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Abstract. In 1879, Thomae discussed the relations between two generic hypergeometric
3F2-series with argument 1. It is well-known since then that, in combination with the
trivial ones which come from permutations of the parameters of the hypergeometric series,
Thomae had found a set of 120 relations. More recently, Rhin and Viola asked the
following question (in a different, but equivalent language of integrals): If there exists
a linear dependence relation over Q between two convergent 3F2-series with argument
1, with integral parameters, and whose values are irrational numbers, is this relation a
specialisation of one of the 120 Thomae relations? A few years later, Sato answered this
question in the negative, by giving six examples of relations which cannot be explained by
Thomae’s relations. We show that Sato’s counter-examples can be naturally embedded
into two families of infinitely many 3F2-relations, both parametrised by three independent
parameters. Moreover, we find two more infinite families of the same nature. The families,
which do not seem to have been recorded before, come from certain 3F2-transformation
formulae and contiguous relations. We also explain in detail the relationship between the
integrals of Rhin and Viola and 3F2-series.

1. Prelude: introduction and summary of the results

In this article, we are interested in two families of two-term relationships between hy-
pergeometric 3F2-series with argument 1, and the possible links between them. The first
family consists of 120 relations found by Thomae [16], which can be interpreted as the
action of the symmetric group S5 on five parameters related to the parameters of a generic

3F2-series. This action has been discovered and rediscovered many times. We shall start
our article by describing two of its seemingly different incarnations: one involving series
(Thomae, Whipple, Hardy and others: see Section 2, in particular Theorem 3) and the
other involving integrals (Dixon, Rhin–Viola: see Section 3, in particular Theorem 4),
while in Section 4 we explain their equivalence.

Our main aim is to find a hypergeometric explanation of a second family of six “exotic”
integral relations recently discovered by Sato [13] (see Theorem 5). The latter provide
counter-examples to a conjecture of Rhin and Viola [11] (see Conjecture 1 in Section 3),
which essentially predicted the universality of Thomae’s relations in the case of integral
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parameters. As we shall show, this explanation is given by the following two identities in
Theorems 1 and 2, respectively, which seemingly have not been stated explicitly before.

The first one (with proof in Section 8) covers five of Sato’s six original relations, and
we will obtain from it infinitely many explicit counter-examples to the conjecture by Rhin
and Viola (see Theorem 6 in Section 3).

Theorem 1. Let α, β, γ be complex numbers such that 2α + β + 1 and 2β + α + 1 are not
non-positive integers, and such that <(2α + 2β − γ) > 0. Then

3F2

[
α + 1, β + 1, γ

2α + β + 1, 2β + α + 1
; 1

]
=

2(α + β)

2(α + β)− γ
3F2

[
α, β, γ

2α + β + 1, 2β + α + 1
; 1

]
. (1.1)

The second one (with proof in Section 10) covers the remaining counter-example of Sato.
It implies another set of infinitely many counter-examples to the conjecture by Rhin and
Viola (see Theorem 7 in Section 3).

Theorem 2. For any complex numbers α, β, γ such that <(
2 − β − α(α−γ+1)

β−1

)
> 0, and

such that α + 1 and γ + α(α−γ+1)
β−1

are not non-positive integers, we have the identity

3F2

[
α, β, γ

α + 1, γ + α(α−γ+1)
β−1

+ 1
; 1

]

=
(α− β + 2)(α + α2 − γ − αγ + βγ)

(α + 1)(2α + α2 − αβ − γ − αγ + βγ)
3F2

[
α + 1, β − 1, γ

α + 2, γ + α(α−γ+1)
β−1

; 1

]
. (1.2)

Clearly, since Sato’s counter-examples are special cases of (1.1) and (1.2), but are not
consequences of Thomae’s relations (see Section 6), the two identities provide an answer
to the question in the title. (Let us point out that Theorems 1 and 2 are “independent”
of each other, that is, neither is it possible to derive Theorem 2 from a combination of
Theorem 1 with Thomae’s relations, nor is this possible in the other direction.)

Of course, there may exist many more ways of escaping Thomae’s relations. For ex-
ample, a rather simple-minded one consists in examining for which integral values of the
parameters a 3F2-series with argument 1 can be a rational number. In fact, a complete
characterisation for the latter problem is available, see Theorem 8 in Section 5. Leaving
this simple possibility aside, in our proofs of identities (1.1) and (1.2) in Sections 8 and 10,
we make use of two fundamentally different ways to escape Thomae’s relations:

(1) One applies a transformation formula transforming a 3F2-series with argument 1
into a hypergeometric series with a larger number of parameters (in our case, this is the
transformation formula (8.1) transforming a 3F2-series into a very-well-poised 7F6-series) in
order to “exit” the “3F2-domain,” and then one “re-enters” the “3F2-domain” in a different
way (in our case, we use the same transformation formula in the other direction, but after
a permutation of the parameters of the 7F6-series has been carried out before).

(2) One starts with a 3F2-series in which one lower parameter exceeds one upper pa-
rameter by a positive integer. Subsequently, one applies contiguous relations to obtain
a sum of several series, in which for all but one the use of the contiguous relations has
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made these two parameters equal, and thus these 3F2-series with argument 1 reduce to a

2F1-series (with argument 1), which can then be summed by means of the Gauß summa-
tion formula (10.3). The various results of these evaluations are then combined into one
expression, thereby generating a (possibly huge) polynomial term, which is then equated
to zero. In order to make this work, this polynomial must have integral solutions. (See the
Remark after the proof of Proposition 1 in Section 10 for more precise explanations, and,
in particular, for an explanation of the term “contiguous relation”).

Whereas we failed to find results other than Theorem 1 by using recipe (1), we show in
Section 12 that recipe (2) can be used in many more ways than the one yielding Theorem 2
(see Theorems 9 and 10), thus producing many more counter-examples to the conjecture
by Rhin and Viola. In fact, there are certainly many more relations that can be found in
that way. We report on a curious phenomenon in that context at the end of the “round-up”
Section 13, where we indicate the ideas that we used to find the hypergeometric results in
Theorems 1, 2, 9 and 10.

So, in summary, as disappointing as this may be, our results show that the conjecture
of Rhin and Viola was over-optimistic. The counter-examples by Sato are not just rare
exceptions, they even embed in infinite families of counter-examples, and there are others
beyond that. In view of this, and since the data that we produced do not give much
guidance, we better refrain from coming up with a modified conjecture towards a generating
set of transformations for the relations between 3F2-series that would correct the conjecture
by Rhin and Viola. Nevertheless, finding one appears to be an interesting, and challenging,
problem.
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and Takayuki Oda who kindly gave him a copy of Sato’s Master Thesis. The first author
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for inviting him to work in a relaxed and inspiring atmosphere during the “Algebraic
Combinatorics” programme in Spring 2005 at the Institut, during which this article was
completed.

2. Thomae’s relations

Hypergeometric series are defined by

q+1Fq

[
α0, α1, . . . , αq

β1, . . . , βq
; z

]
=

∞∑

k=0

(α0)k (α1)k · · · (αq)k

k! (β1)k · · · (βq)k

zk, (2.1)

where (α)0 = 1 and (α)n = α(α+1) · · · (α+n−1) for n ≥ 1. The series converges provided
that the argument z is a complex number with |z| < 1, αj ∈ C and βj ∈ C \ Z≤0; it also
converges for z = 1 if in addition <(β1 + · · ·+ βq) > <(α0 + · · ·+ αq). Any “permutation”
in Sq+1 ×Sq acting on the upper parameters αi, i = 0, 1, . . . , q, and the lower parameters
βi, i = 1, 2, . . . , q, on the left-hand side of (2.1) does not affect the value of the right-hand
side: we use the term “trivial symmetries” to indicate this fact.
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As mentioned in the introduction, the symmetric group S5 acts classically on the hy-
pergeometric series 3F2-series with argument 1, which leads to exactly 120 formal relations
between them. This group action is obtained using the following fundamental identity, due
to Thomae [16, Eq. (12)] (given as (3.2.2) in [1]), which is valid under certain conditions
on the parameters to ensure convergence of the involved series,

3F2

[
a, b, c
d, e

; 1

]
=

Γ(e) Γ(d + e− a− b− c)

Γ(e− a) Γ(d + e− b− c)
3F2

[
a, d− b, d− c

d, d + e− b− c
; 1

]
. (2.2)

The iterative application of (2.2), together with the trivial symmetries, yields 120 relations,
of which only 10 are inequivalent modulo the trivial symmetries. These were given by
Thomae [16, Art. 4] and put in a more suitable form by Whipple [19]. It is apparently
Hardy [6, p. 499] who first gave a group theoretic interpretation: we state his observation
in the striking form given in [15, 17].

Theorem 3 (Hardy). Let s = s(x1, x2, x3, x4, x5) = x1 + x2 + x3− x4− x5. The function

1

Γ(s) Γ(2x4) Γ(2x5)
3F2

[
2x1 − s, 2x2 − s, 2x3 − s

2x4, 2x5
; 1

]
(2.3)

is a symmetric function of the five variables x1, x2, x3, x4, x5.

