z)

)
for some E(z) ∈ M2(Q(z)). If f(z) and g(z) are algebraically dependent over Q(z), then
one of the following cases occurs:

(i) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1] and α, β ∈ Q such that

f(z) = a(z)eαz + b(z)eβz,

g(z) = c(z)eαz + d(z)eβz.

(ii) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1], γ ∈ Q \ Z and α ∈ Q such that

f(z) = a(z)1F1(1; γ;αz) + b(z),

g(z) = c(z)1F1(1; γ;αz) + d(z).

Remark. Let f(z) be an E-function such that

f ′(z) = u(z)f(z) + v(z)

for some u(z) ∈ Q(z)× and v(z) ∈ Q(z). In particular, f(z) and f ′(z) are algebraically
dependent over Q(z). Using Theorem 4, it is easily seen that

f(z) = a(z)1F1(1; γ;αz) + b(z)

for some a(z), b(z) ∈ Q[z, z−1], γ ∈ {1} ∪ Q \ Z and α ∈ Q. This provides a complete
proof of a result suggested by André in [1, Section 4.5], which answers a question asked by
Shidlovskii.

We now come to the second main result of this paper. In [5], Fischler and the first
author took another point of view at E-functions. They defined the set E of all the values
taken by E-functions at algebraic points. Since E-functions are entire and form a ring, it
is immediate that E is a ring. It is very unlikely that E is a field and a natural problem is

then to determine E×, the group of units of E. It is trivial that Q× exp(Q) is a subgroup

of E×. (2) It is an open problem to prove or disprove that E× = Q× exp(Q). We prove a

result that goes in direction of the equality E× = Q× exp(Q).

Theorem 5. Let F (z), G(z) ∈ Q[[z]] be E-functions such that(
F ′(z)
G′(z)

)
= E(z)

(
F (z)
G(z)

)
for some E(z) ∈M2(Q(z)). Let us assume that ξ ∈ Q× is such that

F (ξ)G(ξ) = 1.

Then F (ξ) and G(ξ) are both in Q× exp(Q).

2André proved in [1] that the units of the ring of E-functions are of the form βeαz, where α ∈ Q and

β ∈ Q×
.
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The proof of Theorem 5 uses, as a starting point, Beukers’ refinement of the Siegel-
Shidlovskii Theorem stated above, which enables us to use Theorem 4.

It would be very interesting to extend Theorem 4 to higher order differential systems.
There are immediate difficulties if one tries to generalize our method. For instance, the
polynomial relation (3.3) below reduces one case in the proof of Theorem 4 to a linear
differential equation of order 1, which is then easily solved; it is not clear how this could be
generalized even with only three functions. In [9, 10], Salikhov studied hypergeometric E-
functions solutions of a linear differential equation of order n ≥ 1 with coefficients in Q(z)
and algebraically dependent of their first n−1 derivatives. See [3] for further results in this
direction. Theorem 4 shows that hypergeometric functions enable one to describe any E-
function solution of a linear differential equation of order at most 2 with coefficients in Q(z)
which is algebraically dependent of its first derivative over Q(z). However, hypergeometric
functions are not enough for linear differential equations of order 3 already, as shown by
the E-function

∞∑
n=0

1 + 1
2

+ · · ·+ 1
n

n!
zn

which is solution of the inhomogeneous differential equation

zy′′(z) + (1− 2z)y′(z) + (z − 1)y(z) = 1

but is not hypergeometric.

2. First steps of the proof of Theorem 4

According to the cyclic vector lemma, there exist a linear differential operator L of
order 2 with coefficients in Q(z), a series h(z) ∈ Q[[z]] such that L h(z) = 0, and a matrix(

p1(z) p2(z)
p3(z) p4(z)

)
∈ GL2(Q(z))

such that

f(z) = p1(z)h(z) + p2(z)h′(z)

g(z) = p3(z)h(z) + p4(z)h′(z).

Hence,

h(z) = q1(z)f(z) + q2(z)g(z)

h′(z) = q3(z)f(z) + q4(z)g(z)

where (
q1(z) q2(z)
q3(z) q4(z)

)
=

(
p1(z) p2(z)
p3(z) p4(z)

)−1

∈ GL2(Q(z)).

Let ∆(z) ∈ Q[z] be a common denominator of the qi(z). Then,

k(z) := ∆(z)h(z) = ∆(z)q1(z)f(z) + ∆(z)q2(z)g(z)
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is an E-function (we remind the reader that the set of E-functions is a sub-Q[z]-algebra of
Q[[z]]), and is a solution of a linear differential operator with coefficients in Q(z) of order
2, namely L ∆−1.

