A stability property of G-functions

T. Rivoal

October 26, 2019

Siegel [4, p. 239] introduced in 1929 the notion of G-function as a generalization of the series $1 /(1-z)=\sum_{n=0}^{\infty} z^{n}$ and $-\log (1-z)=\sum_{n=1}^{\infty} z^{n} / n$. We fix an embedding of $\overline{\mathbb{Q}}$ into \mathbb{C}.

Definition 1. A power series $F(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \in \overline{\mathbb{Q}}[[z]]$ is a G-function if
(i) $F(z)$ is solution of a non-zero linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.
(ii) There exists $C>0$ such that for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and any $n \geq 0,\left|\sigma\left(a_{n}\right)\right| \leq C^{n+1}$.
(iii) There exists $D>0$ and a sequence of integers d_{n}, with $1 \leq d_{n} \leq D^{n+1}$, such that $d_{n} a_{m}$ are algebraic integers for all $m \leq n$.

Note that (i) implies that the a_{n} 's all lie in a certain number field \mathbb{K}, so that in (ii) there are only finitely many Galois conjugates $\sigma\left(a_{n}\right)$ of a_{n} to consider, with $\sigma \in \operatorname{Gal}(\mathbb{K} / \mathbb{Q})$ (assuming for simplicity that \mathbb{K} is a Galois extension of \mathbb{Q}). G-functions form a ring stable under $\frac{d}{d z}$ and \int_{0}^{z}; they are not entire in general but they can be analytically continued in suitably cut planes. Any algebraic function over $\overline{\mathbb{Q}}(z)$ and regular (ie holomorphic) at $z=0$ is a G-function.

The following stability property satisfied by G-functions is often quoted but no proof seems to have been given in the literature. I give a proof in this note.

Proposition 1. Let $F(z)$ be a G-function and $\alpha(z)$ an algebraic function over $\overline{\mathbb{Q}}(z)$, holomorphic at $z=0$ such that $\alpha(0)=0$.

Then $F(\alpha(z))$ is a G-function.
Property (i) follows from the following general statement, due to Stanley [3, p. 180, Theorem 2.7]. Let \mathbb{L} be a subfield of \mathbb{C} and $F(z) \in \mathbb{L}[[z]]$ be a solution of a non-zero linear differential equation with coefficients in $\mathbb{L}(z)$. Then, for any algebraic function $\alpha(z)$ over $\mathbb{L}(z)$, holomorphic at $z=0$ such that $\alpha(0)=0$, the function $F(\alpha(z))$ is solution of a non-zero linear differential equation with coefficients in $\mathbb{L}(z)$. See [1, Theorem 3] for a quantitative version of Stanley's result.

Writing $F(\alpha(z))=\sum_{n=0}^{\infty} a_{n} z^{n}$, Property (ii) obviously holds if $\sigma=i d$ because both F and α have positive radii of convergence, hence this is also the case of $F \circ \alpha$. The
general case can be reduced to the case $\sigma=i d$. Indeed, let \mathbb{K} be a Galoisian number field containing the Taylor coefficients of $F(\alpha(z))$ and those of $F(z)=\sum_{n=0}^{\infty} b_{n} z^{n}$ and $\alpha(z)=\sum_{n=1}^{\infty} c_{n} z^{n}$. Then, for any $\sigma \in \operatorname{Gal}(\mathbb{K} / \mathbb{Q})$, we have

$$
\sum_{n=0}^{\infty} \sigma\left(a_{n}\right) z^{n}=\sum_{n=0}^{\infty} \sigma\left(b_{n}\right)\left(\sum_{m=1}^{\infty} \sigma\left(c_{m}\right) z^{m}\right)^{n}
$$

where $\sum_{n=0}^{\infty} \sigma\left(b_{n}\right) z^{n}$ is a G-function and $\sum_{m=1}^{\infty} \sigma\left(c_{m}\right) z^{m}$ is algebraic over $\overline{\mathbb{Q}}(z)$.
It remains to check Property (iii). For any integer $n \geq 0$, we set

$$
\alpha(z)^{n}=\sum_{m=0}^{\infty} c_{m, n} z^{m} \in \overline{\mathbb{Q}}[[z]],
$$

with $c_{m, n}=0$ for $0 \leq m \leq n-1$. The series

$$
\sum_{m, n \geq 0} c_{m, n} z^{m} x^{n}=\sum_{n=0}^{\infty} \alpha(z)^{n} x^{n}=\frac{1}{1-x \alpha(z)}
$$

is a bivariate algebraic function. We now use Safonov's Theorem [2, p. 273], a multivariate generalization of Eisenstein's Theorem, to conclude that there exists an integer $C \geq 1$ such that $C^{m+n+1} c_{m, n}$ is an algebraic integer for all $m, n \geq 0$. Now, we have

$$
\begin{aligned}
F(\alpha(z)) & =\sum_{n=0}^{\infty} b_{n} \sum_{m=n}^{\infty} c_{m, n} z^{m} \\
& =\sum_{n=0}^{\infty} b_{n} \sum_{m=0}^{\infty} c_{m+n, n} z^{m+n} \\
& =\sum_{k=0}^{\infty}\left(\sum_{n=0}^{k} b_{n} c_{k, n}\right) z^{k} .
\end{aligned}
$$

