Addendum to "Rational approximation to values of G-functions, and their expansions in integer bases"

S. Fischler, T. Rivoal

In [1], we proved the following result.
Theorem 1. Let F be a G-function with rational Taylor coefficients and with $F(z) \notin \mathbb{Q}(z)$, and $t \geq 0$. Then there exist some positive effectively computable constants $c_{1}, c_{2}, c_{3}, c_{4}$, depending only on F (and t as well for c_{3}), such that the following property holds. Let $a \neq 0$ and $b, B \geq 1$ be integers such that

$$
\begin{equation*}
b>\left(c_{1}|a|\right)^{c_{2}} \text { and } B \leq b^{t} \tag{0.1}
\end{equation*}
$$

Then for any $n \in \mathbb{Z}$ and any $m \geq c_{3} \frac{\log (b)}{\log (|a|+1)}$ we have

$$
\begin{equation*}
\left|F\left(\frac{a}{b}\right)-\frac{n}{B \cdot b^{m}}\right| \geq \frac{1}{B \cdot b^{m} \cdot(|a|+1)^{c_{4} m}} \tag{0.2}
\end{equation*}
$$

From Theorem 1, we deduced
Corollary 1. Let F be a G-function with rational Taylor coefficients and with $F(z) \notin \mathbb{Q}(z)$, $\varepsilon>0, t \geq 0$ and $a \in \mathbb{Z}, a \neq 0$. Let b and m be positive integers, sufficiently large in terms of F, ε, a (and t for m). Then for any integers n and B with $1 \leq B \leq b^{t}$, we have

$$
\left|F\left(\frac{a}{b}\right)-\frac{n}{B \cdot b^{m}}\right| \geq \frac{1}{b^{m(1+\varepsilon)}}
$$

When $F\left(\frac{a}{b}\right)$ is an algebraic irrational, this looks like Ridout's Theorem for algebraic irrational numbers, but this is not really the same. First, if $F\left(\frac{a}{b}\right)$ is an algebraic irrational and b is fixed, then Corollary 1 applies only if ε is not too small with respect to b, and thus we do not get an effective version of Ridout's theorem "in base b " for this number. Second, we don't know if any algebraic irrational number can be represented as a value $F\left(\frac{a}{b}\right)$ to which these results apply.

In this note, we deduce from Theorem 1 the following result, which partially solves these problems.

Theorem 2. Let d be a positive rational number such that $\sqrt{d} \notin \mathbb{Q}$. There exist some constants $\eta_{d}>0, \kappa_{d}>0$ and N_{d} such that for any convergent $\frac{\alpha}{\beta}$ of the continued fraction expansion of \sqrt{d} with $\alpha, \beta \geq N_{d}$, we have

$$
\left|\sqrt{d}-\frac{n}{\alpha^{m}}\right| \geq \frac{1}{\left(\eta_{d} \alpha\right)^{m}} \quad \text { and } \quad\left|\sqrt{d}-\frac{n}{\beta^{m}}\right| \geq \frac{1}{\left(\kappa_{d} \beta\right)^{m}}
$$

for any integer $n \in \mathbb{Z}$ and any m large enough with respect to d, α, β.
In particular, for any $\varepsilon>0$ we have

$$
\left|\sqrt{d}-\frac{n}{\alpha^{m}}\right| \geq \frac{1}{\alpha^{m(1+\varepsilon)}} \quad \text { and } \quad\left|\sqrt{d}-\frac{n}{\beta^{m}}\right| \geq \frac{1}{\beta^{m(1+\varepsilon)}}
$$

provided α and β are large enough (in terms of d and ε).
Proof. Let α, β be any positive integers such that $\left|\alpha^{2}-d \beta^{2}\right| \leq c(d)$ for some given constant $c(d)$. Note that if α / β is a convergent to \sqrt{d}, then

$$
\left|\alpha^{2}-d \beta^{2}\right| \leq \frac{\alpha+\sqrt{d} \beta}{\beta} \leq 2 \sqrt{d}+1
$$

