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T. RIVOAL

The following text, based on joint work with J. Cresson and S. Fischler [6, 7], corresponds

to the talk I gave at Turun Yliopisto in may 2007 during the ANT conference. I warmly

thank the organisers of this conference for the invitation, especially Tapani Matala-Aho.

A generalisation of the Riemann zeta function ζ(s) is given by the multiple zeta value

(abreviated as MZV ; note that in french, the word polyzêtas is now often used for these

series) defined for all integers p ≥ 1 and all p-tuples s = (s1, s2, . . . , sp) of integers ≥ 1,

with s1 ≥ 2, by

ζ(s1, s2, . . . , sp) =
∑

k1>k2>...>kp≥1

1

ks1
1 ks2

2 . . . k
sp
p

.

The integers p and s1+s2+. . .+sp are respectively the depth and the weight of ζ(s1, s2, . . . , sp).

MZVs naturally appear when, for example, one considers products of values of the zeta

function, e.g ζ(n)ζ(m) = ζ(n + m) + ζ(n,m) + ζ(m,n). In a certain sense, this enables

us to “linearise” these products. Except a few identities such as ζ(2, 1) = ζ(3) (due

to Euler), the arithmetical nature of MZVs is no better understood than that of ζ(s).

However, the set of MZVs has a very rich structure which is well understood, at least

conjecturally. (See [16]). For example, let us consider the Q-vector spaces Zp of R which

are spanned by the 2p−2 MZVs of weight p ≥ 2: Z2 = Qζ(2), Z3 = Qζ(3) + Qζ(2, 1),

Z4 = Qζ(4) + Qζ(3, 1) + Qζ(2, 2) + Qζ(2, 1, 1), etc. Set vp = dimQ(Zp). We have the

following conjecture, whose (i) is due to Zagier and (ii) to Goncharov.

Conjecture 1. (i) For any integer p ≥ 2, we have vp = cp, where cp is defined by the

linear recursion cp+3 = cp+1 + cp, where c0 = 1, c1 = 0 and c2 = 1.

(ii) The Q-vector spaces Q and Zp (p ≥ 2) are in direct sum.

Hence, the sequence (vp)p≥2 should grow like αp (where α ≈ 1, 3247 is a root of the

polynomial X3 − X − 1), which is much less than 2p−2. Thus, conjecturally, there exist

many linear relations between MZVs of the same weight and none between those of different
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weight: in this direction, the theorem of Goncharov [9] and Terasoma [14] claims that

vp ≤ cp for all integers p ≥ 2. It remains to prove the opposite inequality to show (i), but no

non-trivial lower bound for vp is yet known: even if classical relations give v2 = v3 = v4 = 1,

we do not know how to prove that v5 = 2, which is equivalent to the irrationality of

ζ(5)/(ζ(3)ζ(2)). Conjecture 1 is also interesting because it implies the following one.

Conjecture 2. The numbers π, ζ(3), ζ(5), ζ(7), ζ(9), etc, are algebraically independent

over Q.

This conjecture seems completely out of reach. A number of diophantine results have

been proved in weight 1, i.e, in the case of the Riemann zeta function (see [8]) :

(i) The number ζ(3) is irrational (Apéry [1]);

(ii) The dimension of the vector space spanned over Q by 1, ζ(3), ζ(5), . . . , ζ(A) (with

A odd) grows at least as fast as log(A) ([2, 12]);

(iii) At least one of the four numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational (Zudilin [19]).

These results can be proved by the study of certain series of the form

∞∑

k=1

P (k)

(k)A
n+1

(0.1)

where P (X) ∈ Q[X], n ≥ 0, A ≥ 1. Here, we use the Pochhammer symbol, defined by

(k)α = k(k + 1) . . . (k + α − 1). The above series can be written as a linear combination

over Q of 1 and the values of zeta at integers. The crucial point is we can find special

polynomials P such that in these combinations only certain value of zeta occur: ζ(3) in

case (i), values ζ(s) with s odd in cases (ii) and (iii). This comes from (in the last two

cases, and also in certain proofs of (i)) a symmetry property linked to the very-well-poised

aspect of the series (0.1) (see [2] ou [12]):

Theorem 1. Let P ∈ Q[X] of degree at most A(n + 1)− 2, such that

P (−n−X) = (−1)A(n+1)+1P (X).

