SYMMETRY PHENOMENOMS IN LINEAR FORMS IN MULTIPLE ZETA VALUES

T. RIVOAL

The following text, based on joint work with J. Cresson and S. Fischler [6, 7], corresponds to the talk I gave at Turun Yliopisto in may 2007 during the ANT conference. I warmly thank the organisers of this conference for the invitation, especially Tapani Matala-Aho.

A generalisation of the Riemann zeta function $\zeta(s)$ is given by the multiple zeta value (abreviated as MZV ; note that in french, the word polyzêtas is now often used for these series) defined for all integers $p \geq 1$ and all p-tuples $\underline{s}=\left(s_{1}, s_{2}, \ldots, s_{p}\right)$ of integers ≥ 1, with $s_{1} \geq 2$, by

$$
\zeta\left(s_{1}, s_{2}, \ldots, s_{p}\right)=\sum_{k_{1}>k_{2}>\ldots>k_{p} \geq 1} \frac{1}{k_{1}^{s_{1}} k_{2}^{s_{2}} \ldots k_{p}^{s_{p}}} .
$$

The integers p and $s_{1}+s_{2}+\ldots+s_{p}$ are respectively the depth and the weight of $\zeta\left(s_{1}, s_{2}, \ldots, s_{p}\right)$. MZVs naturally appear when, for example, one considers products of values of the zeta function, e.g $\zeta(n) \zeta(m)=\zeta(n+m)+\zeta(n, m)+\zeta(m, n)$. In a certain sense, this enables us to "linearise" these products. Except a few identities such as $\zeta(2,1)=\zeta(3)$ (due to Euler), the arithmetical nature of MZVs is no better understood than that of $\zeta(s)$. However, the set of MZVs has a very rich structure which is well understood, at least conjecturally. (See [16]). For example, let us consider the \mathbb{Q}-vector spaces \mathcal{Z}_{p} of \mathbb{R} which are spanned by the 2^{p-2} MZVs of weight $p \geq 2: \mathcal{Z}_{2}=\mathbb{Q} \zeta(2), \mathcal{Z}_{3}=\mathbb{Q} \zeta(3)+\mathbb{Q} \zeta(2,1)$, $\mathcal{Z}_{4}=\mathbb{Q} \zeta(4)+\mathbb{Q} \zeta(3,1)+\mathbb{Q} \zeta(2,2)+\mathbb{Q} \zeta(2,1,1)$, etc. Set $v_{p}=\operatorname{dim}_{\mathbb{Q}}\left(\mathcal{Z}_{p}\right)$. We have the following conjecture, whose (i) is due to Zagier and (ii) to Goncharov.

Conjecture 1. (i) For any integer $p \geq 2$, we have $v_{p}=c_{p}$, where c_{p} is defined by the linear recursion $c_{p+3}=c_{p+1}+c_{p}$, where $c_{0}=1, c_{1}=0$ and $c_{2}=1$.
(ii) The \mathbb{Q}-vector spaces \mathbb{Q} and $\mathcal{Z}_{p}(p \geq 2)$ are in direct sum.

Hence, the sequence $\left(v_{p}\right)_{p \geq 2}$ should grow like α^{p} (where $\alpha \approx 1,3247$ is a root of the polynomial $X^{3}-X-1$), which is much less than 2^{p-2}. Thus, conjecturally, there exist many linear relations between MZVs of the same weight and none between those of different

1991 Mathematics Subject Classification. 33C70 (Primary); 11M41, 11J72 (Secondary).
weight: in this direction, the theorem of Goncharov [9] and Terasoma [14] claims that $v_{p} \leq c_{p}$ for all integers $p \geq 2$. It remains to prove the opposite inequality to show (i), but no non-trivial lower bound for v_{p} is yet known: even if classical relations give $v_{2}=v_{3}=v_{4}=1$, we do not know how to prove that $v_{5}=2$, which is equivalent to the irrationality of $\zeta(5) /(\zeta(3) \zeta(2))$. Conjecture 1 is also interesting because it implies the following one.