By André’s [1, Theorem 4.3], k(z) is solution of a monic linear differential operator M
with coefficients in Q(z) of order ν = 1 or 2 which is a right factor of an E-operator.

Let us first assume that ν = 1. Then, it is well-known that k(z) = q(z)eαz for some
q(z) ∈ Q[z] and α ∈ Q. Therefore, there exist a(z), c(z) ∈ Q(z) such that

f(z) = a(z)eαz,

g(z) = c(z)eαz.

Since f(z) and g(z) are entire functions, we have a(z), c(z) ∈ Q[z], whence the desired
result.

We shall now assume that ν = 2. By André’s [1, Theorem 4.3], the differential operator
M has the following properties, that will be freely used in the rest of this paper:

(1) M has only apparent singularities on C× i.e. it has a basis of analytic solutions
near any ξ ∈ C×;

(2) M is regular singular at 0, and its exponents at 0 are rational;
(3) M admits a basis of formal solutions at ∞ of the form(

â1(z)eα1z, â2(z)eα2z
)

=
(
f1(z), f2(z)

)
zΓ∞e∆z

where the fi(z) ∈ Q[[1
z
]] are Gevrey-1 series of arithmetic type, Γ∞ ∈ M2(Q) is

upper-triangular and

∆ =

(
α1 0
0 α2

)
∈M2(Q).

Let us recall that a Gevrey-1 series of arithmetic type is a power series

f(z) =
∞∑
n=0

n!anz
n ∈ Q[[z]]

with coefficients in Q such that

(1) f(z) satisfies a nonzero linear differential equation with coefficients in Q(z);
(2) there exists C > 0 such that

(a) the maximum of the moduli of the galoisian conjuguates of an is bounded by
Cn+1;

(b) there exists a sequence of positive integers dn such that dn ≤ Cn+1 and dnam
is an algebraic integers for all m ≤ n.

The prototypical example is Euler’s series
∞∑
n=0

n!zn.

To complete the proof of Theorem 4, we shall now consider several cases in the next
sections.
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3. Proof of Theorem 4 in the case α1 6= α2

In what follows, we will freely use several terminologies and results from the resummation
theory of linear differential equations; see [6] and the references therein for instance. The
set of singular directions of M is

Σ := {±d+ 2πZ}
where d = arg(α2 − α1); we set Σ = {di, i ∈ Z} with di < di+1. Moreover, M is of level

1. Therefore, the fi(z) are 1-sommable in any direction not in Σ. We denote by C̃× the

Riemann surface of the logarithm, and by M̃∞ the field whose elements are the functions

defined and meromorphic on some domain of the form {z ∈ C̃× : |z| > R}. For any real
numbers θ1 < θ2, we consider the angular sector

S(θ1, θ2) = {z ∈ C̃× : θ1 < arg(1/z) < θ2}.

For any θ ∈ (di − π
2
, di+1 + π

2
), there exists a unique fi,θ(z) ∈ M̃∞ which is 1-Gevrey

asymptotic to fi(z) at ∞ in any closed sector included in S(di − π
2
, di+1 + π

2
) and which is

such that (
a1,θ(z)eα1z, a2,θ(z)eα2z

)
:=
(
f1,θ(z), f2,θ(z)

)
zΓ∞e∆z

is a basis of solutions of M .
For any θ ∈ R \ Σ, we let c1,θ, c2,θ ∈ C be such that (3)

k(z) = c1,θa1,θ(z)eα1z + c2,θa2,θ(z)eα2z.

We consider several cases.

3.1. There exists θ ∈ R \ Σ such that c1,θ = 0 or c2,θ = 0. Assume for instance that
c2,θ = 0. Then, we have k(z) = c1,θa1,θ(z)eα1z and, hence, k(z)e−α1z = c1,θa1,θ(z) has at
most polynomial growth at infinity on any closed sector included in S(di − π

2
, di+1 + π

2
),

where di is such that θ ∈ (di − π
2
, di+1 + π

2
). Since k(z), and hence k(z)e−α1z, is an

entire function with at most exponential growth of order 1 at infinity, it follows from
the Phragmén-Lindelöf theorem that k(z)e−α1z has at most polynomial growth at infinity.
Therefore, k(z)e−α1z ∈ C[z]. Hence, k(z)e−αz ∈ C[z] ∩Q[[z]] = Q[z]. It follows that there
exist a(z), c(z) ∈ Q(z) such that

f(z) = a(z)eα1z,

g(z) = c(z)eα1z.