Then, the series (0.1) is a linear combination, with rational coefficients, of 1 and ζ(s) with

s an odd integer between 3 and A.

Our aim is to present two generalisations, in arbitrary depth, of this symmetry phe-

nomenon, and whose proofs are given in [7]. We hope that such generalisations will make

new diophantine results (irrationality or linear independence) for the underlying MZVs

possible.
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Our first result deals with “uncoupled” series, i.e, series over all p-tuples (k1, . . . , kp) ∈
N∗p :

Theorem 2. Consider integers p ≥ 1, n ≥ 0 and A ≥ 1. Let P ∈ Q[X1, . . . , Xp] be a

polynomial of degree ≤ A(n + 1)− 2 with respect to each of the variables, such that

P (X1, . . . , Xj−1,−Xj − n,Xj+1, . . . , Xp)

= (−1)A(n+1)+1P (X1, . . . , Xj−1, Xj, Xj+1, . . . , Xp)

for any j ∈ {1, . . . , p}. Then, the multiple series

∑

k1,...,kp≥1

P (k1, . . . , kp)

(k1)A
n+1 . . . (kp)A

n+1

(0.2)

is a polynomial with rational coefficients, of degree at most p, in the ζ(s), for s an odd

integer between 3 and A.

For example, when A = 3 or A = 4, this series is a polynomial in ζ(3). When p = 1, we

exactly obtain Theorem 1 (for all A).

From the point of view of diophantine applications, the main drawback of Theorem 2 is

that the summation of k1, . . . , kp is uncoupled. We now describe three disadvantages of

uncoupled series.

First of all, uncoupled series always give polynomials in values of ζ at integers, even if

we omit the symmetry condition in Theorem 2. This remark shows that MZVs cannot

really appear in this setup.

Secondly, let us consider Ball’s series

Sn = n!2
∞∑

k=1

(k +
n

2
)
(k − n)n(k + n + 1)n

(k)4
n+1

.

For all integer n, Sn is a linear form in 1 and ζ(3); this follows from Theorem 1. (The series

Sn exactly coincids with the linear forms used by Apéry to prove the irrationality of ζ(3);

without going into details, let us mention that this coincidence is not all trivial and is the

first application of the denominators conjecture proved in [11].) For all integers p ≥ 1, the

series Sp
n is obviously an uncoupled series of the the form considered in Theorem 2 with

P (X1, . . . , Xp)

= n!2p(X1 +
n

2
) . . . (Xp +

n

2
)(X1 − n)n . . . (Xp − n)n(X1 + n + 1)n . . . (Xp + n + 1)n
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and A = 4. Therefore, Sp
n is a polynomial in ζ(3) of degree (at most) p, from which we

could hope to deduce the transcendence of ζ(3). However, Sp
n does not contain anymore

diophantine information than Sn and it can only gives the irrationality of ζ(3).

Finally, the multiple series which appear in irrationality proofs are generally of the form

∑

k1≥...≥kp≥1

P (k1, . . . , kp)

(k1)A
n+1 . . . (kp)A

n+1

, (0.3)

i.e, the summation is over ordered indices; it is to this kind of series that one can apply

the algorithm decribed in [6]. For example, when p = 2, A = 2 and

P (X1, X2) = n!(X1 −X2 + 1)n(X2 − n)n(X2)n+1,

Sorokin [13] shows that the sum (0.3) is exactly the linear form in 1 and ζ(3) used by Apéry.

More generaly, a conjecture of Vasilyev [15] claimed that a certain multiple integral, equals

to

n!p−ε
∑

k1≥···≥kp≥1

(k1 − k2 + 1)n . . . (kp−1 − kp + 1)n(kp − n)n

(k1)2
n+1 . . . (kp−1)2

n+1(kp)
2−ε
n+1

, (0.4)

is a rational linear form in zeta values at integers ≥ 2 of the same parity as ε ∈ {0, 1}. The

integral formulation of this conjecture was proved in [20] and a refined version was proved

in [11]: the method is to prove that the series (0.4) is also equal to a simple series to which

Theorem 1 applies. Zlobin [18] recently obtained a completely different proof by a direct

study of the series (0.4), in the spirit of the combinatorial methods developped in [6, 7].

It is then possible to prove results of essentially the same nature as those of [2, 12]: this

confirms our feeling that multiple series with ordered indices are the interesting ones.