Conjecture 2. The numbers $\pi, \zeta(3), \zeta(5), \zeta(7), \zeta(9)$, etc, are algebraically independent over \mathbb{Q}.

This conjecture seems completely out of reach. A number of diophantine results have been proved in weight 1, i.e, in the case of the Riemann zeta function (see [8]) :
(i) The number $\zeta(3)$ is irrational (Apéry [1]);
(ii) The dimension of the vector space spanned over \mathbb{Q} by $1, \zeta(3), \zeta(5), \ldots, \zeta(A)$ (with A odd) grows at least as fast as $\log (A)([2,12])$;
(iii) At least one of the four numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational (Zudilin [19]).

These results can be proved by the study of certain series of the form

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{P(k)}{(k)_{n+1}^{A}} \tag{0.1}
\end{equation*}
$$

where $P(X) \in \mathbb{Q}[X], n \geq 0, A \geq 1$. Here, we use the Pochhammer symbol, defined by $(k)_{\alpha}=k(k+1) \ldots(k+\alpha-1)$. The above series can be written as a linear combination over \mathbb{Q} of 1 and the values of zeta at integers. The crucial point is we can find special polynomials P such that in these combinations only certain value of zeta occur: $\zeta(3)$ in case (i), values $\zeta(s)$ with s odd in cases (ii) and (iii). This comes from (in the last two cases, and also in certain proofs of (i)) a symmetry property linked to the very-well-poised aspect of the series (0.1) (see [2] ou [12]):

Theorem 1. Let $P \in \mathbb{Q}[X]$ of degree at most $A(n+1)-2$, such that

$$
P(-n-X)=(-1)^{A(n+1)+1} P(X)
$$

Then, the series (0.1) is a linear combination, with rational coefficients, of 1 and $\zeta(s)$ with s an odd integer between 3 and A.

Our aim is to present two generalisations, in arbitrary depth, of this symmetry phenomenon, and whose proofs are given in [7]. We hope that such generalisations will make new diophantine results (irrationality or linear independence) for the underlying MZVs possible.

Our first result deals with "uncoupled" series, i.e, series over all p-tuples $\left(k_{1}, \ldots, k_{p}\right) \in$ $\mathbb{N}^{* p}$:

Theorem 2. Consider integers $p \geq 1, n \geq 0$ and $A \geq 1$. Let $P \in \mathbb{Q}\left[X_{1}, \ldots, X_{p}\right]$ be a polynomial of degree $\leq A(n+1)-2$ with respect to each of the variables, such that

$$
\begin{aligned}
P\left(X_{1}, \ldots, X_{j-1},-X_{j}-n, X_{j+1}\right. & \left., \ldots, X_{p}\right) \\
& =(-1)^{A(n+1)+1} P\left(X_{1}, \ldots, X_{j-1}, X_{j}, X_{j+1}, \ldots, X_{p}\right)
\end{aligned}
$$

for any $j \in\{1, \ldots, p\}$. Then, the multiple series

$$
\begin{equation*}
\sum_{k_{1}, \ldots, k_{p} \geq 1} \frac{P\left(k_{1}, \ldots, k_{p}\right)}{\left(k_{1}\right)_{n+1}^{A} \ldots\left(k_{p}\right)_{n+1}^{A}} \tag{0.2}
\end{equation*}
$$

is a polynomial with rational coefficients, of degree at most p, in the $\zeta(s)$, for s an odd integer between 3 and A.

For example, when $A=3$ or $A=4$, this series is a polynomial in $\zeta(3)$. When $p=1$, we exactly obtain Theorem 1 (for all A).

From the point of view of diophantine applications, the main drawback of Theorem 2 is that the summation of k_{1}, \ldots, k_{p} is uncoupled. We now describe three disadvantages of uncoupled series.

First of all, uncoupled series always give polynomials in values of ζ at integers, even if we omit the symmetry condition in Theorem 2. This remark shows that MZVs cannot really appear in this setup.