Since f(z) and g(z) are entire functions, we have a(z), c(z) ∈ Q[z], whence the desired
result.

3.2. For all θ ∈ R \ Σ, c1,θ 6= 0 and c2,θ 6= 0. We choose some θ ∈ R \ Σ, for instance in
(d0 − π

2
, d1 + π

2
).

3The results of [5] show that c1,θ, c2,θ (and similar connection constants in other sections) are in a
certain “arithmetical” subset S of C defined in terms of G-values and Γ-values, but this precision will not
used here.
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3.2.1. α1 6= 0 and α2 6= 0. Since f(z) and g(z) are algebraically dependent over Q(z), the
functions h(z) and h′(z) are algebraically dependent over Q(z) and, hence, k(z) and k′(z)
are algebraically dependent over Q(z). Let Q(X, Y ) ∈ Q(z)[X, Y ] \ {0} be such that

Q
(
k(z), k′(z)

)
= 0.

Let K be the field extension of C(z) generated by a1,θ(z)eα1z, a2,θ(z)eα2z and their
derivatives. Then, K is a Picard-Vessiot extension for M over C(z). The differential
Galois group G of M over C(z) is

G = {σ ∈ Aut(K/C(z)) | ∀x ∈ K, σ(x)′ = σ(x′)},

i.e. its elements are the field automorphisms of the extension C(z) ⊂ K commuting with
the action of the usual derivative. For any σ ∈ G, we have

Q
(
σ(k(z)), σ(k(z))′

)
= σ

(
Q
(
k(z), k′(z)

))
= 0. (3.1)

A special subgroup of G is given by Ramis’ exponential torus, whose elements can be
described as follows (see [7]). For any χ ∈ Hom(Zα1 + Zα2,C×) (here, Hom refers to
the group homomorphisms), there exists a unique element σχ of G whose action on K is
determined by

σχ
(
ai,θ(z)eαiz

)
= ai,θ(z)eαizχ(αi).

Let us now describe Hom(Zα1 + Zα2,C×). Consider relatively prime relative integers p, q
such that α1/α2 = p/q. Note that p, q 6= 0 because α1, α2 6= 0 and p 6= q because α1 6= α2.
Up to renumbering, one can assume that p > q. Then, the elements of Hom(Zα1+Zα2,C×)
are the maps

χs,t : Zα1 + Zα2 → C×

mα1 + nα2 7→ smtn

for s, t ∈ C× such that sq = tp. For all t ∈ C×, the algebraic relation (3.1) in the special
case σ = σχ(tp,tq)

is:

Q
(
c1,θa1,θ(z)eα1ztp + c2,θa2,θ(z)eα2ztq, c1,θ(a1,θ(z)eα1z)′tp + c2,θ(a2,θ(z)eα2z)′tq

)
= 0. (3.2)

We write

Q(X, Y ) =
∑
i,j

qi,j(z)X iY j,

and denote by δ the total degree of Q(X, Y ). The term of higher degree in t of (3.2) is
equal to

cpδ1,θ
∑
i+j=δ

qi,j(z)
(
a1,θ(z)eα1z

)i(
(a1,θ(z)eα1z)′

)j
and, hence, ∑

i+j=δ

qi,j(z)
(
a1,θ(z)eα1z

)i(
(a1,θ(z)eα1z)′

)j
= 0. (3.3)
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We now have a non trivial homogeneous algebraic relation with coefficients in Q(z) between

a1,θ(z)eα1z and
(
a1,θ(z)eα1z

)′
and, hence, their quotient(
a1,θ(z)eα1z

)′
a1,θ(z)eα1z

=
a′1,θ(z)

a1,θ(z)
+ α1

is algebraic over Q(z). It follows that the logarithmic derivative

u(z) :=
a′1,θ(z)

a1,θ(z)

is algebraic over Q(z). We have a1,θ(z) = exp(
∫
u(z)). Consider the Puiseux expansion of

u(z) at ∞:

u(z) =
∞∑

k=−N

ukz
−k/`

for some integer ` ≥ 1. We have∫
u(z) =

∞∑
k=`+1

uk
1− k/`

z1−k/` + u` log(z) +
`−1∑

k=−N

uk
1− k/`

z1−k/`,

up to some additive constant. Since a1,θ(z) has at most polynomial growth at infinity in
any closed sector included in S(d0− π