Care is needed using this theorem, since s is not a symmetric function of x1, x2, x3, x4, x5

and some of the 3F2-series might not be convergent. This result is surprising since one
could not expect a priori a much bigger invariance group than S3 ×S2, obtained by the
permutations of {x1, x2, x3} and {x4, x5}, which trivially leave (2.3) invariant.

3. The Rhin–Viola group for ζ(2)

In 1996, Rhin and Viola introduced in [11] the integral

I(h, i, j, k, l) =

∫ 1

0

∫ 1

0

xh(1− x)iyk(1− y)j

(1− xy)i+j−l+1
dx dy, (3.1)

which is convergent under the assumption that h, i, j, k, l are non-negative integers, which
will be the case throughout the rest of this article unless otherwise stated. Their motivation
was to use the fact that I(h, i, j, k, l) ∈ Q + Qζ(2) to get a good irrationality measure for
ζ(2) =

∑
n≥1 1/n2 = π2/6, as had been done in previous work using similar but less general

integrals (see the bibliography in [11]). They developed a beautiful new algebraic method
for handling the general case above and were rewarded with the best known irrationality
measure for π2. See also [5, 23] for related work.

From now on, we focus essentially on the hypergeometric structure underlying their
method, which is made transparent by the identity (see Section 4, where we recall the
proof for z = 1)

3F2

[
a, b, c
d, e

; z

]
=

Γ(d) Γ(e)

Γ(a) Γ(d− a) Γ(b) Γ(e− b)

∫ 1

0

∫ 1

0

xa−1(1− x)d−a−1yb−1(1− y)e−b−1

(1− zxy)c
dx dy,

(3.2)
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which is valid provided <(d) > <(a) > 0 and <(e) > <(b) > 0 if |z| < 1, with the further
assumption that <(d + e − a − b − c) > 0 if z = 1. To simplify, we set B(h, i, j, k, l) =
I(h, i, j, k, l)/(h! i! j! k! l!). The main new idea in [11] was to use the action of a group on
the parameters of h, i, j, k, l leaving the value of B(h, i, j, k, l) invariant. To do this, Rhin
and Viola showed that, under the two changes of variables {X = y, Y = x} and {X = (1−
x)/(1−xy), Y = 1−xy}, the value of I(h, i, j, k, l) (and hence also that of B(h, i, j, k, l)) is
not changed if the parameters are permuted by the product of transpositions σ = (h k)(i j)
and the 5-cycle τ = (h i j k l). The group T = 〈σ, τ〉 generated by σ and τ is isomorphic
to D5, the dihedral group of order 10: for a visual proof, place the letters h, i, j, k, l, in this
order, at the vertices of a regular pentagon.

But a more important invariance group can be obtained by extending the action of σ
and τ by linearity to the set P = {h, i, j, k, l, j +k−h, k+ l− i, l+h− j, h+ i−k, i+ j− l}
(by “linearity”, we mean τ(h + i − k) = τ(h) + τ(i) − τ(k) = i + j − l, etc.). Provided
the five values j + k − h, k + l − i, l + h − j, h + i − k, i + j − l are non-negative (see
Theorem 8 in Section 4 for the arithmetic meaning of this hypothesis). One can then
use the apparent loss of the trivial symmetries in the parameters a, b, c and d, e on the
right-hand side of (3.2) to prove that the value of B(h, i, j, k, l) is invariant under the
permutation on P defined by ϕ = (h i + j − l)(i l + h− j)(j + k− h k + l− i). Rhin and
Viola managed to prove that the group Φ = 〈ϕ, σ, τ〉 acting on P and leaving the value
of the associated integrals invariant can be viewed as the permutation group S5 acting on
the set {h + i, i + j, j + k, k + l, l + h}, and hence has cardinality 120. In fact, as they
noticed, this remark was first made by Dixon [4], in an even more general form.

Theorem 4 (Dixon). Assume that the complex numbers h, i, j, k, l, j + k−h, k + l− i, l +
h− j, h + i− k, i + j − l have real part > −1. Then the integral B(h, i, j, k, l) (where x! is
assumed to mean Γ(x + 1) for complex x) is a symmetric function of the five parameters
h + i, i + j, j + k, k + l, l + h.

Finally, Rhin and Viola proposed the following conjecture.

Conjecture 1 (Rhin–Viola). Let h, i, j, k, l, h′, i′, j′, k′, l′ be non-negative integers.
(i) If I(h, i, j, k, l) = I(h′, i′, j′, k′, l′), then there exists ρ ∈ T such that ρ(h) = h′, ρ(i) =

i′, ρ(j) = j′, ρ(k) = k′ and ρ(l) = l′.
(ii) Suppose furthermore that the numbers

j + k − h, k + l − i, l + h− j, h + i− k, i + j − l (3.3)

j′ + k′ − h′, k′ + l′ − i′, l′ + h′ − j′, h′ + i′ − k′, i′ + j′ − l′ (3.4)

are all non-negative. If I(h, i, j, k, l)/I(h′, i′, j′, k′, l′) ∈ Q, then there exists ρ ∈ Φ such
that ρ(h) = h′, ρ(i) = i′, ρ(j) = j′, ρ(k) = k′ and ρ(l) = l′.

The truth of (i) and (ii) would have shown that their method is optimal, but both have
been shown to be false in 2001 by Susumu Sato [13], who found the following counter-
examples, apparently by numerical inspection.
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Theorem 5 (Sato). Both cases of Conjecture 1 are false, as shown by the following six
counter-examples:

I(1, 1, 1, 1, 1) = 5− 3ζ(2) = I(3, 1, 1, 2, 0), (3.5)

I(3, 1, 2, 2, 1) = 79/4− 12ζ(2) = I(4, 2, 2, 3, 0), (3.6)

I(3, 1, 2, 1, 1) = 3ζ(2)− 59/12 = I(3, 3, 1, 3, 0), (3.7)

I(3, 2, 2, 2, 1) = 10ζ(2)− 148/9 = I(5, 1, 3, 2, 1), (3.8)

I(3, 0, 3, 1, 1) = 9ζ(2)− 59/4 = 9I(3, 3, 1, 2, 1), (3.9)

I(3, 1, 3, 1, 0) = ζ(2)− 29/18 = I(3, 2, 1, 2, 0). (3.10)

(Sato mis-stated (3.9) as I(3, 0, 3, 1, 1) = I(3, 3, 1, 2, 1). The reader should also note
that (3.7) and (3.9) altogether relate four different integrals rationally.) Equation (3.5) is
already a counter-example to both (i) and (ii). The following questions are natural, but
were not considered by Sato:

• Are these counter-examples merely numerical accidents, or do they admit a theo-
retical explanation?

• Do there exist infinitely many counter-examples to the conjecture of Rhin and
Viola?

We give a complete answer to both questions in the two theorems below which we prove
in Sections 9 and 11, respectively.

Theorem 6. (i) Sato’s counter-examples (3.5) up to (3.9) can be explained by purely
hypergeometric means, i.e., there exists a general hypergeometric identity that generates
them.
(ii) For each integer α ≥ 1, the equation

I(2α− 1, 2α− 1, α, 2α− 1, α) = I(2α + 1, 2α− 1, α, 2α, α− 1) (3.11)

provides a counter-example to the cases (i) and (ii) of Conjecture 1.

Theorem 7. (i) Sato’s counter-example (3.10) can be explained by purely hypergeometric
means, i.e., there exists a general hypergeometric identity that generates them.
(ii) For each integer α ≥ 2, the equation

I(α2 − 1, α− 1, α2 − α + 1, α− 1, 0) = (α− 1) I(α2 − 1, α, α2 − α− 1, α, 0) (3.12)

provides a counter-example to case (ii) of Conjecture 1, and also to case (i) if α = 2.

Remarks. (1) A particularly elegant instance of (1.1) is the one where γ = α + β: for any
complex numbers α and β which are not non-positive integers and which satisfy <(α+β) >
0, we have

3F2

[
α + 1, β + 1, α + β

2α + β + 1, 2β + α + 1
; 1

]
= 2 3F2

[
α, β, α + β

2α + β + 1, 2β + α + 1
; 1

]
. (3.13)

The action of Thomae’s relations on both sides of (3.13) independently provides ten vari-
ations of (3.13), up to trivial symmetries: one example, given by (9.5) in Section 9, will
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be used in the proof of Theorem 6. Equation (3.11) follows from the case of (3.13) where
α = β is a positive integer. Furthermore, we shall show in Section 9 that I(2α − 1, 2α −
1, α, 2α − 1, α) tends to 0 as α tends to infinity: this fact implies that (3.11) provides
infinitely many counter-examples to Conjecture 1.

(2) As we show in Section 7, the “general” hypergeometric identity that generates (3.5)
up to (3.9) is exactly identity (1.1), via the translation between integrals and hypergeo-
metric 3F2-series given in (3.2). Equation (3.11) is a special case.