Secondly, let us consider Ball's series

$$
S_{n}=n!^{2} \sum_{k=1}^{\infty}\left(k+\frac{n}{2}\right) \frac{(k-n)_{n}(k+n+1)_{n}}{(k)_{n+1}^{4}} .
$$

For all integer n, S_{n} is a linear form in 1 and $\zeta(3)$; this follows from Theorem 1. (The series S_{n} exactly coincids with the linear forms used by Apéry to prove the irrationality of $\zeta(3)$; without going into details, let us mention that this coincidence is not all trivial and is the first application of the denominators conjecture proved in [11].) For all integers $p \geq 1$, the series S_{n}^{p} is obviously an uncoupled series of the the form considered in Theorem 2 with

$$
\begin{aligned}
& P\left(X_{1}, \ldots, X_{p}\right) \\
& \quad=n!^{2 p}\left(X_{1}+\frac{n}{2}\right) \ldots\left(X_{p}+\frac{n}{2}\right)\left(X_{1}-n\right)_{n} \ldots\left(X_{p}-n\right)_{n}\left(X_{1}+n+1\right)_{n} \ldots\left(X_{p}+n+1\right)_{n}
\end{aligned}
$$

and $A=4$. Therefore, S_{n}^{p} is a polynomial in $\zeta(3)$ of degree (at most) p, from which we could hope to deduce the transcendence of $\zeta(3)$. However, S_{n}^{p} does not contain anymore diophantine information than S_{n} and it can only gives the irrationality of $\zeta(3)$.

Finally, the multiple series which appear in irrationality proofs are generally of the form

$$
\begin{equation*}
\sum_{k_{1} \geq \ldots \geq k_{p} \geq 1} \frac{P\left(k_{1}, \ldots, k_{p}\right)}{\left(k_{1}\right)_{n+1}^{A} \ldots\left(k_{p}\right)_{n+1}^{A}}, \tag{0.3}
\end{equation*}
$$

i.e, the summation is over ordered indices; it is to this kind of series that one can apply the algorithm decribed in [6]. For example, when $p=2, A=2$ and

$$
P\left(X_{1}, X_{2}\right)=n!\left(X_{1}-X_{2}+1\right)_{n}\left(X_{2}-n\right)_{n}\left(X_{2}\right)_{n+1},
$$

Sorokin [13] shows that the sum (0.3) is exactly the linear form in 1 and $\zeta(3)$ used by Apéry. More generaly, a conjecture of Vasilyev [15] claimed that a certain multiple integral, equals to

$$
\begin{equation*}
n!^{p-\varepsilon} \sum_{k_{1} \geq \cdots \geq k_{p} \geq 1} \frac{\left(k_{1}-k_{2}+1\right)_{n} \ldots\left(k_{p-1}-k_{p}+1\right)_{n}\left(k_{p}-n\right)_{n}}{\left(k_{1}\right)_{n+1}^{2} \ldots\left(k_{p-1}\right)_{n+1}^{2}\left(k_{p}\right)_{n+1}^{2-\varepsilon}}, \tag{0.4}
\end{equation*}
$$

is a rational linear form in zeta values at integers ≥ 2 of the same parity as $\varepsilon \in\{0,1\}$. The integral formulation of this conjecture was proved in [20] and a refined version was proved in [11]: the method is to prove that the series (0.4) is also equal to a simple series to which Theorem 1 applies. Zlobin [18] recently obtained a completely different proof by a direct study of the series (0.4), in the spirit of the combinatorial methods developped in $[6,7]$. It is then possible to prove results of essentially the same nature as those of [2, 12]: this confirms our feeling that multiple series with ordered indices are the interesting ones.

We showed in [6] that any convergent series of the form (0.3) can be written as a rational linear form in MZVs of weight at most $p A$ and of depth at most p (this result was also obtained independently by Zlobin [17]). Furthermore, we produced an algorithm, implemented [5] in Pari, to explicitly compute such a linear combination. This enabled us to discover the symmetry property that we now describe in the special case of depth 2 for the reader's convenience.