so that $c(d)=2 \sqrt{d}+1$ is an admissible value for all convergents.
Let $f(x)=\sqrt{1-x}$. Then $f\left(\frac{\alpha^{2}-d \beta^{2}}{\alpha^{2}}\right)=\frac{\beta}{\alpha} \sqrt{d}$. Let $d=\frac{u}{v}$ with positive integers u and v. We can apply Theorem 1 to $F=f, a=v \alpha^{2}-u \beta^{2}$ and $b=v \alpha^{2}$, provided that $\alpha^{2}>c_{1}^{c_{2}}\left|\alpha^{2}-d \beta^{2}\right|^{c_{2}}$ where c_{1}, c_{2} depend only on d. This inequality holds a fortiori if we assume that $\alpha \geq\left(c_{1} c(d)\right)^{c_{2} / 2}=: N_{d}$, which we now do. Then

$$
\left|\frac{\beta}{\alpha} \sqrt{d}-\frac{n}{B \cdot\left(v \alpha^{2}\right)^{m}}\right|=\left|f\left(\frac{\alpha^{2}-d \beta^{2}}{\alpha^{2}}\right)-\frac{n}{B \cdot\left(v \alpha^{2}\right)^{m}}\right| \geq \frac{1}{B \cdot\left(1+v\left|\alpha^{2}-d \beta^{2}\right|\right)^{c_{4} m} \cdot\left(v \alpha^{2}\right)^{m}}
$$

for any $1 \leq B \leq v \alpha^{2 t}$, any $n \in \mathbb{Z}$ and any $m \geq c_{3} \frac{\log \left(v \alpha^{2}\right)}{\log \left(1+v\left|\alpha^{2}-d \beta^{2}\right|\right)}$.
Thus

$$
\left|\sqrt{d}-\frac{\alpha n}{\beta B \cdot v^{m} \alpha^{2 m}}\right| \geq \frac{\alpha}{\beta \cdot B \cdot(1+v c(d))^{c_{4} m} \cdot\left(v \alpha^{2}\right)^{m}} .
$$

Note that c_{3} depends on f and t. We now choose $t=2$, so that c_{3} becomes absolute. With $B=\alpha$ and $n=\beta v^{m} n^{\prime}$ (for any $n^{\prime} \in \mathbb{Z}$), we get

$$
\left|\sqrt{d}-\frac{n^{\prime}}{\alpha^{2 m}}\right| \geq \frac{1}{\beta \cdot(1+v c(d))^{c_{4} m} \cdot v^{m} \cdot \alpha^{2 m}} .
$$

On the other hand, with $B=\alpha^{2}$ and $n=\beta v^{m} n^{\prime}$ (for any $n^{\prime} \in \mathbb{Z}$), we obtain

$$
\left|\sqrt{d}-\frac{n^{\prime}}{\alpha^{2 m+1}}\right| \geq \frac{1}{\beta \cdot(1+v c(d))^{c_{4} m} \cdot v^{m} \cdot \alpha^{2 m+1}}
$$

Moreover, assuming $m \geq C(d, \alpha, \beta)$ we have

$$
\beta \cdot(1+v c(d))^{c_{4} m} v^{m} \leq \delta^{m}
$$

for some constant δ that depends only on d. Therefore combining the previous inequalities yields

$$
\left|\sqrt{d}-\frac{n^{\prime}}{\alpha^{m}}\right| \geq \frac{1}{\left(\eta_{d} \alpha\right)^{m}}
$$

for any $n^{\prime} \in \mathbb{Z}$ and any $m \geq C(d, \alpha, \beta)$, where $\eta_{d}>0$ depends only on d.
We now prove the other inequality

$$
\left|\sqrt{d}-\frac{n}{\beta^{m}}\right| \geq \frac{1}{\left(\kappa_{d} \beta\right)^{m}}
$$

Any convergent of $1 / \sqrt{d}$ (except maybe the first ones) is of the form β / α where α / β is a convergent of \sqrt{d}. Therefore we may apply the above result with $1 / d$ and β / α : we obtain

$$
\left|\frac{1}{\sqrt{d}}-\frac{n^{\prime}}{\beta^{m}}\right| \geq \frac{1}{\left(\eta_{d} \beta\right)^{m}}
$$

Since the map $x \mapsto 1 / x$ is Lipschitz around \sqrt{d}, we deduce the lower bound of Theorem 2 by choosing an appropriate constant κ_{d}.

References

[1] S. Fischler, T. Rivoal, Rational approximation to values of G-functions, and their expansions in integer bases, preprint (2015), 18 pages, Manuscripta Mathematica, to appear.
S. Fischler, Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France.
T. Rivoal, Institut Fourier, CNRS et Université Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France