(3) Similarly, we show in Section 7 that the “general” hypergeometric identity that
generates (3.10) is exactly identity (1.2), again via the translation (3.2). Equation (3.12)
is a special case. Since we show there that the integral on the left-hand side of (3.12)
tends to zero as α tends to infinity, also (3.12) provides infinitely many counter-examples
to Conjecture 1.

(4) It would also be interesting to look at the analogous problem arising from the group
action on the triple integral

∫ 1

0

∫ 1

0

∫ 1

0

uh(1− u)lvk(1− v)swj(1− w)q

(1− (1− uv)w)q+h−r+1
du dv dw ∈ Q + Qζ(3)

found by Rhin and Viola in [12]: do there exist exotic relationships between such integrals
that are not described by this group action? Note that this action admits an interpretation
in terms of very-well-poised 7F6-series exactly in the style of Theorem 3 (see [23, Sec. 4]
for the passage from the integrals to very-well-poised 7F6-series, and [17, Proposition 5,
q → 1, p. 6698] for a particularly elegant formulation of the group structure). For very
clear expositions of various group actions on (q−) hypergeometric series, see [15, 17] and
the references therein.

4. From Dixon to Thomae

In this section, we show more precisely how Rhin and Viola’s integrals are related to
hypergeometric series. To get a new expression for the integral I(h, i, j, k, l), we transform
the integrand of (3.1) by using the binomial series expansion

1

(1− xy)i+j−l+1
=

∞∑
n=0

(i + j − l + 1)n

n!
(xy)n,

and the beta integral evaluations
∫ 1

0

xn+h(1− x)idx =
(n + h)! i!

(n + h + i + 1)!
,

∫ 1

0

yn+k(1− y)jdy =
(n + k)! j!

(n + k + j + 1)!
.

We have

B(h, i, j, k, l) =
1

h! k! l!

∞∑
n=0

(n + h)! (n + k)! (i + j − l + 1)n

n! (n + h + i + 1)! (n + k + j + 1)!
(4.1)

=
1

l! (h + i + 1)! (k + j + 1)!
3F2

[
h + 1, k + 1, i + j − l + 1

h + i + 2, k + j + 2
; 1

]
, (4.2)
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since the interchange of summation and integral is justified by Fubini’s theorem. The
passage from (4.1) to (4.2) uses the trivial identity (α + n)! = α! (α + 1)n.

Under this interpretation, it is not surprising that the group obtained by Dixon and
Rhin–Viola should be a reformulation of Theorem 3, in terms of integrals rather than
series. Indeed, if we define a bijection between the tuples (x1, x2, x3, x4, x5) and (h, i, j, k, l)
by

h + 1 = x1 − x2 − x3 + x4 + x5,

i + 1 = −x1 + x2 + x3 + x4 − x5,

j + 1 = x1 − x2 + x3 − x4 + x5,

k + 1 = −x1 + x2 − x3 + x4 + x5,

l + 1 = x1 + x2 + x3 − x4 − x5 = s,

then we see that B(h, i, j, k, l), written as (4.2), perfectly matches (2.3) and the 120 possible
series are all convergent if the ten integers in the set P are non-negative. Since

2x1 = l + h + 2, 2x2 = k + l + 2, 2x3 = i + j + 2, 2x4 = h + i + 2, 2x5 = j + k + 2, (4.3)

we also see that the symmetry of (2.3) in the variables x1, x2, x3, x4, x5 is equivalent to the
symmetry of B(h, i, j, k, l) in the variables h + i, i + j, j + k, k + l, l + h.

5. When is I(h, i, j, k, l) rational?

In this section we answer the question of “simple-minded” counter-examples to Conjec-
ture 1 that was raised in the Introduction.

Theorem 8. Let h, i, j, k, l be non-negative integers. Then the following assertions are
equivalent:

(a) The integers j + k− h, k + l− i, l + h− j, h + i− k, i + j − l are all non-negative.
(b) The integral I(h, i, j, k, l) is an irrational number.

Remarks. (1) We remarked earlier (see (3.2) and (4.2)) that I(h, i, j, k, l) is essentially equal
to a 3F2-series. If we translate Theorem 8 into the analogous theorem for

3F2

[
a, b, c
d, e

; 1

]
, (5.1)

via the relations a = h + 1, b = k + 1, c = i + j − l + 1, d = h + i + 2, e = k + j + 2, we
get the following necessary and sufficient condition for the irrationality of the series (5.1)
for integral values of a, b, c, d, e:

d + e ≥ a + b + c + 1, a ≥ 1, b ≥ 1, c ≥ 1, (5.2)

d ≥ max{a, b, c}+ 1, (5.3)

e ≥ max{a, b, c}+ 1. (5.4)

(2) As a marginal consequence, Theorem 8 proves that the analogue of the case (ii) of
Conjecture 1, where we now suppose that the non-negativity condition (3.3) is not true,
cannot hold either. Indeed, if one of the integers in (3.3) were negative and none in (3.4)
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were negative, then the value of I(h, i, j, k, l)/I(h′, i′, j′, k′, l′) would be irrational and the
conjecture would be empty. And if one of the integers in (3.3) and one in (3.4) were
negative, then the conjecture would be trivially false because, although I(h, i, j, k, l) and
I(h′, i′, j′, k′, l′) are rational, there exist many Φ-unrelated choices for h, h′, etc.: one may
consider I(1, 1, 1, 1, 3) and I(1, 1, 1, 1, 4) for example.

Proof of Theorem 8. We first show the implication (b) ⇒ (a). Since the parameters j +
k − h, k + l − i, l + h − j, h + i − k, i + j − l are cyclically permuted by τ ∈ T, if one
of them were negative, then without loss of generality, we may assume that it is i + j − l.
But i + j− l ≤ −1 implies that the integrand of I(h, i, j, k, l) is a polynomial with integral
coefficients and hence that I(h, i, j, k, l) ∈ Q.

The reverse implication (a) ⇒ (b) is a little bit more complicated. Since i, j and i+ j− l
are non-negative integers, we can write the expansion (4.1) in the equivalent form:

I(h, i, j, k, l) =
i! j!

(i + j − l)!

∞∑
n=0

(n + 1)i+j−l

(n + h + 1)i+1(n + k + 1)j+1

. (5.5)

(We used trivial identities such as (n + h + i)!/(n + h)! = (n + h + 1)i+1.) We know that
I(h, i, j, k, l) ∈ Q + Qζ(2) and it will be enough to prove that the coefficient p(h, i, j, k, l)
of the irrational number ζ(2) is non-zero. A standard way to find an explicit expression
for this coefficient is to expand the summand of (5.5), which is a rational function of
n, in partial fractions (see the introduction of [8] for details in many similar cases and
references). All computations done, one finds that

p(h, i, j, k, l) = (−1)h+i+j+k+l

min(h+i,k+j)∑

s=max(h,k,i+j−l)

(
i

s− h

)(
j

s− k

)(
s

i + j − l

)
,

with the convention that the value of the sum is 0 if it is empty. The latter is the case if
and only if min(h + i, k + j) < max(h, k, i + j − l).

We now show that condition (a) ensures that the sum is non-empty and hence that

(−1)h+i+j+k+lp(h, i, j, k, l) > 0,

because it is a sum of binomial coefficients. We have already used the fact that i+j−l ≥ 0.
Since the inequalities h+i−k ≥ 0 and k+j−h ≥ 0 imply that max(h, k) ≤ min(h+i, k+j),
it only remains to show that i+j−l ≤ min(h+i, k+j) to finally prove that min(h+i, k+j) ≥
max(h, k, i+ j− l). But min(h+ i, k + j)− (i+ j− l) = min(h+ l− j, k + l− i) ≥ 0, which
finishes the proof. ¤

6. Effective computation of Thomae relations

In this section, we show how to compute the complete set of (generically) 120 Thomae
relations (convergent or not) for any given 3F2-series with argument 1. We need this to
transform Sato’s counter-examples into more suitable forms. The most effective way to do
this is by using the parametrisation 2x1− s, 2x2− s, 2x3− s and 2x4, 2x5 of the upper and
lower parameters of the 3F2-series from Theorem 3. If we denote the upper parameters by
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a, b, c and the lower parameters by d, e, then x1, x2, x3, x4, x5, s and a, b, c, d, e are related
by

2x1 = d + e− b− c, 2x2 = d + e− c− a, 2x3 = d + e− a− b, 2x4 = d, 2x5 = e,

and

s = x1 + x2 + x3 − x4 − x5 = 2(d + e− a− b− c).

If one prefers the integral setting, then one gets the parametrisation of Theorem 3 of the
integral I(h, i, j, k, l) by the formulae (4.3) given in Section 4.