Theorem 3. Consider integers $n \geq 0$ et $A \geq 1$, with n even. Let $P \in \mathbb{Q}\left[X_{1}, X_{2}\right]$ be a polynomial in two variables, of degree $\leq A(n+1)-2$ in each one, such that

$$
\left\{\begin{array}{l}
P\left(X_{1}, X_{2}\right)=-P\left(X_{2}, X_{1}\right) \tag{0.5}\\
P\left(-n-X_{1}, X_{2}\right)=(-1)^{A(n+1)+1} P\left(X_{1}, X_{2}\right) \\
P\left(X_{1},-n-X_{2}\right)=(-1)^{A(n+1)+1} P\left(X_{1}, X_{2}\right)
\end{array}\right.
$$

Then, the double series (0.3) is a linear combination, with rational coefficients,

- of 1 ,
- of the values $\zeta(s)$ with s an odd integer such that $3 \leq s \leq 2 A$,
- of the differences $\zeta\left(s, s^{\prime}\right)-\zeta\left(s^{\prime}, s\right)$ with s, s^{\prime} odd integers such that $3 \leq s<s^{\prime} \leq A$.
(Let us note here that in the series (0.3), the variables k_{1}, \ldots, k_{p} are linked by non-strict inequalities, as in [6], but contrary to the definition of MZVs. This does not cause any problems, since it is easy to go from statements with non-strict inequalities to statements with strict inequalities, and vice-versa.)

Of course, in (0.5), the third condition is a consequence of the first two. If $A=4$, this theorem shows that the double series

$$
\sum_{k_{1} \geq k_{2} \geq 1} \frac{P\left(k_{1}, k_{2}\right)}{\left(k_{1}\right)_{n+1}^{4}\left(k_{2}\right)_{n+1}^{4}}
$$

is a linear form in $1, \zeta(3), \zeta(5)$ and $\zeta(7)$ (which was far from obvious a priori since this a double series). For $A=3$, we get a linear form in $1, \zeta(3), \zeta(5)$. Finally, for $A=2$, we get a linear form in 1 and $\zeta(3)$.

To state our main result in arbitrary depth, we need the following notation. For integers $p \geq 0$ and $s_{1}, \ldots, s_{p} \geq 2$, we set

$$
\zeta^{\mathrm{as}}\left(s_{1}, \ldots, s_{p}\right)=\sum_{\sigma \in \mathfrak{S}_{p}} \varepsilon_{\sigma} \zeta\left(s_{\sigma(1)}, \ldots, s_{\sigma(p)}\right),
$$

where ε_{σ} is the signature of the permutation σ. We call such a linear combination of MZVs an antisymmetric MZV (even if, for $p \geq 2$, it is not an MZV in general). These are convergent series since each s_{i} is supposed ≥ 2. For $p=1$, we have $\zeta^{\text {as }}(s)=\zeta(s)$. The natural convention is to set $\zeta^{\text {as }}\left(s_{1}, \ldots, s_{p}\right)=1$ when $p=0$ because there exists one unique bijection of the empty set onto itself. For $p=2$, we have $\zeta^{\text {as }}\left(s_{1}, s_{2}\right)=\zeta\left(s_{1}, s_{2}\right)-\zeta\left(s_{2}, s_{1}\right)$ and, when $p=3$,

$$
\begin{aligned}
& \zeta^{\text {as }}\left(s_{1}, s_{2}, s_{3}\right) \\
& \quad=\zeta\left(s_{1}, s_{2}, s_{3}\right)+\zeta\left(s_{2}, s_{3}, s_{1}\right)+\zeta\left(s_{3}, s_{1}, s_{2}\right)-\zeta\left(s_{2}, s_{1}, s_{3}\right)-\zeta\left(s_{1}, s_{3}, s_{2}\right)-\zeta\left(s_{3}, s_{2}, s_{1}\right)
\end{aligned}
$$

