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Siegel [4, p. 239] introduced in 1929 the notion of G-function as a generalization of the
series 1/(1 − z) =

∑∞
n=0 z

n and − log(1 − z) =
∑∞

n=1 z
n/n. We fix an embedding of Q

into C.

Definition 1. A power series F (z) =
∑∞

n=0 anz
n ∈ Q[[z]] is a G-function if

(i) F (z) is solution of a non-zero linear differential equation with coefficients in Q(z).

(ii) There exists C > 0 such that for any σ ∈ Gal(Q/Q) and any n ≥ 0, |σ(an)| ≤ Cn+1.

(iii) There exists D > 0 and a sequence of integers dn, with 1 ≤ dn ≤ Dn+1, such that
dnam are algebraic integers for all m ≤ n.

Note that (i) implies that the an’s all lie in a certain number field K, so that in (ii)
there are only finitely many Galois conjugates σ(an) of an to consider, with σ ∈ Gal(K/Q)
(assuming for simplicity that K is a Galois extension of Q). G-functions form a ring stable
under d

dz
and

∫ z

0
; they are not entire in general but they can be analytically continued

in suitably cut planes. Any algebraic function over Q(z) and regular (ie holomorphic) at
z = 0 is a G-function.

The following stability property satisfied by G-functions is often quoted but no proof
seems to have been given in the literature. I give a proof in this note.

Proposition 1. Let F (z) be a G-function and α(z) an algebraic function over Q(z), holo-
morphic at z = 0 such that α(0) = 0.

Then F (α(z)) is a G-function.

Property (i) follows from the following general statement, due to Stanley [3, p. 180,
Theorem 2.7]. Let L be a subfield of C and F (z) ∈ L[[z]] be a solution of a non-zero
linear differential equation with coefficients in L(z). Then, for any algebraic function α(z)
over L(z), holomorphic at z = 0 such that α(0) = 0, the function F (α(z)) is solution of
a non-zero linear differential equation with coefficients in L(z). See [1, Theorem 3] for a
quantitative version of Stanley’s result.

Writing F (α(z)) =
∑∞

n=0 anz
n, Property (ii) obviously holds if σ = id because both

F and α have positive radii of convergence, hence this is also the case of F ◦ α. The
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general case can be reduced to the case σ = id. Indeed, let K be a Galoisian number
field containing the Taylor coefficients of F (α(z)) and those of F (z) =

∑∞
n=0 bnz

n and
α(z) =

∑∞
n=1 cnz

n. Then, for any σ ∈ Gal(K/Q), we have

∞∑
n=0

σ(an)zn =
∞∑
n=0

σ(bn)
( ∞∑

m=1

σ(cm)zm
)n
,

where
∑∞

n=0 σ(bn)zn is a G-function and
∑∞

m=1 σ(cm)zm is algebraic over Q(z).

It remains to check Property (iii). For any integer n ≥ 0, we set

α(z)n =
∞∑

m=0

cm,nz
m ∈ Q[[z]],

with cm,n = 0 for 0 ≤ m ≤ n− 1. The series∑
m,n≥0

cm,nz
mxn =

∞∑
n=0

α(z)nxn =
1

1− xα(z)

is a bivariate algebraic function. We now use Safonov’s Theorem [2, p. 273], a multivariate
generalization of Eisenstein’s Theorem, to conclude that there exists an integer C ≥ 1 such
that Cm+n+1cm,n is an algebraic integer for all m,n ≥ 0. Now, we have

F (α(z)) =
∞∑
n=0

bn

∞∑
m=n

cm,nz
m

=
∞∑
n=0

bn

∞∑
m=0

cm+n,nz
m+n

=
∞∑
k=0

( k∑
n=0

bnck,n

)
zk.

Since
∑∞

n=0 bnz
n is a G-function, there exists a sequence of integers Bk ≥ 1 such that Bkbn

is an algebraic integer for all n ≤ k and Bk ≤ Bk+1 for some B ≥ 1. Hence,

BkC
2k+1

k∑
n=0

bnck,n

is an an algebraic integer for all k ≥ 0, and (iii) holds with D := BC2. This completes the
proof that F ◦ α is a G-function.

Safonov’s Theorem is proved under the assumption that the Taylor coefficients of the
multivariate algebraic series are in Q. The general case used above can be easily deduced.
Indeed, consider an algebraic series

F (X1, . . . , Xs) :=
∑

n1≥0,...,ns≥0

cn1,...,nsX
n1 · · ·Xns ∈ Q[[X1, . . . , Xs]].
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Obviously, the coefficients cn1,...,ns all lie into a certain Galoisian number field Q(β) of
degree d ≥ 1, say. Hence, there exists d multivariate sequences of rational numbers
(uj,n1,...,ns)n1,...,ns≥0, j = 0, . . . , d− 1, such that

cn1,...,ns =
d−1∑
j=0

uj,n1,...,nsβ
j.

Now, each series ∑
n1≥0,...,ns≥0

uj,n1,...,nsX
n1 · · ·Xns ∈ Q[[X1, . . . , Xs]]

is an algebraic one because it is a Q-linear combination of the algebraic series∑
n1≥0,...,ns≥0

σ(cn1,...,ns)X
n1 · · ·Xns ∈ Q[[X1, . . . , Xs]]

where σ runs through Gal(Q(β)/Q). We can thus apply Safonov’s Theorem to each of
them separately and let the integers Cj ≥ 1 denote their respective Eisenstein’s constant, ie
Cn1+···+ns+1

j uj,n1,...,ns ∈ Z. Let also the integer B ≥ 1 denote a denominator of β, ie Bβ is an

algebraic integer. Then, D := lcm(C0, C1B . . . , Cd−1B
d−1) is such that Dn1+···+ns+1cn1,...,ns

is an algebraic integer for all n1, . . . , ns ≥ 0.

I thank Alin Bostan for bringing [2] to my attention.
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