The following simple Maple commands compute all possible values of the arrays of pa-
rameters [2xρ(1) − sρ, 2xρ(2) − sρ, 2xρ(3) − sρ; 2xρ(4), 2xρ(5)] (with sρ = xρ(1) + xρ(2) + xρ(3) −
xρ(4) − xρ(5)) over all permutations ρ of {1, 2, 3, 4, 5}, with the nice feature to output only
the term-wise different arrays (viewed as 5-tuples by the program):

> with(combinat) :
> p := (u, v, w, x, y)−> permute([u, v, w, x, y]) :
> s := (u, v, w, x, y)−> u+v+w−x−y :
> A := (u, v, w, x, y)−> [2∗u−s(u, v, w, x, y), 2∗v−s(u, v, w, x, y), 2∗w−s(u, v, w, x, y), 2∗x, 2∗y] :
> T := (u, v, w, x, y)−> seq(A(op(1, op(j, p(u, v, w, x, y))), op(2, op(j, p(u, v, w, x, y))),

op(3, op(j, p(u, v, w, x, y))), op(4, op(j, p(u, v, w, x, y))), op(5, op(j, p(u, v, w, x, y)))),
j = 1...nops(p(u, v, w, x, y))) :

> F := (a, b, c, d, e)−> T((d+e−b−c)/2, (d+e−c−a)/2, (d+e−a−b)/2, d/2, e/2) :
> I := (h, i, j, k, l)−> T((h+l+2)/2, (k+l+2)/2, (i+j+2)/2, (h+i+2)/2, (j+k+2)/2) :

The function T computes all the different expressions for the value of the symmetric function
in Theorem 3, F does the same for a 3F2[a, b, c; d, e] and I for (1) I(h, i, j, k, l). Only the
Gamma-factors are not computed, but this could be easily done. For example, we obtain

> I(1, 1, 1, 1, 1);
[2, 2, 2, 4, 4]

> I(3, 1, 1, 2, 0);

[4, 3, 3, 6, 5], [2, 1, 3, 4, 5], [3, 2, 3, 6, 4], [1, 1, 2, 4, 4], [2, 4, 2, 5, 5].

Maple outputs 25 other arrays for I(3, 1, 1, 2, 0) but since they correspond to the five above
by the trivial symmetries, we do not list them. We can also find the Thomae relations for
both sides of counter-example (3.10):

> I(3, 1, 3, 1, 0);
[4, 2, 5, 6, 6], [1, 2, 2, 6, 3], [1, 4, 4, 5, 6], [1, 1, 1, 3, 5]

> I(3, 2, 1, 2, 0);
[4, 3, 4, 7, 5], [2, 1, 4, 5, 5], [1, 1, 3, 4, 5], [3, 3, 3, 4, 7].

1The letter “I” denotes the complex number i in Maple and one must use another symbol. But since
LATEX is not Maple, there is no problem here.
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This shows that the relations I(1, 1, 1, 1, 1)=I(3, 1, 1, 2, 0) and I(3, 1, 3, 1, 0)=I(3, 2, 1, 2, 0)
are not consequences of Thomae relations. Similar computations provide a verification of
the other counter-examples.

7. The pattern behind Sato’s counter-examples

With the interpretation given in Section 4, the case (ii) of Conjecture 1 can be reformu-
lated as follows:

If there exists a linear dependence relation over Q between two convergent 3F2-series
with argument 1, with integral parameters, and whose values are irrational numbers, then
this relation is a specialisation of one of the 120 Thomae relations.

Sato’s counter-examples destroy this hope. We can formulate his counter-examples (3.5)
and (3.6) in hypergeometric form (with simplification of the Gamma-factors) as follows:

3F2

[
2, 2, 2
4, 4

; 1

]
=

3

20
3F2

[
4, 3, 3
6, 5

; 1

]
and 3F2

[
4, 3, 3
6, 6

; 1

]
=

2

21
3F2

[
5, 4, 5
8, 7

; 1

]
. (7.1)

Under this form, the parameters on the left-hand sides and those on the right-hand sides
seem still rather unrelated, and it is thus still unclear whether we face numerical accidents
or if there is something deeper behind.

However, a natural thing to do here is to seek new numerical relations by applying
Thomae’s transformations (using the Maple commands of the previous section) to each of
the four 3F2-series in (7.1), independently. We find that we are trying to prove that

3F2

[
2, 2, 2
4, 4

; 1

]
= 2 3F2

[
1, 1, 2
4, 4

; 1

]
and 3F2

[
3, 2, 3
6, 5

; 1

]
= 2 3F2

[
2, 1, 3
6, 5

; 1

]
, (7.2)

where a pattern now emerges, explained by the earlier identity (3.13).
The hypergeometric forms of the three counter-examples (3.7), (3.8) and (3.9) are

3F2

[
4, 2, 3
6, 5

; 1

]
=

3

35
3F2

[
4, 4, 5
8, 6

; 1

]
, 3F2

[
4, 3, 4
7, 6

; 1

]
=

5

7
3F2

[
6, 3, 4
8, 7

; 1

]
,

3F2

[
4, 2, 3
5, 6

; 1

]
=

1

21
3F2

[
4, 3, 4
8, 5

; 1

]
, (7.3)

which become much more illuminating when rewritten as

3F2

[
3, 2, 4
6, 5

; 1

]
=

1

3
3F2

[
2, 1, 4
6, 5

; 1

]
, 3F2

[
3, 2, 2
6, 5

; 1

]
=

2

3
3F2

[
2, 1, 2
6, 5

; 1

]
,

3F2

[
3, 2, 4
6, 5

; 1

]
=

1

3
3F2

[
2, 1, 4
6, 5

; 1

]
,

by using Thomae’s relations. (In particular, (3.7) and (3.9) are consequences of the same
identity). The connexion with Theorem 1 is now clear.
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Finally, the hypergeometric form of the counter-example (3.10) is

3F2

[
4, 2, 5
6, 6

; 1

]
=

5

9
3F2

[
4, 3, 4
7, 5

; 1

]
, (7.4)

which is obviously the special case α = 4, β = 3, γ = 4 of (1.2).

8. Proof of Theorem 1

For the proof of (1.1) we need the following transformation formula due to Verma and
Jain (see [3, (3.5.10), q → 1, reversed], being implied by [18, (4.1)]) between a 3F2-series
and a very-well-poised 7F6-series:

3F2

[
b, c, d

a, a− b + c
; 1

]
=

Γ(2a) Γ(2a− 2b− d) Γ(a− b + c) Γ(a− d + c)

Γ(2a− 2b) Γ(2a− d) Γ(a + c) Γ(a− b− d + c)

× 7F6

[
a− 1

2
, a

2
+ 3

4
, b, d

2
, d

2
+ 1

2
, a

2
− c

2
, a

2
− c

2
+ 1

2
a
2
− 1

4
, a− b + 1

2
, a− d

2
+ 1

2
, a− d

2
, a

2
+ c

2
+ 1

2
, a

2
+ c

2

; 1

]
. (8.1)

If we apply this transformation to the 3F2-series on the left-hand side of (1.1), then we
obtain

Γ(α + 2β + 1) Γ(4α + 2β + 2) Γ(2α + 2β − γ) Γ(2α + 2β − γ + 2)

Γ(2α + 2β) Γ(2α + 2β + 2) Γ(α + 2β − γ + 1) Γ(4α + 2β − γ + 2)

× 7F6

[
2α + β + 1

2
, α + β

2
+ 5

4
, α + 1, γ

2
, γ

2
+ 1

2
, α, α + 1

2

α + β
2

+ 1
4
, α + β + 1

2
, 2α + β − γ

2
+ 3

2
, 2α + β − γ

2
+ 1, α + β + 3

2
, α + β + 1

; 1

]
.

(8.2)

We permute the parameters in the 7F6-series to get the equivalent expression

Γ(α + 2β + 1) Γ(4α + 2β + 2) Γ(2α + 2β − γ) Γ(2α + 2β − γ + 2)

Γ(2α + 2β) Γ(2α + 2β + 2) Γ(α + 2β − γ + 1) Γ(4α + 2β − γ + 2)

× 7F6

[
2α + β + 1

2
, α + β

2
+ 5

4
, α, γ

2
, γ

2
+ 1

2
, α + 1

2
, α + 1

α + β
2

+ 1
4
, α + β + 3

2
, 2α + β − γ

2
+ 3

2
, 2α + β − γ

2
+ 1, α + β + 1, α + β + 1

2

; 1

]
.

(8.3)

To this 7F6-series, we apply the transformation (8.1) in the backward direction, that is we
apply the transformation

7F6

[
a, a

2
+ 1, b, c, c + 1

2
, d, d + 1

2
a
2
, a− b + 1, a− c + 1, a− c + 1

2
, a− d + 1, a− d + 1

2

; 1

]

=
Γ(2a− 2b + 1) Γ(2a− 2c + 1) Γ(2a− 2d + 1) Γ(2a− b− 2c− 2d + 1)

Γ(2a + 1) Γ(2a− 2b− 2c + 1) Γ(2a− b− 2d + 1) Γ(2a− 2c− 2d + 1)

× 3F2

[
2c, b, a− 2d + 1

2
2a− b− 2d + 1, a + 1

2

; 1

]
.

