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Abstract. Following earlier research of ours, we propose a new method for obtaining the
complete Padé table of the exponential function. It is based on an explicit construction
of certain Padé approximants not for the usual power series for exp at 0 but for a formal
power series related in a simple way to the remainder term of the power series for exp.
This surprising and non trivial coincidence is proved more generally for type II simulta-
neous Padé approximants for a family (exp(ajz))j=1,...,r with distinct complex a’s and we
recover Hermite’s classical formulae. The proof uses certain discrete multiple orthogonal
polynomials recently introduced by Arvesú, Coussement and van Assche, which generalise
the classical Charlier orthogonal polynomials.

1. Introduction and motivation

In [10], the first author gave a new proof of the irrationality of ζ(2) =
∑∞

k=1 1/k2 (and also
of ζ(3) =

∑∞
k=1 1/k3) based on an explicit construction of certain Padé approximants of the

remainder term R2(1/n) =
∑∞

k=n 1/k2. More precisely, we have that ζ(2) =
∑n−1

k=1 1/k2 +
R2(1/n) with

R2(z) =
∞∑

k=0

z2

(zk + 1)2
.

The function R2 is meromorphic on C \ {0,−1,−1/2,−1/3, . . .} and consequently cannot
be holomorphic at 0. However, it is C∞ at z = 0 and admits a Taylor expansion (with

radius of convergence zero) R̂2(z) =
∑∞

k=0 Bkz
k+1, where Bk is the k-th Bernoulli’s number.

The keystone of the method is an explicit computation of the diagonal Padé approximant

Pn(z)/Qn(z) = [n/n] bR2
(z) ∈ Q(z) of the series R̂2(z), with a good estimate of the error

term En(z) = R2(z)− [n/n] bR2
(z). In the final step, one finds that

Qn(1/n)En(1/n) = Qn(1/n)ζ(2)−Qn(1/n)
n−1∑

k=1

1/k2 − Pn(1/n) = qnζ(2)− pn

provides a sequence of rational approximations pn/qn good enough to imply the irrationality
of ζ(2). Surprisingly, it turns out that the rational numbers pn and qn are well known:
they are exactly those used by Apéry [1] for the same purpose.

Date: Revised version, 13/12/2005.
2000 Mathematics Subject Classification. Primary 41A21; Secondary 41A28, 11J72.
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A similar phenomenon occurs for ζ(3), where one recovers Apéry’s celebrated approxi-
mations, also given in [1]. Furthermore, in [12], the second author adapted this method
to produce a sequence of fast converging rational approximations un/vn for Catalan’s con-
stant G =

∑∞
k=0(−1)k/(2k + 1)2 (the rôle of the Bernoulli’s numbers being played by

Euler’s numbers); although the irrationality of G could not be deduced from these approx-
imations, they were found to be the same as the approximations ûn/v̂n to G previously
obtained in [13] by means of a completely different method, based on hypergeometric se-
ries (the proof of this coincidence is quite long and intricate). The hypergeometric method
is central to recent progress on the problem of the arithmetical nature of the values of
the Riemann zeta function ζ(s) at odd integers s ≥ 3; it also provides new proofs of the
irrationality of ζ(2) and ζ(3) (see [8] for a description of this method).

In [6], very general Padé type approximants problems were proposed and solved in
order to generalise (by a functional approach) the hypergeometric method. This time, the
involved functions were not remainder functions like R2 but the polylogarithmic functions
Lis(z) =

∑∞
k=1 zk/ks, defined for s ≥ 1 and |z| ≤ 1, with (s, z) 6= (1, 1). For example,

the rationals numbers pn and qn for ζ(2) are explicitly produced by the solutions of the
following two point Padé type problem (first proposed and solved by Beukers in [4]): find
polynomials An(z), Bn(z) and Cn(z) ∈ Q[z], of degree at most n, such that

{
An(z) Li2(z) + Bn(z) Li1(z) + Cn(z) = O(z2n+1);

An(z) log(z) + Bn(z) = O((1− z)n+1).