2
, d1 + π

2
), we see that uk = 0 for k ≤ `−1 and, hence,

a1,θ(z) = Czu` exp
( ∞∑
k=`+1

uk
1− k/`

z1−k/`
)
, (3.4)

for some C ∈ C×. Since a1,θ(z)eα1z is a solution of M , it is analytic on C̃× and has at most
polynomial growth at 0 in any sector with finite aperture (recall that M is regular on C×

and regular singular at 0). Therefore, a1,θ(z) is analytic on C̃× and has at most polynomial
growth at 0 in any sector with finite aperture. Moreover, the equation (3.4) shows that
a1,θ(z

`)/z`u` (has trivial monodromy at∞ and) is analytic near∞. Therefore, a1,θ(z
`)/z`u`

is analytic on C×∪{∞} and has at most polynomial growth at 0. It follows that a1,θ(z
`)/z`u`

is of the form p(z−1) for some p(X) ∈ C[X]. Hence, a1,θ(z)eα1z = zcq(z1/`)eα1z for some
c ∈ C and q(X) ∈ C[X]. By analytic continuation, zcq(e2πi/`z1/`)eα1z is also a solution of
M . This solution is a linear combination with coefficients in C of the ai,θ(z)eαiz. Since
α1 6= α2, we conclude that there exists λ ∈ C such that zcq(e2πi/`z1/`)eα1z = λzcq(z1/`)eα1z.
This implies that q(z1/`) = zm/`r1(z) for some relative integer m and some r1(z) ∈ C[z].
Therefore,

a1,θ(z)eα1z = zc1r1(z)eα1z

for some c1 ∈ C. Since the exponents of M at 0 are rational, we must have c1 ∈ Q.
Using a similar argument for a2,θ(z), we see that

a2,θ(z)eα2z = zc2r2(z)eα2z

for some c2 ∈ Q and r2(z) ∈ C[z].
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Hence, we have

k(z) = zc1r1(z)eα1z + zc2r2(z)eα2z (3.5)

for some ci ∈ Q and ri(z) ∈ C(z)×. By analytic continuation along a simple loop around
0, we get

k(z) = e2πic1zc1r1(z)eα1z + e2πic2zc2r2(z)eα2z. (3.6)

Equating the right-hand side of (3.5) with the the right-hand side of (3.6), we get e2πic1 =
e2πic2 = 1, i.e. c1, c2 ∈ Z. It follows that

f(z) = s1(z)eα1z + s2(z)eα2z (3.7)

for some si(z) ∈ C(z). A simple linear algebra argument shows that si(z) ∈ Q(z). We
claim that we actually have s1(z), s2(z) ∈ Q[z, z−1]. Assume at the contrary that s1(z) or

s2(z) has a pole ξ ∈ Q×. Let us denote by n the maximum between the order of ξ as a
pole of s1(z) and of s2(z). Then, multiplying equation (3.7) by (z − ξ)n and letting z = ξ,
we obtain a non trivial linear relation with coefficients in Q between eα1ξ and eα2ξ, which
contradicts Lindemann’s Theorem.

The same kind of arguments proves a similar result for g(z).

3.2.2. α1 = 0 or α2 = 0. Assume for instance that α2 = 0 (so that α1 6= 0). Arguing as in
Section 3.2.1, we see that

a1,θ(z) = zγp(z)

for some γ ∈ Q and some p(z) ∈ C[z]. In particular, a1,θ(z)eα1z is solution of some
differential equation y′(z) = a(z)y(z) with a(z) ∈ C(z). By euclidean division, it follows
that

M =

(
d

dz
− b(z)

)(
d

dz
− a(z)

)
for some b(z) ∈ C(z). Since k(z) is a solution of M , the function

v(z) := k′(z)− a(z)k(z)

satisfies v′(z) = b(z)v(z) and, hence, v(z) = eB(z) where B(z) is some primitive of the
rational function b(z) (note that v(z) 6= 0 because the order of M is equal to 2). Using
the fact that v(z) is a meromorphic function on C, we see that

v(z) = r(z)eq(z)

for some r(z) ∈ C(z) and q(z) ∈ zC[z]. Since a2,θ(z) is a solution of M , the function

w(z) := a2,θ(z)′ − a(z)a2,θ(z)

satisfies w′(z) = b(z)w(z). Moreover, w(z) is non zero (otherwise, a1,θ(z)eα1z and a2,θ(z)
would be solutions of y′(z) = a(z)y(z) and, hence, would be linearly dependent over C).
It follows that

w(z) = κv(z)
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for some κ ∈ C×. But w(z) has at most polynomial growth at ∞ in any closed sector
included in S(d0 − π