By definition, for all $\sigma \in \mathfrak{S}_{p}$, we have

$$
\zeta^{\mathrm{as}}\left(s_{\sigma(1)}, \ldots, s_{\sigma(p)}\right)=\varepsilon_{\sigma} \zeta^{\mathrm{as}}\left(s_{1}, \ldots, s_{p}\right)
$$

and $\zeta^{\text {as }}\left(s_{1}, \ldots, s_{p}\right)=0$ once two of the s_{i} 's are equal. It seems reasonable to us that in general an antisymmetric MZV is not a polynomial in values of the Riemann zeta function. However, any "symmetric" MZV (defined as $\zeta^{\text {as }}\left(s_{1}, \ldots, s_{p}\right)$ but omiting the signature ε_{σ}) is a polynomial in $\zeta(s)$ (by [10], Theorem 2.2).

Let \mathscr{A}_{p} denotes the set of polynomials $P\left(X_{1}, \ldots, X_{p}\right) \in \mathbb{Q}\left[X_{1}, \ldots, X_{p}\right]$ such that:

$$
\left\{\begin{array}{l}
\text { For all } \sigma \in \mathfrak{S}_{p} \text {, we have } \\
\qquad \begin{array}{rl}
& P\left(X_{\sigma(1)}, X_{\sigma(2)}, \ldots, X_{\sigma(p)}\right)=\varepsilon_{\sigma} P\left(X_{1}, X_{2}, \ldots, X_{p}\right)
\end{array} \\
\text { For all } j \in\{1, \ldots, p\}, \text { we have } \\
\quad P\left(X_{1}, \ldots, X_{j-1},-X_{j}-n, X_{j+1}, \ldots, X_{p}\right) \\
\quad=(-1)^{A(n+1)+1} P\left(X_{1}, \ldots, X_{j-1}, X_{j}, X_{j+1}, \ldots, X_{p}\right)
\end{array}\right.
$$

There are redondances in these conditions. If the first one is satisfied, then it is enough to check the second one for one single value of j. For example, \mathscr{A}_{2} is exactly the set of polynomials P satisfying the conditions (0.5). Moreover, if $P \in \mathscr{A}_{p}$ then P has the same degree in each variable X_{1}, \ldots, X_{p}. Clearly, the definition of \mathscr{A}_{p} also depends on the parity of $A(n+1)$. We can now state our main result.

Theorem 4. Consider integers $n \geq 0$ and $A, p \geq 1$, with n even. Let $P \in \mathscr{A}_{p}$ be of degree $\leq A(n+1)-2$ in each of the variables. Then, the series

$$
\begin{equation*}
\sum_{k_{1} \geq \ldots \geq k_{p} \geq 1} \frac{P\left(k_{1}, \ldots, k_{p}\right)}{\left(k_{1}\right)_{n+1}^{A} \ldots\left(k_{p}\right)_{n+1}^{A}} \tag{0.6}
\end{equation*}
$$

is a rational linear combination of products of the form

$$
\zeta\left(s_{1}\right) \ldots \zeta\left(s_{q}\right) \zeta^{\mathrm{as}}\left(s_{1}^{\prime}, \ldots, s_{q^{\prime}}^{\prime}\right)
$$

where

$$
\left\{\begin{array}{l}
q, q^{\prime} \geq 0 \text { integers such that } 2 q+q^{\prime} \leq p, \tag{0.7}\\
s_{1}, \ldots, s_{q}, s_{1}^{\prime}, \ldots, s_{q^{\prime}}^{\prime} \text { odd integers } \geq 3 \\
s_{i} \leq 2 A-1 \text { for all } i \in\{1, \ldots, q\} \\
s_{i}^{\prime} \leq A \text { for all } i \in\left\{1, \ldots, q^{\prime}\right\}
\end{array}\right.
$$

When $q^{\prime}=0$, the antisymmetric MZV $\zeta^{\text {as }}\left(s_{1}^{\prime}, \ldots, s_{q^{\prime}}^{\prime}\right)$ is equal to 1 and we obtain a product of values of ζ at odd integers. When $q=q^{\prime}=0$, this produit is empty and we obtain 1.

If $p=1$, Theorem 4 states that (0.6) is a linear combination of 1 and the $\zeta(s)$ with odd s such that $3 \leq s \leq A$: this is just Theorem 1 .