Indeed, this system admits a unique solution (up to a multiplicative factor) and An(1) =
qn and Cn(1) = −pn. A similar system is given at the end of [12] that produces the
approximation ûn/v̂n for G alluded to above and thus provides another Padé interpretation
for the numbers un/vn.

It is somewhat surprising that two a priori completely unrelated Padé type approximants
computations produce the same rational approximations of a given number, all the more
since the function Li2(z) and R2(z) do not share at first glance much analytical properties,
except that Li2(1) = ζ(2) = R2(1). The aim of this paper is to prove the similar phe-
nomenon for the exponential function: indeed, we show that the complete table of Padé
approximants for the function exp(z) at z = 0 essentially coincide with the approximations
obtained by the method described above, which we call the Remainder Padé approximants
for exp(z). Our results deal more generally with simultaneous type II Padé-approximations
of a family of exponential functions.

Aknowledgement. We warmly thank the referees, whose remarks have enabled us to
greatly improve the presentation of our results.

2. Statement of the results

We first introduce some notations. We will consider a finite set of exponential func-
tions (exp(ajz))j=1,...r . The variable z is any complex number and the parameters aj

(j = 1, . . . , r) are distinct non-zero complex numbers. We will denote by a the family
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(aj)j=1,...,r. The Pochhammer symbol (α)m is defined as α(α + 1) · · · (α + m− 1) if m ≥ 1
and 1 if m = 0. From now on, n denotes a positive integer.

We also define the function Φz(t) as the series

Φz(t) =
∞∑

k=0

Γ(1− 1/t)

Γ(k + 1− 1/t)
zk,

where Γ denotes Euler’s Gamma function: it is defined at least for any complex t such that
<(1/t) < 1, and in particular for real negative t. Clearly, for any j = 1, . . . , r, we have
that

exp(aj z) =
n−1∑

k=0

(aj z)k

k!
+

(aj z)n

n!
Φajz(−1/n).

We will show (see Lemma 1 in section 3) that Φz(t) admits an explicit Taylor expansion

Φ̂z(t) at t = 0 of radius of convergence zero, which we therefore view as a formal power
series

Φ̂z(t) =
∞∑

k=0

ϕk(−z)tk.

Here, the ϕk(z) are exactly Touchard exponential polynomials of degree k [14], defined by
the generating function

ez(eX−1) =
∞∑

k=0

ϕk(z)
Xk

k!
.

Let us consider a family
(
Fj(X)

)
j=1,...r

of complex formal power series at 0 and D and

p some integers satisfying D ≥ (r − 1)p. We recall that the type II Padé approximants of
parameter (D, p) of

(
Fj(X)

)
j=1,...r

are polynomials P1(X), . . . , Pr(X) and Q(X) in C[X]

such that

deg(Pj) ≤ D, deg(Q) ≤ rp and Q(X)Fj(X)− Pj(X) = O (
XD+p+1

)
, 1 ≤ j ≤ r.

When r = 1, we obtain the usual Padé approximants P1(X)/Q(X) = [D/p]F1(X) of the
series F1(X).

Theorem 1. For fixed z, the type II Padé approximants at t = 0 of parameter (rp− 1, p)

for the formal power series
(
Φ̂ajz(t)

)
j=1,...,r

are given by the following formulae: for j =

1, . . . , r,

Pj,a,p(t, z) = (−t)rp−1

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−aiz)p−ki

)
(−1/t)k1+···+kr

k1+···+kr∑
i=1

(ajz)i−1

(−1/t)i

,

Qa,p(t, z) = (−t)rp

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(−1/t)k1+···+kr .
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Remarks. 1) We set the variable z at the same level as t since it will be the main variable
below.

2) The polynomial Qa,p satisfies Qa,p(0, z) = 1.

By Theorem 1, the simultaneous Padé approximants at t = 0, namely the function
Pj,a,p(t, z)/Qa,p(t, z), are not only rational function in t but also in z. Moreover, writing

Ej,a,p(t, z) = Φ̂ajz(t)− Pj,a,p(t, z)

Qa,p(t, z)
,

it turns out that, for fixed t with <(1/t) < 1, the function Ej,a,p(t, z) also has a power series

expansion at z = 0. Using the definition of Φ̂ajz(t), we obtain for fixed values t = −1/n
and j = 1, . . . , r the relations

exp(ajz)−
n−1∑

k=0

(ajz)k

k!
− an

j z
n

n!