2
, d1 + π

2
), so that v(z) has the same property and, hence, belongs to

C(z). Using the variation of constants method, we get that there exists C ∈ C× such that

k(z) = zγp(z)eα1z

(∫ z

z0

x−γp(x)−1v(x)e−α1xdx+ C

)
, (3.8)

where z0 ∈ C× is not a pole of p(x)−1v(x) ∈ C(z). We shall now express (3.8) by means of
hypergeometric series. For this, we need some lemmas.

Lemma 1. For all γ 6∈ Z, for all Q(z) ∈ C(z), for any z0 ∈ C× which is not a pole of
Q(z), there exists R(z) ∈ C(z) with at most simple poles on C× and whose set of poles in
C× is included in the set of poles in C× of Q(z), and there exist λ(z), µ(z) ∈ C(z) and
ν ∈ C such that∫ z

z0

x−γQ(x)e−α1xdx = λ(z)z−γe−α1z + µ(z)

∫ z

z0

x−γR(x)e−α1xdx+ ν.

Proof. Using the decomposition in partial fractions of Q(z), we see that it is sufficient to
prove the lemma for Q(z) = 1

(z−ξ)n with ξ ∈ C× and n ∈ N∗. We proceed by induction on

n. The result is obvious for n = 1. Assume that the result is true for some n ∈ N∗. Set

Q(z) =
1

(z − ξ)n+1
.

An integration by parts shows that∫ z

z0

x−γQ(x)e−α1xdx

=

[
x−γe−α1x

−1

n

1

(x− ξ)n

]x=z

x=z0

+

∫ z

z0

−1

n

1

(x− ξ)n
(α1 + γx−1)x−γe−α1xdx

= z−γe−α1z
−1

n

1

(z − ξ)n
− z−γ0 e−α1z0

−1

n

1

(z0 − ξ)n

− α1

n

∫ z

z0

1

(x− ξ)n
x−γe−α1xdx− γ

n

∫ z

z0

1

(x− ξ)n
x−γ−1e−α1xdx.

The induction hypothesis leads to the desired result. �

Lemma 2. For all Q(z) ∈ C(z), for all z0 ∈ C× which is not a pole of Q(z), there exists
R(z) ∈ C(z) with at most simple poles on C and whose set of poles in C× is included in
the set of poles in C× of Q(z), and there exist λ(z), µ(z) ∈ C(z) and ν ∈ C such that∫ z

z0

Q(x)e−α1xdx = λ(z)e−α1z + µ(z)

∫ z

z0

R(x)e−α1xdx+ ν.

Proof. Similar to the proof of Lemma 1. �
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In what follows, for any γ ∈ C \ Z and α ∈ C, we set:

Eγ,α(z) = zγ
∫ z

0

x−γe−αxdx =
∞∑
n=0

(−α)nzn+1

(n− γ + 1)n!

and, for γ ∈ Z, we set

Eγ,α(z) = e−αz.

If γ ∈ Q and α ∈ Q, then Eγ,α(z) is an E-function.

Lemma 3. Consider γ ∈ C, R(z) ∈ C(z), z0 ∈ C× which is not a pole of R(z), C ∈ C,
and ϕ(z) := zγ(

∫ z
z0
x−γR(x)e−α1xdx+C). Assume that ϕ(z) is meromorphic over C. Then,

there exists λ(z), µ(z) ∈ C(z) such that

ϕ(z) = λ(z)e−α1z + µ(z)Eγ,α1(z) if γ 6∈ Z

and

ϕ(z) = λ(z)e−α1z + µ(z) if γ ∈ Z.

Proof. Let us first assume that γ 6∈ Z. By Lemma 1, there exists R(z) ∈ C(z) with at most
simple poles on C× and whose set of poles in C× is included in the set of poles in C× of
Q(z), and there exist λ(z), µ(z) ∈ C(z) and C ′ ∈ C such that

ϕ(z) = λ(z)e−α1z + µ(z)zγ
∫ z

z0

x−γR(x)e−α1xdx+ C ′zγ.