We showed in [6] that any convergent series of the form (0.3) can be written as a rational

linear form in MZVs of weight at most pA and of depth at most p (this result was also

obtained independently by Zlobin [17]). Furthermore, we produced an algorithm, imple-

mented [5] in Pari, to explicitly compute such a linear combination. This enabled us to

discover the symmetry property that we now describe in the special case of depth 2 for the

reader’s convenience.

Theorem 3. Consider integers n ≥ 0 et A ≥ 1, with n even. Let P ∈ Q[X1, X2] be a

polynomial in two variables, of degree ≤ A(n + 1)− 2 in each one, such that




P (X1, X2) = −P (X2, X1)
P (−n−X1, X2) = (−1)A(n+1)+1P (X1, X2)
P (X1,−n−X2) = (−1)A(n+1)+1P (X1, X2)

(0.5)

Then, the double series (0.3) is a linear combination, with rational coefficients,
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• of 1,

• of the values ζ(s) with s an odd integer such that 3 ≤ s ≤ 2A,

• of the differences ζ(s, s′)− ζ(s′, s) with s, s′ odd integers such that 3 ≤ s < s′ ≤ A.

(Let us note here that in the series (0.3), the variables k1, . . . , kp are linked by non-strict

inequalities, as in [6], but contrary to the definition of MZVs. This does not cause any

problems, since it is easy to go from statements with non-strict inequalities to statements

with strict inequalities, and vice-versa.)

Of course, in (0.5), the third condition is a consequence of the first two. If A = 4, this

theorem shows that the double series
∑

k1≥k2≥1

P (k1, k2)

(k1)4
n+1(k2)4

n+1

is a linear form in 1, ζ(3), ζ(5) and ζ(7) (which was far from obvious a priori since this a

double series). For A = 3, we get a linear form in 1, ζ(3), ζ(5). Finally, for A = 2, we get

a linear form in 1 and ζ(3).

To state our main result in arbitrary depth, we need the following notation. For integers

p ≥ 0 and s1, . . . , sp ≥ 2, we set

ζas(s1, . . . , sp) =
∑

σ∈Sp

εσζ(sσ(1), . . . , sσ(p)),

where εσ is the signature of the permutation σ. We call such a linear combination of

MZVs an antisymmetric MZV (even if, for p ≥ 2, it is not an MZV in general). These are

convergent series since each si is supposed ≥ 2. For p = 1, we have ζas(s) = ζ(s). The

natural convention is to set ζas(s1, . . . , sp) = 1 when p = 0 because there exists one unique

bijection of the empty set onto itself. For p = 2, we have ζas(s1, s2) = ζ(s1, s2)− ζ(s2, s1)

and, when p = 3,

ζas(s1, s2, s3)

= ζ(s1, s2, s3) + ζ(s2, s3, s1) + ζ(s3, s1, s2)− ζ(s2, s1, s3)− ζ(s1, s3, s2)− ζ(s3, s2, s1).

By definition, for all σ ∈ Sp, we have

ζas(sσ(1), . . . , sσ(p)) = εσζ
as(s1, . . . , sp),

and ζas(s1, . . . , sp) = 0 once two of the si’s are equal. It seems reasonable to us that in

general an antisymmetric MZV is not a polynomial in values of the Riemann zeta function.

However, any “symmetric” MZV (defined as ζas(s1, . . . , sp) but omiting the signature εσ)

is a polynomial in ζ(s) (by [10], Theorem 2.2).
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Let Ap denotes the set of polynomials P (X1, . . . , Xp) ∈ Q[X1, . . . , Xp] such that:




For all σ ∈ Sp, we have

P (Xσ(1), Xσ(2), . . . , Xσ(p)) = εσP (X1, X2, . . . , Xp).

For all j ∈ {1, . . . , p}, we have

P (X1, . . . , Xj−1,−Xj − n,Xj+1, . . . , Xp)

= (−1)A(n+1)+1P (X1, . . . , Xj−1, Xj, Xj+1, . . . , Xp).

There are redondances in these conditions. If the first one is satisfied, then it is enough

to check the second one for one single value of j. For example, A2 is exactly the set of

polynomials P satisfying the conditions (0.5). Moreover, if P ∈ Ap then P has the same

degree in each variable X1, . . . , Xp. Clearly, the definition of Ap also depends on the parity

of A(n + 1). We can now state our main result.