Pj,a,p(−1/n, z)

Qa,p(−1/n, z)
=

an
j zn

n!
Ej,a,p(−1/n, z). (2.1)

This equation defines simultaneous Remainder Padé approximants for (exp(ajz))j=1,...r

(depending on the two parameters n and p) and our next result offers another interpretation
of it. We denote by P1,a,n,p(z), ..., Pr,a,n,p(z) and Qa,n,p(z) the type II Padé approximants
of parameter (n + r p− 1, p) of (exp(ajz))j=1,...,r.

Theorem 2. The Remainder Padé approximants (2.1) coincide with the type II Padé
approximants of parameter (n + (r − 1) p − 1, p) of (exp(ajz))j=1,...r . More precisely, we
have the following formulae: for j = 1, . . . , r,

Pj,a,n,p(z) = Qa,p(−1/n, z)
n−1∑

k=0

(ajz)k

k!
+

(aj z)n

n!
Pj,a,p(−1/n, z), (2.2)

Qa,n,p(z) = Qa,p(−1/n, z).

Remarks. 1) This coincidence is absolutely non obvious because the degree in the variable
z of the right hand side of (2.2) seems to be n + rp− 1 and not n + (r− 1)p− 1 as it turns
out to be.

2) The order at z = 0 of the functions Rj,a,n,p(z) = Qa,n,p(z) exp(ajz)−Pj,a,n,p(z) is thus
at least n + rp.

3) When r = 1, we can summarise this result by the equation

n−1∑

k=0

zk

k!
+

zn

n!
[ p− 1/p ]Φz(−1/n) = [ n− 1/p ]exp(z). (2.3)

3. Two lemmas

We first provide a proof of a result announced in section 2.
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Lemma 1. The function Φz(t), defined for t ≤ 0, is C∞ at t = 0. Its Taylor series at
t = 0 is given by

Φ̂z(t) =
∞∑

k=0

ϕk(−z)tk

where ϕk are Touchard polynomials.

Proof. We observe that

Φz(t) =
∞∑

k=0

Γ(1− 1/t)

Γ(k + 1− 1/t)
zk = 1 + z

∫ 1

0

u−1/tez(1−u) du,

which is proved using the identities

ez(1−u) =
∞∑

`=0

(1− u)` z`

`!
and

∫ 1

0

u−1/t(1− u)` du =
Γ(1− 1/t)Γ(1 + `)

Γ(2 + `− 1/t)
.

(The interversion of the series and integral is justified by Fubini’s theorem.)
By a change of variables u = exp(vt) (we use here the fact that t ≤ 0), we thus obtain

that

Φz(t) = 1− zt

∫ ∞

0

e−v(1−t)e(−z)(etv−1) dv

and, from this, it follows by differentiation under the integral sign that Φz(t) is C∞ at
t = 0 and that its Taylor series is as given in the statement of the lemma. ¤

We also need a property of the sequence of Touchard polynomials (see [14]). To simplify
the presentation, we define a linear form ϕ(z) (with z assumed fixed) on the space of formal
power series C[[u]] by 〈ϕ(z), un〉 = ϕn(z).

Lemma 2. For all integers n ≥ 0, we have that
〈
ϕ(z),

(
u
n

)〉
= zn/n!.

Proof. We first observe that, for all integers n ≥ 0,

ϕn(z) = e−z

∞∑

k=0

kn

k!
zk,

which is a consequence of the fact that (see [14])

ez(eu−1) = e−z

∞∑

k=0

zk

k!
eku = e−z

∞∑

k=0

zk

k!

( ∞∑
n=0

(ku)n

n!

)
= e−z

∞∑
n=0

un

n!

( ∞∑

k=0

kn

k!
zk

)
.