Thus we directly arrive at the right-hand side of (1.1).
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9. Proof of Theorem 6

As already mentioned in Section 7, the cases (α, β, γ) = (1, 1, 2), (2, 1, 3), (2, 1, 4),
(2, 1, 2), (2, 1, 4) of identity (1.1) are simply reformulations of Sato’s counter-examples (3.5)
up to (3.9) and (i) is proved.

For (ii), the idea is to prove that no specialisation of both sides of (3.13) can follow
from the 120 Thomae relations, at least when α = β. One may note that (3.13) cannot
formally be a consequence of any of Thomae’s relations since two (one would be enough)
of its specialisation are not such consequences. But this does not rule out the possibility
that some other specialisations would follow from Thomae’s relations. However, we show
that this is never the case when α = β is a positive integer.

We first determine the 120 Thomae relations for the left-hand side of (3.13) when α = β
and to do this painlessly, we express

3F2

[
α + 1, α + 1, 2α
3α + 1, 3α + 1

; 1

]
(9.1)

in the symmetric form (2.3) in Theorem 3, which gives 2x1 = 2x2 = 2x4 = 2x5 = 3α + 1
and 2x3 = 4α. The permutations of x1, x2, x3, x4 and x5 show that (9.1) is related only to
the 3F2-series

3F2

[
α + 1, α + 1, 2α
3α + 1, 3α + 1

; 1

]
, 3F2

[
2α, 2α, 2α
3α + 1, 4α

; 1

]
, (9.2)

and those obtained by the trivial symmetries. The same process applied to the right-hand
side of (3.13) (for α = β),

3F2

[
α, α, 2α

3α + 1, 3α + 1
; 1

]
, (9.3)

gives 2x1 = 2x2 = 3α + 2, 2x3 = 4α + 2 and 2x4 = 2x5 = 3α + 1. The permutations of x1,
x2, x3, x4 and x5 show that (9.3) is related to the five 3F2-series

3F2

[
α, α, 2α

3α + 1, 3α + 1
; 1

]
, 3F2

[
2α + 2, 2α + 1, 2α + 1

4α + 2, 3α + 2
; 1

]
, 3F2

[
2α + 1, α + 1, α
3α + 2, 3α + 1

; 1

]
,

3F2

[
2α + 1, 2α + 1, 2α

4α + 2, 3α + 1
; 1

]
, 3F2

[
2α + 2, α + 1, α + 1

3α + 2, 3α + 2
; 1

]
, (9.4)

and those obtained by the trivial symmetries.
Inspection quickly reveals the impossibility of any numerical coincidence between one of

the two arrays of parameters in (9.2) and one of the five arrays in (9.4), even with trivial
symmetries. However, each such coupling provides a variation of (3.13) and, for example,
we have that

3F2

[
2α, 2α, 2α
4α, 3α + 1

; 1

]
=

α(2α + 1)

(3α + 1)(4α + 1)
3F2

[
2α + 2, 2α + 1, 2α + 1

4α + 2, 3α + 2
; 1

]
, (9.5)

which will be used below.
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We are now in a position to prove the claim about the infinity of counter-examples to
the cases (i) and (ii) of Conjecture 1. First, thanks to (4.2), we have that

I(2α− 1, 2α− 1, α, 2α− 1, α) =
(2α− 1)!3 α!

(4α− 1)! (3α)!
3F2

[
2α, 2α, 2α
4α, 3α + 1

; 1

]

and

I(2α+1, 2α−1, α, 2α, α−1) =
(2α + 1)! (2α)! (2α− 1)! α!

(4α + 1)! (3α + 1)!
3F2

[
2α + 2, 2α + 1, 2α + 1

4α + 2, 3α + 2
; 1

]
.

We can relate these two equations by (9.5), and the simplification of the Gamma-factors
yields

I(2α− 1, 2α− 1, α, 2α− 1, α) = I(2α + 1, 2α− 1, α, 2α, α− 1),

which is exactly the identity (3.11) we are looking for. For both integrals, the non-
negativity conditions (3.3) and (3.4) in case (ii) of Conjecture 1 are verified and the above
discussion proves that there exists no permutation ρ in the group Φ (and, a fortiori, also
none in T) such that ρ(2α− 1) = 2α + 1, ρ(2α− 1) = 2α− 1, ρ(α) = α, ρ(2α− 1) = 2α,
ρ(α) = α− 1. Thus, for each value of the positive integer α, we obtain a counter-example
to the cases (i) and (ii) of Conjecture 1 at the same time. That this provides infinitely
many counter-examples is a consequence of the fact that I(2α − 1, 2α − 1, α, 2α − 1, α)
tends to 0 as α tends to infinity, because

lim
α→+∞

I(2α− 1, 2α− 1,α, 2α− 1, α)1/α

= max
(x,y)∈[0,1]2

(
x2(1− x)2y2(1− y)

(1− xy)2

)
= 17− 12

√
2 < 1.

Remark. We could do the same thing with α not necessarily equal to β. To find all Thomae
relations for the left-hand side of (3.13), one should use Theorem 3 with

2x1 = 2x4 = 2α + β + 1, 2x2 = 2x5 = 2β + α + 1, 2x3 = 2α + 2β,

leading to five different arrays up to trivial symmetries, and for the right-hand side with

2x1 = 2α + β + 2, 2x2 = 2β + α + 2,

2x3 = 2α + 2β + 2, 2x4 = 2α + β + 1, 2x5 = 2β + α + 1,

leading to a complete set of 120 different arrays for generic α and β (in fact, only 10 arrays,
up to trivial symmetries). This explains why we consider only the case α = β, which is
much simpler to deal with.

10. Proof of Theorem 2

In order to derive Theorem 2, we require the following proposition, relating two “con-
tiguous” 3F2-series in a way that the “rest” is a closed form expression. (See the Remark
after the proof of the proposition for an explanation of the term “contiguous.”)
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Proposition 1. For any complex numbers a, b, c such that <(d− b− c + 1) > 0, and such
that a + 1 and d are not non-positive integers, we have the identity

3F2

[
a, b, c

a + 1, d
; 1

]
=

(a− b + 1)(a− b + 2)(a− c + 1)(d− 1)

(a + 1)(b− 1)(a− d + 2)(a− d + 1)
3F2

[
a + 1, b− 1, c
a + 2, d− 1

; 1

]

+
(1− a− a2 − b + c + ac− bc− d + bd)

(b− 1)(a− d + 2)(a− d + 1)

Γ(d) Γ(d− b− c + 1)

Γ(d− b) Γ(d− c)
. (10.1)

Proof. We start by applying the contiguous relation

3F2

[
A1, A2, A3

B1, B2
; z

]
=

(1− A1 + A2) (B1 − 1)

(A1 − 1) (1 + A2 −B1)
3F2

[
A1 − 1, A2, A3

B1 − 1, B2
; z

]

+
A2 (B1 − A1)

(A1 − 1) (B1 − A2 − 1)
3F2

[
A1 − 1, A2 + 1, A3

B1, B2
; z

]
, (10.2)

with A1 = b, A2 = a, and B1 = d, to the 3F2-series on the left-hand side. This yields the
expression

(a− b + 1)(d− 1)

(b− 1)(a− d + 1)
3F2

[
a, b− 1, c

d− 1, a + 1
; 1

]
− a(d− b)

(b− 1)(a− d + 1)
2F1

[
b− 1, c

d
; 1

]
.

We sum the 2F1-series by means of the Gauß summation formula (see [14, (1.7.6); Appendix
(III.3)])

2F1

[
a, b
c

; 1

]
=

Γ(c) Γ(c− a− b)

Γ(c− a) Γ(c− b)
. (10.3)

Thus, we obtain

(a− b + 1)(d− 1)

(b− 1)(a− d + 1)
3F2

[
a, b− 1, c

a + 1, d− 1
; 1

]
− a Γ(d) Γ(d− b− c + 1)

(b− 1)(a− d + 1) Γ(d− b) Γ(d− c)
.

Next we apply the contiguous relation

3F2

[
A1, A2, A3

B1, B2
; z

]
= 3F2

[
A1 + 1, A2, A3

B1, B2
; z

]
− z

A2A3

B1B2
3F2

[
A1 + 1, A2 + 1, A3 + 1

B1 + 1, B2 + 1
; z

]
,

(10.4)
with A1 = a. This gives

(a− b + 1)(d− 1)

(b− 1)(a− d + 1)
2F1

[
b− 1, c
d− 1

; 1

]
− (a− b + 1)c

(a + 1)(a− d + 1)
3F2

[
a + 1, b, c + 1

a + 2, d
; 1

]

+
a Γ(d) Γ(d− b− c + 1)

(b− 1)(−1− a + d) Γ(d− b) Γ(d− c)
.