If µ(z) = 0, then we must have C ′ = 0 because ϕ(z) − λ(z)e−α1z is meromorphic over
C and γ 6∈ Z, and, hence, the result is proved. We now assume that µ(z) 6= 0. If
ξ ∈ C× is a (simple) pole of R(z), then ξ is a logarithmic singularity of

∫ z
z0
x−γR(x)e−α1xdx

(because x−γR(x)e−α1x itself has a simple pole at ξ), and this contradicts the fact that
ϕ(z) is meromorphic over C. Therefore, R(z) = z−nS(z) for some integer n ≥ 0 and some
S(z) ∈ C[z]. Hence,

ϕ(z) = λ(z)e−α1z + µ(z)zγ
∫ z

z0

x−γ−nS(x)e−α1xdx+ C ′zγ.

But,
∫ z
z0
x−γ−nS(x)e−α1xdx is a linear combination with coefficients in C of functions of

the form
∫ z
z0
x−γ−n+ke−α1xdx for k ∈ N. Using integrations by parts, we conclude that∫ z

z0
x−γ−nS(x)e−α1xdx is, up to an additive constant in C, a linear combination with coef-

ficients in C(z) of z−γe−α1z and
∫ z
z0
x−γe−α1xdx. Hence, there exist λ̃(z), µ̃(z), ν̃(z) ∈ C(z)

such that

ϕ(z) = λ̃(z)e−α1z + µ̃(z)Eγ,α1(z) + ν̃(z)zγ.

We must have ν̃(z) = 0 because ϕ(z) − λ̃(z)e−α1z − µ̃(z)Eγ,α1(z) is meromorphic over C.
This yields the desired result.

Let us assume that γ ∈ Z. By Lemma 2, there exists R(z) ∈ C(z) with at most simple
poles on C and whose set of poles in C× is included in the set of poles in C× of Q(z), and



12

there exist λ(z), µ(z) ∈ C(z) and C ′ ∈ C such that

ϕ(z) = λ(z)e−α1z + µ(z)

∫ z

z0

R(x)e−α1xdx+ C ′zγ.

If µ(z) = 0, the result is proved. Therefore, we now assume that µ(z) 6= 0. If ξ ∈ C
is a (simple) pole of R(z), then ξ is a logarithmic singularity of

∫ z
z0
R(x)e−α1xdx (because

R(x)e−α1x itself has a simple pole at ξ), and this contradicts the fact that ϕ(z) is meromor-
phic over C. Hence, R(z) ∈ C[z]. Using integration by parts, we see that

∫ z
z0
R(x)e−α1xdx

is, up to an additive constant in C, of the form η(z)e−α1z for some η(z) ∈ C[z], which gives
the desired result. �

Let us first assume that γ 6∈ Z. Using (3.8) and Lemma 3, we see that there exist
λ(z), µ(z) ∈ C(z) such that

k(z) = λ(z) + µ(z)Eγ,α1(z)eα1z. (3.9)

A simple linear algebra argument shows that λ(z) and µ(z) belong to Q(z).
Therefore, there exist a(z), b(z), c(z), d(z) ∈ Q(z) such that

f(z) = a(z)Eγ,α1(z)eα1z + b(z),

g(z) = c(z)Eγ,α1(z)eα1z + d(z).

We have the following relation

Eγ,α1(z)eα1z =
γα2

1

z

(
1F1(1; γ;−α1z)− 1 +

α1z

γ

)
;

this is a direct consequence of the fact that they satisfy the same nonhomogenous differ-
ential of order one, namely:

zy′(z) + (γ + α1z)y(z) = z.

Therefore,

f(z) = ã(z)1F1(1; γ;−α1z) + b̃(z), (3.10)

g(z) = c̃(z)1F1(1; γ;−α1z) + d̃(z) (3.11)

for some ã(z), b̃(z), c̃(z), d̃(z) ∈ Q(z). Assume that ξ(∈ Q) is a non-zero pole of ã(z) or

b̃(z). Let us denote by n the order of ξ as a pole of ã(z). Let us denote by m the order

of ξ as a pole of and of b̃(z). Let us first assume that m > n. Then, multiplying equation
(3.10) by (z − ξ)m and letting z = ξ, we get