Since $\sum_{n=0}^{\infty} b_{n} z^{n}$ is a G-function, there exists a sequence of integers $B_{k} \geq 1$ such that $B_{k} b_{n}$ is an algebraic integer for all $n \leq k$ and $B_{k} \leq B^{k+1}$ for some $B \geq 1$. Hence,

$$
B_{k} C^{2 k+1} \sum_{n=0}^{k} b_{n} c_{k, n}
$$

is an an algebraic integer for all $k \geq 0$, and (iii) holds with $D:=B C^{2}$. This completes the proof that $F \circ \alpha$ is a G-function.

Safonov's Theorem is proved under the assumption that the Taylor coefficients of the multivariate algebraic series are in \mathbb{Q}. The general case used above can be easily deduced. Indeed, consider an algebraic series

$$
F\left(X_{1}, \ldots, X_{s}\right):=\sum_{n_{1} \geq 0, \ldots, n_{s} \geq 0} c_{n_{1}, \ldots, n_{s}} X^{n_{1}} \cdots X^{n_{s}} \in \overline{\mathbb{Q}}\left[\left[X_{1}, \ldots, X_{s}\right]\right]
$$

Obviously, the coefficients $c_{n_{1}, \ldots, n_{s}}$ all lie into a certain Galoisian number field $\mathbb{Q}(\beta)$ of degree $d \geq 1$, say. Hence, there exists d multivariate sequences of rational numbers $\left(u_{j, n_{1}, \ldots, n_{s}}\right)_{n_{1}, \ldots, n_{s} \geq 0}, j=0, \ldots, d-1$, such that

$$
c_{n_{1}, \ldots, n_{s}}=\sum_{j=0}^{d-1} u_{j, n_{1}, \ldots, n_{s}} \beta^{j} .
$$

Now, each series

$$
\sum_{n_{1} \geq 0, \ldots, n_{s} \geq 0} u_{j, n_{1}, \ldots, n_{s}} X^{n_{1}} \cdots X^{n_{s}} \in \mathbb{Q}\left[\left[X_{1}, \ldots, X_{s}\right]\right]
$$

is an algebraic one because it is a $\overline{\mathbb{Q}}$-linear combination of the algebraic series

$$
\sum_{n_{1} \geq 0, \ldots, n_{s} \geq 0} \sigma\left(c_{n_{1}, \ldots, n_{s}}\right) X^{n_{1}} \cdots X^{n_{s}} \in \overline{\mathbb{Q}}\left[\left[X_{1}, \ldots, X_{s}\right]\right]
$$

where σ runs through $\operatorname{Gal}(\mathbb{Q}(\beta) / \mathbb{Q})$. We can thus apply Safonov's Theorem to each of them separately and let the integers $C_{j} \geq 1$ denote their respective Eisenstein's constant, ie $C_{j}^{n_{1}+\cdots+n_{s}+1} u_{j, n_{1}, \ldots, n_{s}} \in \mathbb{Z}$. Let also the integer $B \geq 1$ denote a denominator of β, ie $B \beta$ is an algebraic integer. Then, $D:=\operatorname{lcm}\left(C_{0}, C_{1} B \ldots, C_{d-1} B^{d-1}\right)$ is such that $D^{n_{1}+\cdots+n_{s}+1} c_{n_{1}, \ldots, n_{s}}$ is an algebraic integer for all $n_{1}, \ldots, n_{s} \geq 0$.

I thank Alin Bostan for bringing [2] to my attention.

References

[1] M. Kauers, G. Pogudin, Bounds for Substituting Algebraic Functions into D-finite Functions, ISSAC '17, Proceedings of the 2017 ACM on International Symposium on Symbolic and Algebraic Computation, 245-252.
[2] K. V. Safonov, On Power Series of Algebraic and Rational Functions in \mathbb{C}^{n}, Journal of Mathematical Analysis and Applications 243 (2000), 261-277.
[3] R. P. Stanley, Differentiably finite power series, Europ. J. Combinatorics 1 (1980), 175-188.
[4] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, vol. 1 S. Abhandlungen Akad., Berlin, 1929, 209-266.
T. Rivoal, Institut Fourier, CNRS et Université Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France.