Of course, the 2F1-series can be summed by means of the Gauß summation formula (10.3).
After some simplification, we arrive at

− (a− b + 1)c

(a + 1)(a− d + 1)
3F2

[
a + 1, b, c + 1

2 + a, d
; 1

]
+

(1 + a + c− d) Γ(d) Γ(d− b− c)

(a− d + 1) Γ(d− b) Γ(d− c)
. (10.5)
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Now we apply another time the contiguous relation (10.2), this time with A1 = b, A2 = a+1,
and B1 = d. We obtain

− (a− b + 1)(a− b + 2)c(d− 1)

(a + 1)(b− 1)(a− d + 1)(a− d + 2)
3F2

[
a + 1, b− 1, c + 1

a + 2, d− 1
; 1

]

+
(a− b + 1)c(d− b)

(b− 1)(a− d + 1)(a− d + 2)
2F1

[
b− 1, c + 1

d
; 1

]

+
(a + c− d + 1) Γ(d) Γ(d− b− c)

(a− d + 1) Γ(d− b) Γ(d− c)
,

and after evaluation of the 2F1-series by means of Gauß’ summation formula (10.3),

− (a− b + 1)(a− b + 2)c(d− 1)

(a + 1)(b− 1)(a− d + 1)(a− d + 2)
3F2

[
a + 1, b− 1, c + 1

a + 2, d− 1
; 1

]

+
P (a, b, c, d) Γ(d) Γ(d− b− c)

(b− 1)(a− d + 1)(a− d + 2) Γ(d− b) Γ(d− c)
,

where

P (a, b, c, d) = −2− 3a− a2 + 2b + 3ab + a2b− 3c− 2ac + 3bc + abc− c2 − ac2

+ bc2 + 3d + 2ad− 3bd− 2abd + 2cd + acd− 2bcd− d2 + bd2.

The final contiguous relation that we apply is

3F2

[
A1, A2, A3

B1, B2
; z

]
=

A1 − A2 − 1

A1 − 1
3F2

[
A1 − 1, A2, A3

B1, B2
; z

]

+
A2

A1 − 1
3F2

[
A1 − 1, A2 + 1, A3

B1, B2
; z

]
, (10.6)

with A1 = c + 1 and A2 = a + 1. The result is

(a− b + 1)(a− b + 2)(a− c + 1)(d− 1)

(a + 1)(b− 1)(a− d + 1)(a− d + 2)
3F2

[
a + 1, b− 1, c
a + 2, d− 1

; 1

]

− (a− b + 1)(a− b + 2)(d− 1)

(b− 1)(a− d + 1)(a− d + 2)
2F1

[
b− 1, c
d− 1

; 1

]

+
P (a, b, c, d) Γ(d) Γ(d− b− c)

(b− 1)(a− d + 1)(a− d + 2) Γ(d− b) Γ(d− c)
.

A last use of Gauß’ summation formula and some simplification then leads to (10.1). ¤
Remark. Since we shall re-use it in Section 12, it will be beneficial if we briefly summarise
the idea of the proof of the above proposition: it is crucially based on the fact that the

3F2-series on the left of (10.1) has the parameter a on top and the parameter a + 1 at
the bottom. Now we apply elementary contiguous relations (such as the one in (10.2)).
In principle, it expresses our 3F2-series as a sum of two other 3F2-series in which the
parameters are “contiguous” to the original 3F2-series, meaning that they differ from the
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parameters of the original series by small integer amounts. (In (10.2), these differences are
0 and ±1.) However, in one of the two 3F2-series on the right-hand side of the relation,
the top parameter A2 = a is raised by 1, while the bottom parameter B2 = a + 1 is left
invariant. Thus, the two (a + 1)’s cancel, and the 3F2-series reduces to a 2F1-series, to
which the Gauß summation formula (10.3) can be applied to express it in closed form.
This partial simplification happens as well when we apply the contiguous relations (10.4)
and (10.6). Thus, each time, we obtain a 3F2-series plus an additional expression in closed
form. These additional expressions are put together, and they finally form the expression
containing the gamma functions on the right-hand side of (10.1). However, since several
similar, but not identical, such expressions were put together, when factoring the resulting
term, a polynomial factor built up. Hence, in order to obtain a relation between two 3F2-
series without any additional term, this polynomial factor must vanish. While, normally
(i.e., if one plays the above described game in a random fashion), equating this polynomial
factor to zero will not have any nice solutions (in particular, no integral solutions, which we
would however need to construct counter-examples to the conjecture by Rhin and Viola, in
the cases of Propositions 1–3), the contiguous relations have been carefully selected so that
at least one of the variables a, b, c, d is contained only linearly in the polynomial factor.
This makes it possible to have many non-trivial solutions when equating the polynomial
factor to zero.

In view of the above remark, the proof of Theorem 2 is now straight-forward.

Proof of Theorem 2. If we now choose d such that the polynomial factor on the right-hand
side of (10.1) vanishes, that is,

d = c +
a(a− c + 1)

b− 1
+ 1,

and subsequently do the replacements a → α, b → β, c → γ, then we obtain exactly
(1.2). ¤

11. Proof of Theorem 7

As already mentioned in Section 7, the case (α, β, γ) = (4, 3, 4) of identity (1.2) is a
simple reformulation of Sato’s counter-example (3.10). Thus, (i) is proved.

For (ii), we proceed in a similar fashion as in Section 9. First of all, we observe that
identity (3.12) is the special case of (1.2) in which α is replaced by α2, and in which
β = α + 1 and γ = α2, again via the translation (3.2). To wit, this is

3F2

[
α2, α2, α + 1

α2 + 1, α2 + α + 1
; 1

]
=

α3 + 1

α2 + 1
3F2

[
α2 + 1, α2, α

α2 + 2, α2 + α
; 1

]
. (11.1)

In the sequel we concentrate on this special case, always assuming that α is a positive
integer strictly greater than 1.
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Using Thomae’s relations, we can generate three other series which are related to the

3F2-series on the left-hand side of (11.1), namely

3F2

[
α + 1, α + 1, α + 1
α + 2, α2 + α + 1

; 1

]
, 3F2

[
1, 1, α + 1

α + 2, α2 + 1
; 1

]
, 3F2

[
1, α2, α2 − α
α2 + 1, α2 + 1

; 1

]
. (11.2)

On the other hand, there are six series related to the 3F2-series on the right-hand side of
(11.1),

3F2

[
α− 1, α2, α2

α2 + 1, α2 + α
; 1

]
, 3F2

[
α− 1, α, α

α + 1, α2 + α
; 1

]
, 3F2

[
2, α2 + 1, α2 − α + 2

α2 + 2, α2 + 2
; 1

]
,

3F2

[
1, α2, α2 − α + 2
α2 + 1, α2 + 2

; 1

]
, 3F2

[
1, 2, α

α + 1, α2 + 2
; 1

]
, 3F2

[
1, 1, α− 1

α + 1, α2 + 1
; 1

]
. (11.3)

None of these match with the series on the left-hand side of (11.1) or with one of the
series in (11.2). Thus, indeed, for any positive integer α, (3.12) is a counter-example to
the conjecture by Rhin and Viola.

Finally, in order to see that (3.12) produces infinitely many counter-examples, we show
again that the involved integral tends to zero when α tends to infinity. Indeed, for α ≥ 1,
we have

I(α2 − 1, α− 1, α2 − α + 1, α− 1, 0) =

∫ 1

0

∫ 1

0

xα2−1(1− x)α−1yα−1(1− y)α2−α+1

(1− xy)α2+1
dx dy

≤
∫ 1

0

∫ 1

0

xα−1yα−1 dx dy

1− xy
=

∞∑

k=0

1

(k + α)2
,

from which the claim follows. (In the second line, we used the trivial facts that xα2 ≤ xα

and (1 − x)α−1(1 − y)α2−α+1 ≤ (1 − xy)α2
for 0 ≤ x, y ≤ 1.) This completes the proof of

Theorem 7.

Remark. It is obvious that Theorem 2 will generate many more counter-examples to the
conjecture by Rhin and Viola, by choosing the parameters α, β, γ to be positive integers
in other ways such that α(α − γ + 1)/(β − 1) is as well a positive integer (and such that
the conditions (5.2)–(5.4) are satisfied). To have a convenient parametrisation, one would
replace γ by α+1−γ, subsequently α by a1a2, γ by c1c2, and β by a1c1 +1. The resulting
relation is

3F2

[
a1a2, a1c1 + 1, a1a2 − c1c2 + 1

a1a2 + 1, a1a2 + a2c2 − c1c2 + 2
; 1

]

=
(a1a2 − a1c1 + 1)(a1a2 + a2c2 − c1c2 + 1)

(a1a2 + 1)(a2c2 − c1c2 + 1)
3F2

[
a1a2 + 1, a1c1, a1a2 − c1c2 + 1

a1a2 + 2, a1a2 + a2c2 − c1c2 + 1
; 1

]
.