If $p=2$, we obtain exactly Theorem 3 .
If $p=3$, the theorem states that the series is a linear combination of

- products of at most two values of ζ at odd integers ≥ 3,
- antisymmetric MZVs $\zeta^{\text {as }}\left(s_{1}, s_{2}\right)$ with $s_{1}, s_{2} \geq 3$ odd,
- antisymmetric MZVs $\zeta^{\text {as }}\left(s_{1}, s_{2}, s_{3}\right)$ with $s_{1}, s_{2}, s_{3} \geq 3$ odd.

In depth $p \geq 4$, terms such as $q \geq 1$ and $q^{\prime} \geq 2$ can appear: it seems that the series is not always the sum of a polynomial in values of $\zeta(s)$ (with s odd) and of a linear combination of antisymmetric MZVs $\zeta^{\text {as }}\left(s_{1}, \ldots, s_{q}\right)$ with s_{1}, \ldots, s_{q} odd.

When $A \leq 2$, we necessarily have $q^{\prime}=0$ in all the products, which implies the following corollary.

Corollary 1. Under the hypotheses of Theorem 4, if $A \leq 2$, then the series (0.6) is a polynomial in $\zeta(3)$ with rationals coefficients.

Theorem 4 also contains, for example, the following special case.
Corollary 2. Consider integers $n, r, t, \varepsilon \geq 0$ and $A, p \geq 1$, with n even, such that

$$
\varepsilon \equiv(A+1)(n+1)+1 \bmod 2
$$

and

$$
\varepsilon+(4 r+2) p+2 t \leq(A-1)(n+1)+4 r .
$$

Then, the convergent series
$\sum_{k_{1} \geq \ldots \geq k_{p} \geq 1}\left[\prod_{i=1}^{p}\left(k_{i}+\frac{n}{2}\right)\right]^{\varepsilon} \frac{\left[\prod_{1 \leq i<j \leq p}\left(k_{i}-k_{j}-r\right)_{2 r+1}\left(k_{i}+k_{j}+n-r\right)_{2 r+1}\right]\left[\prod_{i=1}^{p}\left(k_{i}-t\right)_{2 t+n+1}\right]}{\left(k_{1}\right)_{n+1}^{A} \ldots\left(k_{p}\right)_{n+1}^{A}}$ is a linear combination as described in Theorem 4.

An example of application of this corollary is the following series (in which we take $t=0$ and the Pochhammer symbols $\left(k_{i}\right)_{n+1}$ at the numerator cancel out with those at the denominator):

$$
\begin{aligned}
& \sum_{k_{1} \geq k_{2} \geq k_{3} \geq 1}\left(k_{1}+\frac{1}{2}\right)\left(k_{2}+\frac{1}{2}\right)\left(k_{3}+\frac{1}{2}\right) \\
& \times \frac{\left(k_{1}-k_{2}\right)\left(k_{2}-k_{3}\right)\left(k_{1}-k_{3}\right)\left(k_{1}+k_{2}+1\right)\left(k_{1}+k_{3}+1\right)\left(k_{2}+k_{3}+1\right)}{\left(k_{1}\right)_{2}^{4}\left(k_{2}\right)_{2}^{4}\left(k_{3}\right)_{2}^{4}} \\
& =-\frac{1}{4}-\zeta(3)+\frac{1}{4} \zeta(5)+\zeta(3)^{2}-\frac{1}{4} \zeta(7) . \\
& \sum_{k_{1} \geq k_{2} \geq 1}\left(k_{1}+\frac{1}{2}\right)\left(k_{2}+\frac{1}{2}\right) \frac{\left(k_{1}-k_{2}-1\right)_{3}\left(k_{1}+k_{2}\right)_{3}\left(k_{1}-1\right)_{4}\left(k_{2}-1\right)_{4}}{\left(k_{1}\right)_{2}^{7}\left(k_{2}\right)_{2}^{7}} \\
& =-1156+891 \zeta(3)+\frac{189}{2} \zeta(5)+78(\zeta(5,3)-\zeta(3,5)) .
\end{aligned}
$$

Finally, let us mention that the series described in the above theorems are related to multiple hypergeometric series related to root systems: see [3, 4] for example as well as the discussion in [7].