Let us expand the binomial
(

u
n

)
=

∑n
i=0 ciu

i, where the ci’s are suitable coefficients. Hence,
by definition of the linear form ϕ(z), we have

〈
ϕ(z),

(
u

n

)〉
=

n∑
i=0

ci

〈
ϕ(z), ui

〉
=

n∑
i=0

ciϕi(z) = e−z

∞∑

k=0

zk

k!

n∑
i=0

cik
i = e−z

∞∑

k=0

zk

k!

(
k

n

)

= e−z

∞∑

k=n

zk

k!

(
k

n

)
=

zn

n!
e−z

∞∑

k=n

zk−n

(k − n)!
=

zn

n!
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and the proof is complete. ¤

4. Proof of Theorem 1

The main property of the exponential polynomials ϕn(z) used here is the fact that they
are the moments of a discrete measure. More precisely, let the Poisson distribution Pz

be the measure on N defined by Pz(u) = e−zzu/u! for u ∈ N (z is a parameter in this
situation). Then, we have

ϕn(z) =

∫

N
un dPz(u) = e−z

∞∑
u=0

unzu

u!
,

which is also equal to 〈ϕ(z), un〉. (This equation is shown during the proof of Lemma 2.)

With this interpretation, finding simultaneous Padé approximants for the functions Φ̂ajz(t)
is reduced to finding a sequence of polynomials C−az,p(X) simultaneously orthogonal for the

measures dP−ajz (j = 1, . . . , r): see [9, 10, 12] for detailed expositions of this well-known
connection based upon the orthogonality property∫

N
ukC−az,p(u) dP−ajz(u) = 0 for k = 0, . . . , pj − 1, j = 1, . . . , r,

where −az = (−a1z, . . . ,−arz) and p = (p1, . . . , pr).
Fortunately, an explicit form for these polynomials already exists in the literature, under

the name of multiple Charlier polynomials (see [2, 3] but with a different normalization):

C−az,p(X) =

p1∑

k1

· · ·
pr∑

kr

( r∏
i=1

(
pi

ki

)
(−ai z)pi−ki

)
(−X)k1+···+kr , (4.1)

(Although this is not apparent here, the construction in [3] uses the fact that a1, . . . , ar

are all distinct.)
If p1 = p2 = · · · = pr = p ∈ N, then C−az,p will be denoted by C−az,p .
From this, we can obtain an explicit expression for our type II Padé approximants

problem (up to a multiplicative constant chosen here equal to (−1)rp): we have

Qa,p(t, z) = (−1)r p tr p C−az,p(1/t),

which is the required formula, and also

Pj,a,p(t, z) = (−1)r p tr p−1 Dj,−az,p(1/t) for j = 1, . . . , r,

where Dj,−az,p(X) are the associated polynomial of C−az,p(X) given by

Dj,−az,p(X) =

∫

N

C−az,p(X)− C−az,p(u)

X − u
dP−ajz(u) =

〈
ϕ(−ajz),

C−az,p(X)− C−az,p(u)

X − u

〉
.

We proceed to get a more explicit formula for Dj,−az,p(X) and from now on, we set
Kr = k1 + · · ·+ kr. We first observe that

(−X)Kr = (−1)KrKr!

(
X

Kr

)
,
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hence, by linearity of 〈ϕ(z), ·〉, we have that

Dj,−az,p(X) =

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(−1)KrKr!

〈
ϕ(−ajz),

(
X
Kr

)− (
u

Kr

)

X − u

〉
.

We remark that lemma 2 only gives the expression of the modified moments of ϕ(z) on
the basis

(
u
n

)
, n ∈ N. Thus, we now proceed to obtain the expression of the polynomial

( X
Kr

)−( u
Kr

)
X−u

on the basis
(

u
k

)
, k = 0, . . . , Kr − 1. Let us define a polynomial P (of degree

Kr − 1) by

P (u) =

(
X
Kr

)− (
u

Kr

)

X − u
.

Like any polynomial, P can be expressed on the Newton basis (ν0, ν1, . . . , νKr−1) (with
νk = (u− k + 1)k) using integers as interpolation points:

P (u) =

deg(P)∑
i=0

αi νi(u).

The α’s are related to the divided differences of P : indeed, we have αi = ∆iP (0)/i! where
the operator ∆ is defined recursively by ∆0P (t) = 1 and ∆i+1P (t) = ∆iP (t + 1)−∆iP (t).