(11.4)
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12. More exotic contiguous relations

In this section, we present two more relations of the kind of Theorem 2 (which itself
followed from the more general Proposition 1), see Theorems 9 and 10. These are obtained
along the lines described in the Remark after the proof of Proposition 1. The two theorems
imply further counter-examples to the conjecture by Rhin and Viola.

Proposition 2. For any complex numbers a, b, c such that <(d− b− c + 1) > 0, and such
that a + 1 and d are not non-positive integers, we have the identity

3F2

[
a, b, c

a + 1, d
; 1

]
=

bc (a− d− 1) (a− d)

(a− b) (a− c) d (d + 1)
3F2

[
a, b + 1, c + 1
a + 1, d + 2

; 1

]

+
a(bc + ad− bd− cd)

(a− b)(a− c)

Γ(d) Γ(d− b− c + 1)

Γ(d− b + 1) Γ(d− c + 1)
. (12.1)

Proof. To the left-hand side, we apply the contiguous relation

3F2

[
A1, A2, A3

B1, B2
; z

]
=

A2 (B1 − A1)

(A2 − A1) B1
3F2

[
A1, A2 + 1, A3

B1 + 1, B2
; z

]

+
A1 (B1 − A2)

(A1 − A2) B1
3F2

[
A1 + 1, A2, A3

B1 + 1, B2
; z

]
(12.2)

with A1 = b, A2 = c, and B1 = d. As a result we obtain

c(d− b)

(c− b)d
3F2

[
a, b, c + 1

a + 1, d + 1
; 1

]
+

b(d− c)

(b− c)d
3F2

[
a, b + 1, c

a + 1, d + 1
; 1

]
.

We apply the contiguous relation (12.2) again, to the first series with A1 = a, A2 = b, and
B1 = d + 1, to the second with A1 = a, A2 = c, and B1 = d + 1. After some simplification,
this leads to the expression

− bc (a− d− 1) (a− d)

(−a + b) (a− c) d (d + 1)
3F2

[
a, b + 1, c + 1
a + 1, d + 2

; 1

]

+
ac (d− b) (d− b + 1)

(a− b) (c− b) d (d + 1)
2F1

[
b, c + 1
d + 2

; 1

]
+

ab (d− c) (d− c + 1)

(a− c) (b− c) d (d + 1)
2F1

[
b + 1, c
d + 2

; 1

]
.

Finally, we use Gauß’ summation formula (10.3) to evaluate the two 2F1-series. Some
manipulation then yields the claimed result on the right-hand side of (12.1). ¤

We may now choose a so that the second term on the right-hand side of (12.1) vanishes,
that is, we choose

a = b + c− bc

d
.

After the additional replacements of b by β, of c by γ, and of d by βγ/δ, we arrive at the
following result.
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Theorem 9. For any complex numbers α, β, γ such that < (
βγ
δ
− β − γ + 1

)
> 0, and such

that β + γ − δ + 1 and βγ
δ

are not non-positive integers, we have the identity

3F2

[
β + γ − δ, β, γ

β + γ − δ + 1, βγ
δ

; 1

]
=

βγ + δ − βδ − γδ + δ2

βγ + δ
3F2

[
β + γ − δ, β + 1, γ + 1

β + γ − δ + 1, βγ
δ

+ 2
; 1

]
.

(12.3)

Again, if one wants a more convenient parametrisation for generating counter-examples
to the conjecture by Rhin and Viola, then one would replace β by b1b2, γ by c1c2, and δ
by b1c1. The resulting relation then is

3F2

[
b1b2 + c1c2 − b1c1, b1b2, c1c2

b1b2 + c1c2 − b1c1 + 1, b2c2
; 1

]

=
b1b2c1c2 + b1c1 − b1b2b1c1 − c1c2b1c1 + b2

1c
2
1

b1b2c1c2 + b1c1

× 3F2

[
b1b2 + c1c2 − b1c1, b1b2 + 1, c1c2 + 1

b1b2 + c1c2 − b1c1 + 1, b2c2 + 2
; 1

]
. (12.4)

Proposition 3. For any complex numbers a, b, c such that <(d− b− c + 1) > 0, and such
that a + 1 and d are not non-positive integers, we have the identity

3F2

[
a, b, c

a + 1, d
; 1

]
=

(a− b + 1)(a− c + 1)

(a + 1)(a− d + 1)
3F2

[
a + 1, b, c
a + 2, d

; 1

]

− Γ(d) Γ(d− b− c + 1)

(a− d + 1) Γ(d− b) Γ(d− c)
. (12.5)

Proof. The first few steps of this proof are identical with the one of Proposition 1. More
precisely, we use that the series on the left-hand side is equal to the expression (10.5).
There, we apply now instead the contiguous relation (10.6) with A1 = c+1 and A2 = a+1.
As a result, we obtain

(a− b + 1) (a− c + 1)

(a + 1) (a− d + 1)
3F2

[
a + 1, b, c
a + 2, d

; 1

]
− a− b + 1

a− d + 1
2F1

[
b, c
d

; 1

]

+
(a + c− d + 1) Γ(d) Γ(d− b− c)

(a− d + 1) Γ(d− b) Γ(d− c)
,

which, by another use of the Gauß summation formula (10.3) and some simplification,
turns out to be equal to the right-hand side of (12.5). ¤

An iterative use of Proposition 3 produces the following formula.
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Corollary 1. For any complex numbers a, b, c such that <(d − b − c + 1) > 0, and such
that a + 1 and d are not non-positive integers, we have the identity

3F2

[
a, b, c

a + 1, d
; 1

]
=

(a− b + 1)(a− b + 2)(a− c + 1)(a− c + 2)

(a + 1)(a + 2)(a− d + 2)(a− d + 1)
3F2

[
a + 2, b, c
a + 3, d

; 1

]

− (3 + 5a + 2a2 − b− ab− c− ac + bc− d− ad)

(a + 1)(a− d + 2)(a− d + 1)

Γ(d) Γ(d− b− c + 1)

Γ(d− b) Γ(d− c)
. (12.6)

If we now choose d such that the polynomial factor on the right-hand side of (12.6)
vanishes, that is,

d = 2a− b− c + 3 +
bc

a + 1
,

then we obtain the following theorem.

Theorem 10. For any complex numbers α, β, γ such that < (
2α− 2β − 2γ + β

α+1
+ 4

)
> 0,

and such that α + 1 and 2α − β − γ + βγ
α+1

+ 3 are not non-positive integers, we have the
identity

3F2

[
α, β, γ

α + 1, 2α− β − γ + βγ
α+1

+ 3
; 1

]

=
(α + 1)(α− β + 2)(α− γ + 2)

(α + 2)(3α + α2 − β − αβ − γ − αγ + βγ + 2)
3F2

[
α + 2, β, γ

α + 3, 2α− β − γ + βγ
α+1

+ 3
; 1

]
.

(12.7)

If one wants a more convenient parametrisation for generating counter-examples to the
conjecture by Rhin and Viola, then one would replace β by b1b2, γ by c1c2, and α by
b1c1 − 1. The resulting relation then is

3F2

[
b1c1 − 1, b1b2, c1c2

b1c1, 2b1c1 − b1b2 + b2c2 − c1c2 + 1
; 1

]

=
(b1c1 − b1b2 + 1)(b1c1 − c1c2 + 1)

(b1c1 + 1)(b1c1 − b1b2 + b2c2 − c1c2 + 1)

× 3F2

[
b1c1 + 1, b1b2, c1c2

b1c1 + 2, 2b1c1 − b1b2 + b2c2 − c1c2 + 1
; 1

]
. (12.8)

13. Postlude: how were these identities found?

The reader may wonder how we found the identities in Theorem 1 and Propositions 1–3
(the latter implying Theorems 2, 9 and 10) and their proofs. This section describes some
of the ideas that led us to their discovery, with some of them being interesting in their
own right, as we believe. Since we shall make reference to it several times, we mention
right away that all the hypergeometric calculations were carried out using the first author’s
Mathematica package HYP [7].

The counter-examples (3.5)–(3.10) of Sato, in their original form, do not give any hints
for a general result that may be behind them. However, as we explain in Section 7, if we
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bring them into different, but equivalent, forms using Thomae’s relations, patterns emerge.
More precisely, by staring at the forms (7.2) and (7.3) of (3.5)–(3.9), we extracted the wild
guess that (1.2) should hold. The first proof that we found (which is not presented here)
showed first the special case γ = α + β of (1.2), given in (3.13), by using elementary
contiguous relations. A somewhat involved analytic continuation argument, using the
Gosper–Zeilberger algorithm (see below) and Carlson’s theorem then extended (3.13) to
(1.1).

However, it was “obvious” to us that one should be able to prove (1.2) by a combination of
several classical transformation formulae for hypergeometric series. Clearly, since we know
that (1.2) is not a consequence of Thomae’s relations, the classical 3F2-transformations are
not of any use. So we asked HYP to tell us which (of the built-in) transformations can
be applied to the left-hand side of (1.2). (This is done by using TListe; see [7].) The
only “non-standard” transformation that HYP came up with was (8.1). (This is T3240 in
HYP.) So we applied it and quickly realized that we could exchange α and α + 1 in the
obtained 7F6-series (cf. (8.2) and (8.3)) and apply (8.1) in the other direction, in order to
obtain a result different from the original 3F2-series, which then turned out to be exactly
the right-hand side of (1.2).

