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Abstract. Hawkins introduced a probabilistic version of Era-
thostenes’ sieve and studied the associated sequence of random
“primes” (pk)k≥1. Using various probabilistic techniques, many
authors have obtained sharp results concerning these random “pri-
mes”, which are often in agreement with certain classical theorems
or conjectures for prime numbers. In this paper, we prove that the
number of integers k ≤ n such that pk+α− pk = α is almost surely
equivalent to n/ log(n)α, for a given fixed integer α ≥ 1. This is
a particular case of a recent result of Bui and Keating (differently
expressed) but our method is different and enables us to provide
an error term. We also prove that the number of integers k ≤ n
such that pk ∈ aN+ b is almost surely equivalent to n/a, for given
fixed integers a ≥ 1 and 0 ≤ b ≤ a − 1, which is an analogue of
Dirichlet’s theorem.

Résumé. Hawkins a défini une version probabiliste du crible d’Éra-
tosthène et étudié la suite des nombres “premiers” aléatoires (pk)k≥1

ainsi créés. Au moyen de diverses techniques probabilistes, de nom-
breaux auteurs ont ensuite obtenu des résultats très fins sur ces
“premiers”, souvent accord avec des théorèmes ou conjectures clas-
siques sur les nombres premiers usuels. Dans ce papier, on prouve
que le nombre d’entiers k ≤ n tel que pk+α − pk = α est presque
sûrement équivalent à n/ log(n)α, pour tout entier α ≥ 1 fixé. C’est
un cas particulier d’un travail récent de Bui and Keating (exprimé
autrement) mais notre méthode est différente et fournit un terme
d’erreur. On montre également que le nombre d’entiers k ≤ n tel
que pk ∈ aN+ b est presque sûrement équivalent à n/a, pour tous
entiers a ≥ 1 et 0 ≤ b ≤ a− 1 fixés, ce qui peut être vu comme un
analogue du théorème de Dirichlet.

1. Introduction

The simplest method for determining a not too large list of prime
numbers is Erathostenes’ sieve. Legendre found an analytical for-
mula for this sieve which can theoretically be used to compute any

Date: October 28, 2008.
1



2

desired value of π(x) := #{1 ≤ k ≤ x : k is prime}. Furthermore,
a variation of Legendre’s formula can be used to prove that π(x) ≤
(e−γ + o(1))x/ log log(x) as x → +∞ (see [13, p. 57]), which is a non-
trivial bound but far from the prime number theorem π(x) ∼ x/ log(x).
Here, γ is Euler’s constant which appears because of Mertens’ theorem

∏
p≤x

(
1− 1

p

)−1

∼ eγ log(x) (x → +∞),

where the product is over all prime numbers p ≤ x. Modern sieve
methods have partially fixed the flaws in Erathostenes’ sieve and en-
abled us to obtain results for π(x) which are closer to the truth, as well
as many other important results in analytical number theory.

Hawkins [5, 6] wondered what would be the behavior of the following
random version of Erathostenes’ sieve. Let A1 be the set of integers
≥ 2, set p1 = 2 and delete independently the elements of A1 \{p1} with
probability 1/p1. Denote A2 the set of the remaining integers and by
p2 the smallest element of A2 which is > p1 and delete independently
the elements of A2 \{p1, p2} with probability 1/p2 and so on. This gen-
erates an increasing sequence (pn)n≥1 of random integers which mimics
the usual prime numbers 1). A natural problem is to estimate the as-
ymptotic behavior of these random primes pn and of the Mertens-like
product

mn :=
∏

1≤k≤n

(
1− 1

pk

)−1

.