In our situation, we have P (k) =
( X

Kr
)

X−k
for any integer k such that 0 ≤ k ≤ Kr− 1. Thus

∆jP (0) = (−1)j
(

X
Kr

)
∆j

(
1

X−j

)
, where ∆ is applied to the variable X. By induction, one

proves that ∆j
(

1
X−j

)
= (−1)j j!

(X−j)j+1
. Finally, we obtain

P (u) =
Kr−1∑
i=0

1

i!

i!

(X − i)i+1

(
X

Kr

)
νi(u) =

(
X

Kr

) Kr∑
i=1

1

i
(

X
i

)
(

u

i− 1

)

and

Dj,−az,p(X)

=

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(−1)KrKr!

(
X

Kr

) Kr∑
i=1

1

i
(

X
i

)
〈

ϕ(−ajz),

(
u

i− 1

)〉

=

p∑

k1,...,kr=0

(−X)Kr

( r∏
i=1

(
p

ki

)
(−aiz)p−ki

) Kr∑
i=1

(−ajz)i−1

i!
(

X
i

)

=

p∑

k1,...,kr=0

(−X)Kr

( r∏
i=1

(
p

ki

)
(−aiz)p−ki

) Kr∑
i=1

(
−(ajz)i−1

(−X)i

)
,

thanks to Lemma 2. With X = 1/t, we obtain the formula for Pj,a,p(t, z) stated in theo-
rem 1.
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Remark. If needed, one can also give a precise estimation of the remainder term Ej,a,p(t, z) =
Φajz(t)− Pj,a,p(t, z)/Qa,p(t, z), j = 1, . . . , r.

For example, when r = 1 and a1 = 1, the remainder behaves like gp(t, z)p!/(−1/t)2
p for

t < 0 (at least), with gp(t, z) of geometric growth of p at most. Without going into details
(see [10, 12] for similar but complete computations), let us just mention that the proof
uses the fact that

Φz(t)− Pp(t, z)

Qp(t, z)
=

1

Cz,p(1/t)2

∫

N

Cz,p(u)2

1− zu
dPzu =

1

Cz,p(1/t)2

〈
ϕ(z),

Cz,p(u)2

1− zu

〉

and that 〈
ϕ(z), Cz,p(u)2

〉
=

〈
ϕ(z), upCz,p(u)

〉
= (−z)n n!.

Although this implies that the Padé approximants in question tend to Φz(t) and thus

“sum” the divergent power series Φ̂z(t), this does not seem to be enough to deduce any
diophantine result for the values of Φz(t), because Qp(t, z) grows like tp(−1/t)p.

5. Proof of Theorem 2

First, we provide another expression for polynomials occuring in the simultaneous Re-
mainder-Padé approximants in (2.1) : the denominator is

Qa,p(−1/n, z) = n−rp

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(n)Kr

and the associated polynomial on the numerator can be trivially expressed as

Pj,a,p(−1/n, z)

=
(n− 1)!

(ajz)n
n−r p+1

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(n)Kr

(
Sn+Kr−1(ajz)− Sn−1(ajz)

)

where Sn is the partial sum of the exponential series Sn(t) =
∑n

k=0 tk/k!.
Hence, after some simplifications, the Remainder Padé approximant is

n−1∑

k=0

(ajz)k

k!
+

an
j zn

n!

Pj,a,p(−1/n, z)

Qa,p(−1/n, z)

=

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(n)KrSn+Kr−1(ajz)

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(n)Kr

. (5.1)

At first glance, this rational fraction has degree (n+rp−1/rp) in z but this is not optimal:
we prove below that its degree is (n + (r − 1)p− 1/rp).
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Indeed, with K ′
j,r = k1 + · · ·+kj−1 +kj+1 + · · ·+kr and k′j,r = (k1, . . . , kj−1, kj+1, . . . , kr),

the numerator of (5.1) can be expressed as
p∑

k1,...,kj−1,kj+1,...,kr=0

( r∏

i=1,i6=j

(
p

ki

)
(−ai z)p−ki

)
(n)K′

j,r
Aj,k′j,r

(z)

with

Aj,k′j,r
(z) =

p∑

kj=0

(
p

kj

)
(−aj z)p−kj(n + K ′

j,r)kj
Sn+K′

j,r−1(ajz). (5.2)