Theorem 4. Consider integers n ≥ 0 and A, p ≥ 1, with n even. Let P ∈ Ap be of degree

≤ A(n + 1)− 2 in each of the variables. Then, the series

∑

k1≥...≥kp≥1

P (k1, . . . , kp)

(k1)A
n+1 . . . (kp)A

n+1

(0.6)

is a rational linear combination of products of the form

ζ(s1) . . . ζ(sq)ζ
as(s′1, . . . , s

′
q′),

where 



q, q′ ≥ 0 integers such that 2q + q′ ≤ p,
s1, . . . , sq, s

′
1, . . . , s

′
q′ odd integers ≥ 3,

si ≤ 2A− 1 for all i ∈ {1, . . . , q},
s′i ≤ A for all i ∈ {1, . . . , q′}.

(0.7)

When q′ = 0, the antisymmetric MZV ζas(s′1, . . . , s
′
q′) is equal to 1 and we obtain a

product of values of ζ at odd integers. When q = q′ = 0, this produit is empty and we

obtain 1.

If p = 1, Theorem 4 states that (0.6) is a linear combination of 1 and the ζ(s) with odd

s such that 3 ≤ s ≤ A: this is just Theorem 1.

If p = 2, we obtain exactly Theorem 3.

If p = 3, the theorem states that the series is a linear combination of

• products of at most two values of ζ at odd integers ≥ 3,

• antisymmetric MZVs ζas(s1, s2) with s1, s2 ≥ 3 odd,

• antisymmetric MZVs ζas(s1, s2, s3) with s1, s2, s3 ≥ 3 odd.



7

In depth p ≥ 4, terms such as q ≥ 1 and q′ ≥ 2 can appear: it seems that the series is not

always the sum of a polynomial in values of ζ(s) (with s odd) and of a linear combination

of antisymmetric MZVs ζas(s1, . . . , sq) with s1, . . . , sq odd.

When A ≤ 2, we necessarily have q′ = 0 in all the products, which implies the following

corollary.

Corollary 1. Under the hypotheses of Theorem 4, if A ≤ 2, then the series (0.6) is a

polynomial in ζ(3) with rationals coefficients.

Theorem 4 also contains, for example, the following special case.

Corollary 2. Consider integers n, r, t, ε ≥ 0 and A, p ≥ 1, with n even, such that

ε ≡ (A + 1)(n + 1) + 1 mod 2

and

ε + (4r + 2)p + 2t ≤ (A− 1)(n + 1) + 4r.

Then, the convergent series

∑

k1≥...≥kp≥1

[ p∏
i=1

(ki+
n

2
)

]ε

[ ∏
1≤i<j≤p

(ki − kj − r)2r+1(ki + kj + n− r)2r+1

][ p∏
i=1

(ki − t)2t+n+1

]

(k1)A
n+1 . . . (kp)A

n+1

is a linear combination as described in Theorem 4.

An example of application of this corollary is the following series (in which we take

t = 0 and the Pochhammer symbols (ki)n+1 at the numerator cancel out with those at the

denominator):

∑

k1≥k2≥k3≥1

(
k1 +

1

2

)(
k2 +

1

2

)(
k3 +

1

2

)

× (k1 − k2)(k2 − k3)(k1 − k3)(k1 + k2 + 1)(k1 + k3 + 1)(k2 + k3 + 1)

(k1)4
2 (k2)4

2 (k3)4
2

= −1

4
− ζ(3) +

1

4
ζ(5) + ζ(3)2 − 1

4
ζ(7).

∑

k1≥k2≥1

(
k1 +

1

2

)(
k2 +

1

2

)(k1 − k2 − 1)3(k1 + k2)3(k1 − 1)4(k2 − 1)4

(k1)7
2 (k2)7

2

= −1156 + 891 ζ(3) +
189

2
ζ(5) + 78

(
ζ(5, 3)− ζ(3, 5)

)
.
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Finally, let us mention that the series described in the above theorems are related to

multiple hypergeometric series related to root systems: see [3, 4] for example as well as the

discussion in [7].
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[11] C. Krattenthaler and T. Rivoal, Hypergéométrie et fonction zêta de Riemann, Memoirs of the AMS

186 (2007), 93 pages.
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