0 =
(

(z − ξ)mb̃(z)
)
|z=ξ

and this is a contradiction because
(

(z − ξ)mb̃(z)
)
|z=ξ
6= 0. So, we have n ≤ m. Then,

multiplying equation (3.10) by (z − ξ)n and letting z = ξ, we obtain that 1F1(1; γ;−α1ξ)

belongs to Q, and this is a contradiction by [12, p. 192, Theorem 3]. Hence, ã(z) and b̃(z)
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do not have poles on C× and, hence, belong to Q[z, z−1], whence the desired result. A

similar argument shows that c̃(z) and d̃(z) belong to Q[z, z−1].
We shall now assume that γ ∈ Z. Using (3.8) and Lemma 3, we see that there exists

λ(z), µ(z) ∈ C(z) such that

k(z) = λ(z) + µ(z)eα1z. (3.12)

It is easily seen that λ(z), µ(z) ∈ Q(z). Therefore, there exist a(z), b(z), c(z), d(z) ∈ Q(z)
such that

f(z) = a(z)eα1z + b(z),

g(z) = c(z)eα1z + d(z).

The proof of the fact that a(z), b(z), c(z) and d(z) actually belong to Q[z, z−1] is similar to
the proof of the similar result in the case γ 6∈ Z, using Lindemann’s Theorem.

4. Proof of Theorem 4 in the case α1 = α2

In this case, f1(z) and f2(z) are convergent at ∞. We let α = α1 = α2. One can
decompose k(z) as a linear combination with coefficients in C of the âi(z)eαiz and, hence,
as a linear combination with coefficients in C of functions of the form zλ(ln(z))µfi(z)eαz

with λ ∈ Q and µ ∈ {0, 1}. The entire function k(z)e−αz has at most polynomial growth
at ∞ and, hence, k(z)e−αz ∈ C[z]. So, k(z)e−αz ∈ C[z] ∩ Q[[z]] = Q[z]. Therefore, there
exist a(z), c(z) ∈ Q(z) such that

f(z) = a(z)eαz,

g(z) = c(z)eαz.

Since f(z) and g(z) are entire functions, we have a(z), c(z) ∈ Q[z], whence the desired
result.

5. A remark on the proof of Theorem 4

An essential ingredient in the proof of Theorem 4 is the fact that some nonzero solution
u(z) of M has an algebraic logarithmic derivative u′(z)/u(z) over Q(z). The existence
of such a solution can be easily derived using differential Galois theory. Indeed, we know
that the functions k(z) and k′(z) are algebraically dependent over Q(z). Therefore, the
differential Galois group of M over Q(z) does not contain SL2(Q). It follows that M is

reducible over the algebraic closure Q(z) of Q(z) i.e. there exist a(z), b(z) ∈ Q(z) such
that

M =

(
d

dz
− b(z)

)(
d

dz
− a(z)

)
.

Therefore, any nonzero u(z) such that u′(z) = a(z)u(z) has the required property. It is
very likely that we can use this fact a starting point for a variant of the proof of Theorem
4, but this would not led to substantial simplifications of the proof we have given.
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6. Proof of Theorem 5

If F (z) and G(z) are Q(z)-linearly dependent, then both satisfy a differential equation
of order 1 with coefficients in Q(z). Using André’s theory, we deduce that F (z) = p(z)eαz

and G(z) = q(z)eαz for some p(z), q(z) ∈ Q[z, z−1] and α ∈ Q. Hence, F (ξ) and G(ξ) are

both in Q× exp(Q) as expected. Actually, the equation F (ξ)G(ξ) = 1 forces that α = 0 by

Lindemann’s theorem, so that F (ξ) and G(ξ) are in fact in Q×.
Let us now assume that F (z) and G(z) are Q(z)-linearly independent. By Beukers’

Theorem 1.5 in [4], there exist

M(z) =

(
m1,1(z) m1,2(z)
m2,1(z) m2,2(z)

)
∈M2(Q[z])

and two E-functions f(z), g(z) ∈ Q[[z]] satisfying a differential system(
f ′(z)
g′(z)

)
= E(z)

(
f(z)
g(z)

)
for some matrix E(z) ∈M2(Q[z, z−1]), such that(

F (z)
G(z)

)
= M(z)

(
f(z)
g(z)

)
.

We have

F (ξ)G(ξ) =
(
m1,1(ξ)f(ξ) +m1,2(ξ)g(ξ)

)(
m2,1(ξ)f(ξ) +m2,2(ξ)g(ξ)

)
= 1.

In other words, we have

p
(
f(ξ), g(ξ)

)
= 0.

where

p(X, Y ) =
(
m1,1(ξ)X +m1,2(ξ)Y

)(
m2,1(ξ)X +m2,2(ξ)Y

)
− 1 ∈ Q[X, Y ] \ {0}.

