Addendum to “Rational approximation to values of
G-functions, and their expansions in integer bases’

S. Fischler, T. Rivoal

In [1], we proved the following result.

Theorem 1. Let F' be a G-function with rational Taylor coefficients and with F'(z) ¢ Q(z),
and t > 0. Then there exist some positive effectively computable constants ci, ¢z, c3, ¢4,

depending only on F' (and t as well for c3), such that the following property holds. Let
a#0 and b, B > 1 be integers such that

b> (c1]a|)® and B < V. (0.1)

Then for any n € Z and any m > 63% we have
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From Theorem 1, we deduced

Corollary 1. Let F' be a G-function with rational Taylor coefficients and with F(z) ¢ Q(2),
e>0,t>0anda €7Z, a+#0. Let b and m be positive integers, sufficiently large in terms
of F, e, a (and t for m). Then for any integers n and B with 1 < B < b', we have
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When F(%) is an algebraic irrational, this looks like Ridout’s Theorem for algebraic
irrational numbers, but this is not really the same. First, if '($) is an algebraic irrational
and b is fixed, then Corollary 1 applies only if € is not too small with respect to b, and
thus we do not get an effective version of Ridout’s theorem “in base b” for this number.
Second, we don’t know if any algebraic irrational number can be represented as a value
F(%) to which these results apply.

In this note, we deduce from Theorem 1 the following result, which partially solves
these problems.



Theorem 2. Let d be a positive rational number such that \/d ¢ Q. There exist some
constants ng > 0,kq > 0 and Ny such that for any convergent % of the continued fraction

expansion of V'd with o, 8 > Ny, we have
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for any integer n € Z and any m large enough with respect to d, o, .
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In particular, for any € > 0 we have
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provided « and § are large enough (in terms of d and ¢).

Proof. Let a, 3 be any positive integers such that |a? —d3?| < c¢(d) for some given constant
¢(d). Note that if a/3 is a convergent to v/d, then

la? — dB?| S%S%ﬁﬂrl

so that ¢(d) = 2v/d + 1 is an admissible value for all convergents.

Let f(z) = v/1 —xz. Then f(%) = g\/c_i Let d = % with positive integers u and
v. We can apply Theorem 1 to F = f, a = va® — uB? and b = va?, provided that
a? > c¢?la® — dB?|* where ¢y, c; depend only on d. This inequality holds a fortiori if we
assume that a > (¢;c(d))®/? =: Ny, which we now do. Then
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for fxfr}lly 1 < B <wva*, any n € Z and any m > @W.
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Note that c3 depends on f and . We now choose ¢ = 2, so that c3 becomes absolute. With
B = a and n = pv™n’ (for any n’ € Z), we get
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On the other hand, with B = o? and n = Sv™n/ (for any n’ € Z), we obtain
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Moreover, assuming m > C(d, «, ) we have

B+ (1+ve(d)amu™ < o™

for some constant ¢ that depends only on d. Therefore combining the previous inequalities
yields

for any n’ € Z and any m > C(d, «, ), where 14 > 0 depends only on d.

We now prove the other inequality
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Any convergent of 1/v/d (except maybe the first ones) is of the form /o where a/3 is a
convergent of v/d. Therefore we may apply the above result with 1 /d and /a: we obtain
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Since the map z — 1/x is Lipschitz around V/d, we deduce the lower bound of Theorem 2
by choosing an appropriate constant kg.
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