References

[1] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Journées Arithmétiques (Luminy, 1978), Astérisque, no. 61, 1979, p. 11-13.
[2] K. Ball and T. Rivoal, Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math. 146 (2001), no. 1, p. 193-207.
[3] G. Bhatnagar and M. Schlosser, C_{n} and D_{n} very well-poised ${ }_{10} \phi_{9}$ transformations, Constr. Approx. 14 (1998), p. 531-567.
[4] H. Coksun, An Elliptic BC n $_{n}$ Bailey Lemma, Multiple Rogers-Ramanujan Identities and Euler's Pentagonal Number Theorems, Trans. AMS, to appear
[5] J. Cresson, S. Fischler and T. Rivoal, Algorithm available at http//www.math.u-psud.fr/~fischler/algo.html.
[6] J. Cresson, S. Fischler and T. Rivoal Séries hypergéométriques multiples et polyzêtas, Bulletin de la Soc. Math. de France, to appear.
[7] J. Cresson, S. Fischler and T. Rivoal, Phénomènes de symétrie dans des formes linéaires en polyzêtas, J. reine angew. Math., to appear.
[8] S. Fischler, Irrationalité de valeurs de zêta (d'après Apéry, Rivoal, ...), Sém. Bourbaki 2002/03, Astérisque 294, 2004, exp. no. 910, p. 27-62.
[9] A. Goncharov, Multiple polylogarithms and mixed Tate motives, preprint available at http//front.math.ucdavis.edu/math.AG/0103059, 2001.
[10] M. Hoffman, Multiple harmonic series, Pacific J. of Math. 152 (1992), p. 275-290.
[11] C. Krattenthaler and T. Rivoal, Hypergéométrie et fonction zêta de Riemann, Memoirs of the AMS 186 (2007), 93 pages.
[12] T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris, Ser. I 331 (2000), no. 4, p. 267-270.
[13] V. Sorokin, Apéry's theorem, Vestnik Moskov. Univ. Ser. I Mat. Mekh. [Moscow Univ. Math. Bull.] 53 (1998), no. 3, p. 48-53 [48-52].
[14] T. Terasoma, Mixed Tate motives and multiple zeta values, Invent. Math. 149 (2002), no. 2, p. 339369.
[15] D. Vasilyev, Approximations of zero by linear forms in values of the Riemann zeta-function, Doklady Nats. Akad. Nauk Belarusi 45 (2001), no. 5, p. 36-40, in russian ; extended version in english anglais : On small linear forms for the values of the Riemann zeta-function at odd points, preprint no. 1 (558), Nat. Acad. Sci. Belarus, Institute Math., Minsk (2001), 14 pages.
[16] M. Waldschmidt, Valeurs zêta multiples : une introduction, J. Théor. Nombres Bordeaux 12 (2000), no. 2, p. 581-595.
[17] S. Zlobin, Expansion of multiple integrals in linear forms, Mat. Zametki [Math. Notes] 77 (2005), no. 5, 683-706 [630-652].
[18] S. Zlobin, Properties of coefficients of certain linear forms in generalized polylogarithms, Fundamentalnaya i Prikladnaya Matematika [Fundamental and Applied Mathemetics] 11 (2005), no. 6, p. 41-58,
[19] W. Zudilin, One of the numbers $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational, Uspekhi Mat. Nauk [Russian Math. Surveys] 56 (2001), no. 4, p. 149-150 [774-776].
[20] W. Zudilin, Well-poised hypergeometric service for diophantine problems of zeta values, J. Théor. Nombres Bordeaux 15 (2003), no. 2, p. 593-626.
T. Rivoal, Institut Fourier, CNRS UMR 5582, Université Grenoble 1, 100 rue des Maths, BP 74, 38402 Saint-Martin d'Hères cedex, France.