We claim that the degree in z of the polynomial Aj,k′j,r
(z) is at most n + K ′

j,r − 1. (1)

To prove this observation, which is non trivial, we first observe that, by Leibniz’s rule, we
have the identity

dp

dtp
(
t−qSm(zt)

)

=

p∑

k=0

(
p

k

)
dk

dtk
(t−q)

dp−k

dtp−k
(Sm(zt)) =

p∑

k=0

(
p

k

)
(−1)k(q)k

tk+q
zp−kSm−p+k(zt).

By comparison with (5.2), we thus obtain the expression

Aj,k′j,r
(z) = (−1)pa

n+p+K′
j,r

j

dp

dap
j

(
a
−n−K′

j,r

j Sn+K′
j,r+p−1(ajz)

)
. (5.3)

A simple computation based on (5.3) then proves that the degree in z of Aj,k′j,r
(z) is at

most n + K ′
j,r − 1. It follows that the degree in z of the polynomial in (5) is at most

n + (r − 1)p− 1.
We are now in position to prove that the rational fraction (5.1) is exactly the type II

Padé approximant of parameter ( n + (r− 1)p− 1, p ) of (exp(ajz))j=1,...,r. The expression
of this II Padé approximants is well-known and goes back to Hermite [7], who used them
for proving the transcendency of e. For example in [9], one finds the following integral
expressions of Hermite:

Qa,n,p(z) =
zn+rp

(n + rp− 1)!

∫ ∞

0

T (x) e−zx dx (5.4)

Pj,a,n,p(z) =
eajzzn+rp

(n + rp− 1)!

∫ ∞

aj

T (x) e−zx dx, j = 1, . . . , r

Rj,a,n,p(z) =
eajzzn+rp

(n + rp− 1)!

∫ aj

0

T (x) e−zx dx, j = 1, . . . , r

where T (x) = xn−1
∏r

j=1(x− aj)
p. The polynomials Qa,n,p(z) and Pj,a,n,p(z) are of degree

respectively less than rp and n + (r − 1)p − 1 ; the factor (n + rp − 1)! ensures that

1This is a very special property: if in (5.2), one replaces Sn+K′
j,r+p−1 by any polynomial of degree

n + K ′
j,r + p− 1, then the degree of the corresponding Aj,k′j,r

(z) is usually n + K ′
j,r + p− 1
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Qa,n,p(1) = 1. Finally, we clearly have

Rj,a,n,p(z) = Qa,n,p(z)eajz −Pj,a,n,p(z) = O (
zn+rp

)
, j = 1, . . . , r.

It remains to prove that the quotients
Pj,a,n,p(z)

Qa,n,p(z)
, j = 1, . . . , r, are equal to the Remain-

der Padé approximant given by (5.1). But from the expansion

T (x) = xn−1

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai)

p−ki

)
xKr

and the formula

Sn(az) =
n∑

k=0

(az)k

k!
=

zn+1eaz

n!

∫ ∞

a

xn e−zx dx,

we readily find that

Qa,n,p(z) =
1

(n)rp

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(n)Kr (5.5)

Pj,a,n,p(z) =
1

(n)rp

p∑

k1,...,kr=0

( r∏
i=1

(
p

ki

)
(−ai z)p−ki

)
(n)KrSn+Kr−1(ajz).

These expressions are found to match exactly with their respective counter-parts in the
right hand side of (5.1) for j = 1, . . . , r. The proof of theorem 2 is therefore complete.

We conclude this section with a marginal but interesting observation. The proofs of the
previous theorems use the link between multiple Charlier polynomial (4.1) for p1 = p2 =
· · · = pr and the denominator (5.4) of the simultaneous Padé approximations of exponential
function:

C−az,p(−n) = (n)rp Qa,n,p(z)

=
zn+rp

(n− 1)!

∫ ∞

0

T (x) e−zx dx

=
1

(n− 1)!