Having found an explanation for 83.33333 . . . percent of Sato’s counter-examples did
not completely satisfy us. We also wanted an explanation for (3.10). Since this is just one
single identity, there is only very little guidance where to look for. What caught our eyes
was that, in the hypergeometric form (7.4), both 3F2-series were balanced (that is, the
sum of the lower parameters exceeds the sum of the upper parameters by exactly 1). Not
only that, in both series there is a lower parameter which exceeds an upper parameter by
exactly 1. So, we made our computer work out the values of all series of the form

3F2

[
a, b, c

a + 1, b + c
; 1

]

for 1 ≤ a, b, c ≤ 40, and then compared which series were rational multiples of each other.
By staring at the results, we extracted identities such as

3F2

[
α2, α + 1, α2

α2 + 1, α2 + α + 1
; 1

]
=

α3 + 1

α2 + 1
3F2

[
α2 + 1, α, α2

α2 + 2, α2 + α
; 1

]
(13.1)

(this is identity (11.1), the special case α → α2, β = α + 1, γ = α2 of (1.2)), or

3F2

[
α2 − α + 1, α, α2 − α

α2 − α + 2, α2 ; 1

]
=

α

α2 + 1
3F2

[
α2 − α + 1, α + 1, α2 − α + 1

α2 − α + 2, α2 + 2
; 1

]
(13.2)

(this is the special case β = α, γ = α2 − α, δ = α− 1 of (12.3)) or

3F2

[
6α + 1, 4α + 2, 3α + 1

6α + 2, 7α + 3
; 1

]
=

3α + 2

3α + 3
3F2

[
6α + 3, 4α + 2, 3α + 1

6α + 4, 7α + 3
; 1

]
(13.3)

(this is the special case α → 6α + 1, β = 4α + 2, γ = 3α + 1 of (12.7)).
We then attempted to prove these identities. It seems sort of “obvious” that one should

be able to prove them by using known contiguous relations. Indeed, in HYP there are ap-
proximately 100 such contiguous relations built-in. We played with those, but we were not
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able to arrive at the right-hand sides of the conjectured identities. At some point, we had
the idea to “cheat” and to make recourse to the “modern” way of treating hypergeometric
series, namely applying the Gosper–Zeilberger algorithm (see [2, 10, 20, 21, 22]; what we
do below is in the spirit of [9]). For example, aiming to prove (a generalisation of) (13.1),
we considered the series

3F2

[
a + n, b− n, c

a + n + 1, b + c− n
; 1

]
(13.4)

and tried to find a first-order recurrence for it (which is what (1.2) is). Thus, we put the
summand of this series,

F (n, k) =
(a + n)k (b− n)k (c)k

(a + n + 1)k (b + c− n)k k!

into the Gosper–Zeilberger algorithm, and we got

(a + n + 1)(b− n− 1)(a− b− c + 2n + 1)(a− b− c + 2n + 2)F (n, k)

+(a−b+2n+2)(a−b+2n+1)(a−c+n+1)(b+c−n−1)F (n+1, k) = ∆kF (n, k)R(n, k),
(13.5)

where

R(n, k) =
k(b + c + k − n− 1)

(a + n)(b + c− n− 1)(b + k − n− 1)

× (k(b + c− n− 1)(a + n + 1)(1− a− a2 − 2b + b2 + ac + n− 2an− 2bn + cn)

+ terms not containing k),

and where ∆k is the forward difference operator, (∆kf)(k) = f(k + 1) − f(k). If we now
sum both sides of (13.5) over k from 0 to N , then we obtain

(a + n + 1)(b− n− 1)(a− b− c + 2n + 1)(a− b− c + 2n + 2)
N∑

k=0

F (n, k)

+ (a− b + 2n + 2)(a− b + 2n + 1)(a− c + n + 1)(b + c− n− 1)
N∑

k=0

F (n + 1, k)

= F (n,N + 1)R(n,N + 1),



24

since the terms on the right-hand side telescope. Subsequently, the limit N →∞ yields

(a + n + 1)(b− n− 1)(a− b− c + 2n + 2)(a− b− c + 2n + 1)

× 3F2

[
a + n, b− n, c

a + n + 1, b + c− n
; 1

]

= (a− b + 2n + 1)(a− b + 2n + 2)(a− c + n + 1)(b + c− n− 1)

× 3F2

[
a + n + 1, b− n− 1, c

a + n + 2, b + c− n− 1
; 1

]

+(a+n+1)(1−a−a2− b+ c+ac− bc−d+ bd+n−2an− bn+2cn−dn)
Γ(b + c− n)

Γ(c) Γ(b− n)
.

(13.6)

(The reader should notice that this is (10.1) with a replaced by a + n, b replaced by b− n,
and d replaced by b + c− n.)

At this point, we became greedy. Why should this be something special for balanced
series? So, we replaced the bottom parameter b + c− n in (13.4) by d− n, — and we were
disappointed to learn that the Gosper–Zeilberger algorithm is unable to find a two-term
recurrence for this more general series. (It finds only a three-term recurrence.) However,
it does find a two-term recurrence for every d of the form d = b + c + m, where m is a
non-negative integer. From the data for m = 0 (given in (13.6)) and for m = 1, 2, 3, one
is then easily able to work out a (at this point, conjectural) formula for the output of the
algorithm, namely if

F (n, k) =
(a + n)k (b− n)k (c)k

(a + n + 1)k (b + c + m− n)k k!
,

then

(b− n)m (c)m (a + n + 1)(b− n− 1)

× (a− b− c−m + 2n + 1)(a− b− c−m + 2n + 2)F (n, k)

+ (b− n)m (c)m (a− b + 2n + 2)(a− b + 2n + 1)

× (a− c + n + 1)(b + c + m− n− 1)F (n + 1, k] = ∆kF (n, k)R(n, k), (13.7)

where

R(n, k) =
k(b + c + m + k − n− 1)

(a + n)(b + c + m− n− 1)(b + k − n− 1)

× (km+1(b + c + m− n− 1)(a + n + 1)

· (1− a− a2 − 2b + b2 + ac + n− 2an− 2bn + cn−m(n + 1− b))

+ terms with lower powers in k),

If one, for simplicity, replaces b+ c+m by d in (13.7), sums both sides over k from 0 to N ,
and finally lets N tend to infinity, one arrives exactly at (10.1), with a replaced by a + n,
b replaced by b− n, and d replaced by d− n.
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As we pointed out, this is at best a half rigorous derivation of (10.1) in the case that
the difference d − b − c is a non-negative integer, but there is no guarantee at all that
this formula should also hold for any d. (To explain two of the possible pitfalls: first,
there are always two ways to translate expressions such as (c)m into gamma functions:
(c)m = Γ(c+m)/Γ(c) = (−1)mΓ(1− c)/Γ(1− c−m). These lead to different formulae if m
is replaced by d− b− c, where d is arbitrary. Second, sometimes one may even miss whole
additional terms in a formula, which one does not see if some parameter is specialised to a
non-negative integer because this additional term happens to vanish for this specialisation.)
However, one can now prove (10.1) continuing along the above lines: first, one verifies that
(10.1) is valid for d = b by using Gauß’ summation formula (10.3). Next, one replaces d by
b + n in (10.1), and one uses the Gosper–Zeilberger algorithm to find recurrences in n for
the left-hand and the right-hand sides of (10.1). Thus, one knows that (10.1) holds with
d = b + n for any non-negative integer n. Since both sides of (10.1) are analytic in d in
a neighbourhood of ∞, one can use the principle of analytic continuation to deduce that
(10.1) holds for any complex d where both sides are defined.

We did that, but finally we did succeed to work out a proof using known contiguous
relations. Since this is completely elementary and, as we believe, more instructive, this is
the proof that we have included in Section 10. For obtaining the general identities which
are behind (13.2) and (13.3), given in Propositions 2 and 3, we proceeded similarly. In
fact, the contiguous relations (10.2), (10.4), (10.6), (12.2), which we used in the proofs, are
C55, C15, C27, and C54, respectively, in HYP.

Our computer experiments suggest that the above procedure produces a relation of the
type (10.1) for any series

3F2

[
a + a1n, b + b1n, c + c1n
a + a1n + a2, d + d1n

; 1

]
,

as long as a1, a2, b1, c1, d1 are integers, a2 a positive integer, and b1+c1 = d1. However, most
of the time none of a, b, c, d appears linearly in the big polynomial factor on the right-hand
side. This makes it difficult to extract a general solution of the Diophantine equation which
arises when one equates the polynomial factor to zero. Nevertheless, experimentally, there
are many solutions for various choices of a1, b1, c1, d1.
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