By Beukers’ Theorem 1.3 in [4], one can lift this algebraic relation to an algebraic relation
between f(z) and g(z) over Q(z) i.e. there exists for P (X, Y ) ∈ Q[z][X, Y ] such that

P
(
f(z), g(z)

)
= 0 and P (X, Y )|z=ξ = p(X, Y ).

By Theorem 4, one of the following cases occurs :

(1) There exist a(z), b(z), c(z), d(z) ∈ Q[z, z−1] and α, β ∈ Q such that

f(z) = a(z)eαz + b(z)eβz,

g(z) = c(z)eαz + d(z)eβz.

(2) There exists a(z), b(z), c(z), d(z) ∈ Q[z, z−1], γ ∈ Q \ Z and α ∈ Q such that

f(z) = a(z)1F1(1; γ;αz) + b(z),

g(z) = c(z)1F1(1; γ;αz) + d(z).
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6.1. Assume that we are in case (1). Then, we have

f(ξ) = a1e
αξ + b1e

βξ and g(ξ) = c1e
αξ + d1e

βξ

where a1 = a(ξ), b1 = b(ξ), c1 = c(ξ) and d1 = d(ξ) belong to Q. Note that α 6= β because
F (z) and G(z) are linearly independent over Q(z). The connection between (F,G) and
(f, g) implies that

F (ξ) = aeαξ + beβξ, G(ξ) = ceαξ + deβξ

with a, b, c, d ∈ Q such that {a, b} 6= {0} and {c, d} 6= {0} (because F (ξ), G(ξ) 6= 0). The
condition F (ξ)G(ξ) = 1 becomes

ace2αξ + bde2βξ + (ad+ bc)e(α+β)ξ − e0 = 0. (6.1)

We first consider the case αβ = 0. At most one of α, β can be equal to 0. Let us assume
that β = 0 and α 6= 0. Then, (6.1) reads

ace2αξ + (ad+ bc)eαξ + bd− 1 = 0.

Hence, if at least one of ac and ad + bc is 6= 0, eαξ is an algebraic number, which forces
αξ = 0 (Lindemann’s Theorem again): impossible. Hence, ac = 0, ad + bc = 0 and, thus,
bd = 1. These three conditions implies that if a = 0, resp. c = 0, then c = 0, resp. a = 0,
so that F (ξ) = b and G(ξ) = d in both cases. The case β 6= 0 and α = 0 is similar and
leads to F (ξ) = a and G(ξ) = c.

We now consider the case αβ 6= 0. If α+β 6= 0, the four algebraic numbers 2αξ, 2βξ, (α+
β)ξ, 0 are pairwise distinct and, by the Lindemann-Weierstrass Theorem, (6.1) is impos-
sible. Hence, α + β = 0 and the same theorem applied to (6.1) implies in this case that
ac = 0, bd = 0 and ad + bc = 1. The first and third equations implies that exactly one of
a and c is 0. Assume that a 6= 0 and c = 0: then ad = 1 and thus d 6= 0 and b = 0, so that
F (ξ) = aeαξ and G(ξ) = de−αξ. If a = 0 and c 6= 0: then bc = 1 and thus b 6= 0 and d = 0,
so that F (ξ) = be−αξ and G(ξ) = ceαξ.

In all cases, the conclusion is that F (ξ) and G(ξ) are in Q× exp(Q).

6.2. Assume that we are in case (2). Then, we have

f(ξ) = a1 · 1F1(1; γ;αξ) + b1 and g(ξ) = c1 · 1F1(1; γ;αξ) + d1.

where a1 = a(ξ), b1 = b(ξ), c1 = c(ξ) and d1 = d(ξ) belong to Q. Note that α 6= β because
F (z) and G(z) are linearly independent over Q(z). The connection between (F,G) and
(f, g) implies that

F (ξ) = a · 1F1(1; γ;αξ) + b and G(ξ) = c · 1F1(1; γ;αξ) + d

with a, b, c, d ∈ Q such that {a, b} 6= {0} and {c, d} 6= {0} (because F (ξ), G(ξ) 6= 0).
If a = c = 0, then F (ξ) and G(ξ) are algebraic. If a or c is nonzero, then the equation

F (ξ)G(ξ) = 1 implies that 1F1(1; γ;αξ) is algebraic, and hence F (ξ) and G(ξ) are algebraic.
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(2000), 705–740.
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