∫ ∞

0

sn−1

r∏
j=1

(s− aj z)p e−s ds

The formulas in (5.4) and (5.5) can be re-written in the general case p = (p1, . . . , pr),
providing the following corollary which complements previous formulas in [3].

Corollary 1. The multiple Charlier polynomials

Cc, p(X) =

p1∑

k1=0

· · ·
pr∑

kr=0

( r∏
i=1

(
pi

ki

)
(ci)

pi−ki

)
(−X)k1+···+kr
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satisfy

Cc ,p(X) =
1

Γ(−X)

∫ ∞

0

s−X−1

r∏
j=1

(s + cj)
pj e−sds, (5.6)

where c = (c1, . . . , cr) and p = (p1, . . . , pr) ∈ Nr.

Proof. We expand the integrand in (5.6 ) as:

r∏
j=1

(s + cj)
pj =

p1∑

k1=0

· · ·
pr∑

kr=0

r∏
j=1

(
pj

kj

)
skj c

pj−kj

j

form which we deduce another expression of the integral

∫ ∞

0

s−X−1

r∏
j=1

(s + cj)
pje−sds =

p1∑

k1=0

· · ·
pr∑

kr=0

∫ ∞

0

(
r∏

j=1

(
pj

kj

)
c
pj−kj

j

)
s−X−1+Kre−sds

=

p1∑

k1=0

· · ·
pr∑

kr=0

r∏
j=1

(
pj

kj

)
c
pj−kj

j Γ(Kr −X),

where Kr = k1 + · · ·+ kr. The simplification Γ(Kr−X)
Γ(−X)

= (−X)Kr completes the proof. ¤

6. The case of logarithms and some questions

Two natural questions one may ask about the Remainder Padé phenomenon are “Why
does it occur?” and “Does it occur often?”. Concerning the first question, we must admit
that the coincidence between two different Padé approximants construction is a mystery,
for which we can’t offer an explanation but rather a verification. Formally, the problem is
the following: assume that we are given a power series F (z) =

∑∞
k=0 fk zk such that there

exist a function Gz(t), C∞ at 0 with a (possibly formal) Taylor series Ĝz(t) =
∑∞

k=0 gk(z)tk,
and a suitable normalizing sequence an(z) such that

F (z) =
n−1∑

k=0

fk zk + an(z) Gz(1/n).

(For the exponential function, we have an(z) = fnz
n.)

Under what conditions on F does there exist a link between the Padé approximants to

F (z) and those to Ĝz(t)? Concerning the second question, we are aware of only one other
example (except those mentioned in the introduction, which are more related to numbers
than to power series). Indeed, in [10], the first author also discovered a Remainder Padé
phenomenon for the function L(z) = − log(1− z): he wrote the remainder as

L(z) =
n−1∑

k=1

zk

k
+

zn

n
ϑz(1/n)
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and noted that the function ϑz(t) admits a Taylor expansion (with zero radius of con-

vergence) ϑ̂z(t) =
∞∑

k=0

Rk(−1/z)

1− z
(−t)k where the R’s are the eulerian numbers defined

by

1 + z

exp(x) + z
=

∞∑

k=0

Rk(z)
xk

k!
.

A classical family of orthogonal polynomials of Carlitz [5] enabled him to prove the following
result, reminiscent of (2.3): for n ≥ p,

n−1∑

k=1

zk

k
+

zn

n
[ p− 1/p ]bϑz

(1/n) = [ n− 1/p ]L(z). (6.1)

In the following, we display a sketch of the proof of (6.1), slightly modified to be in harmony
with the similar results proved in Theorem 2 for Padé Hermite approximants of exponential
functions.

Let Θ be defined as the linear functional acting on the space of polynomials by
〈
Θ, xk

〉
=

Rk(−1/z)/(1−z), where z is considered as a parameter. The moments of Θ can be seen as
a sum of Dirac distribution on N (see [5]). Hence, the orthogonal polynomial with respect
to Θ are linked with Meixner I polynomials and given by

tp
p∑

k=0

z−k(z − 1)k

(
p

k

)(−1/t

k

)
.

Then, the Remainder Padé approximant of L (i.e., the left hand side of (6.1)) is

n−1∑

k=1

zk

k
−

p∑

k=0

zn−k(z − 1)k

(
p

k

)(−n

k

) k∑
i=1

1

i
(−n

i

) zi−1

(1− z)i

p∑

k=0

z−k(z − 1)k

(
p

k

)(−n

k

) . (6.2)

The proof is based on a simple expression for the modified moments

〈
Θ,

(−x

k

)〉
=

zk

(1− z)k+1
,

whose proof is similar to the one of lemma 2. The denominator of the Remainder Padé
approximant is related to Legendre polynomial

p∑

k=0

z−k(z − 1)k

(
p

k

)(−n

k

)
= P (n)

p

(
2

z
− 1

)
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where P
(n)
p is the Legendre polynomial of degree p, orthogonal with respect to the weight

xn on [0, 1]. Another expression of the numerator of the RPA

−
p∑

k=0

z−k(z − 1)k

(
p

k

)(−n

k

) (
n−1∑

k=1

zk

k
−

k∑
i=1

1

i
(−n

i

) zn+i−1

(1− z)i

)
,

implies that the difference between L(z) and the expression in (6.2) can be written as

−

p∑

k=0

z−k(z − 1)k

(
p

k

)(−n

k

) (
L(z)−

∫ z

0

tn+k−1

(1− t)k+1
(−n

k

) dt

)

P
(n)
p (2/z − 1)

= L(z)− 1

P
(n)
p (2/z − 1)

∫ z

0

(z − t)p

(1− t)p+1
tn−1z−p dt

= L(z)− 1

zpP
(n)
p (2/z − 1)

∫ 1

0

(1− u)p

(1− z u)p+1
un−1z−n+p du.

We remark that this is exactly the error for the Padé approximant [n − 1/p] of L, which
was the desired result.

Surprisingly, this example does not seem to extend to the family
(− log(1− ajz)

)
j=1,...,r

for which certain type II Padé approximants are known: see [11]. Indeed, one has

− ln(1− ajz) =
n−1∑

k=1

(ajz)k

k
+

(ajz)n

n
ϑajz(1/n)

with the above notation. For n ≥ rp, we obtain a simultaneous Remainder Padé approxi-
mants for − log(1− ajz), j = 1, . . . , r, of the form

n−1∑

k=1

(ajz)k

k
− (ajz)n

p∑

k1,··· ,kr=0

(
r∏

j=1

(1− 1/ajz)kj

(
p

kj

))(−n

Kr

) Kr∑
i=1

1

i
(−n

i

) (ajz)i−1

(1− ajz)i

p∑

k1,··· ,kr=0

(
r∏

j=1

(1− 1/ajz)kj

(
p

kj

)) (−n

Kr

) (6.3)

with Kr =
∑r

j=1 kj. The proof follows the same lines as for Theorem 1, using the fact that

the numbers ϑ(ajz) are the moments of the distribution on N defined by (ajz)` for ` ∈ N.
The simultaneous Remainder Padé approximants for the L’s are naturally related to the

multiple Meixner I polynomials, also introduced in [2] but, when r ≥ 2, we don’t recover
any type II Padé approximants for

(
log(1 − ajz)

)
j=1,...,r

: indeed, the remainder terms

provided by the approximations in (6.3) don’t satisfy the property of matching the terms
of the initial series as far as the type II Padé approximants do. The case r = 1 is thus an
exception. In any case, it would be very interesting to find others examples in order to
understand better the Remainder Padé phenomenon.
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Approx. Theory 132 (2005) 155-181.
[4] F. Beukers, The values of polylogarithms, Topics in classical number theory, Colloq. Math. Soc. János

Bolyai, Budapest (1981) 219–228.
[5] L. Carlitz, Some polynomials of Touchard connected with the Bernoulli numbers, Canad. J. Math. 9

(1957) 188–190.
[6] S. Fischler and T. Rivoal, Approximants de Padé et séries hypergéométriques équilibrées, J. Math.
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Appl. Math. 67 (1996), no. 2, 219–235.
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