There exist two methods for formalizing Hawkins’ random sieve. The
first method (which is combinatorial) was developped by Hawkins [5,
6] then Wunderlich [14, 15] and the second one was developped by
Neudecker and Williams [12]. The latter noticed that (pn,mn; Fn)n≥1 is
a markovian process for the natural filtration Fn = σ(pk, k = 1, . . . , n)
defined by p1 = 2, m1 = 2 and

P
(
pn+1 − pn = j

∣∣Fn

)
=

1

mn

(
1− 1

mn

)j−1

for all integers j ≥ 1 and n ≥ 1. The behaviour of pn and mn has been
extensively studied and is now much better known than the behaviour
of the prime numbers, for which many of the results quoted below and
in the final section are still conjectures:

1Those will not be used anywhere in the sequel and there is no problem in
denoting Hawkins’ “primes” by pn. Of course, Hawkins’ (or random) “primes” have
no reason to be prime numbers but most of the time we will drop the quotation
marks since there will not be any ambiguity.
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– Hawkins [6] proved a “prime number theorem” in L1 and in prob-
ability: with Π(n) =

∑
pk≤n 1, we have E(Π(n)) ∼ n/ log(n) and for

all functions ψ such that ψ(n) = o(log(n)), P
(|Π(n) − E(Π(n))| ≥

nψ(n)/ log(n)2
) ¿ 1/ψ(n)2.

– Wunderlich [14, 15] obtained almost sure (a.s.) analogues of Mer-
tens’ theorem and of the prime number theorem: almost surely, mn ∼
log(n), Π(n) ∼ n/ log(n) and pn ∼ n log(n) as n → +∞. He also
proved a random analogue of the twin prime conjecture:

#
{
1 ≤ k ≤ n : pk+1 − pk = 1

} ∼ n/ log(n) a.s.,

– More recently, Bui and Keating [1] addressed the question of the
number of Hawkins’ primes pn such that for example pn+k − pn is
bounded (for a given fixed k ≥ 1). Lorch [10] also deviced a gener-
alised random sieve to deal with such questions.

As a corollary of their results, which we do not quote, Bui and Keat-
ing proved in particular that, for any integers β ≥ 1 and d ≥ 1, we
have that

#{j ≤ x : j, j + d, j + 2d, . . . , j + (β − 1)d are Hawkins’ primes}
∼ x

log(x)β
a.s. (1.1)

as x → +∞. Of course, for the prime numbers, the exact analogue
of (1.1) is meaningless most of the time. However, Dickson [3] gave
necessary conditions on positive integers d1 < d2 < · · · < dβ−1 such
that j, j+d1, . . . , j+dβ−1 are simultaneously primes for infinitely many
j and he conjectured that these conditions are sufficient. Furthermore,
Hardy and Littlewood [4] conjectured that, in this case, there exists a
constant C(d) > 0 such that

#{j ≤ x : j, j + d1, j + d2, . . . , j + dβ−1 are primes} ∼ C(d)
x

log(x)β

as x → +∞. Both conjectures are still open.

In the first part of this paper, we give a proof of (a different formu-
lation of) the case where d = 1 in (1.1), with an explicit error term
which was not given in [1].

Theorem 1. For any fixed integer α ≥ 1, we have

#
{
1 ≤ k ≤ n : pk+α = pk + α

}
=

n

log(n)α
+O

(n log log(n)

log(n)α+1

)
a.s.

(1.2)
as n → +∞, where the implicit constant depends on α.
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The result is also trivially true for α = 0. When, α = 1, we get
one of Wunderlich’s results mentioned before, plus an error term. Note
that

#
{
1 ≤ k ≤ n : pk+α = pk + α

}
=

#{2 ≤ j ≤ pn : j, j + 1, . . . , j + α are Hawkins’ primes}. (1.3)

By (1.2), the left hand side of (1.3) is equivalent to n/ log(n)α a.s. while
the right hand side (1.3) is equivalent to pn/ log(pn)α+1 a.s. by (1.1)
with β = α + 1 and d = 1: the almost sure random prime number
theorem proved by Wunderlich provides the bridge between both es-
timates. Bui and Keating essentially use Wunderlich’s combinatorial
approach while we use here the markovian approach mentioned above.

In a second part, we consider the distribution of Hawkins’ primes in
the subsequences of the form ak + b (a, b fixed integers) and prove the
following result.

Theorem 2. For any fixed integers a ≥ 1, b with 0 ≤ b ≤ a − 1, as
n → +∞, we have

#{1 ≤ k ≤ n : pk ∈ aN+ b} =
1

a
n +O

( n

log(n)

)
a.s. (1.4)

as n → +∞, where the implicit constant depends on a.

This can be viewed as the analogue of Dirichlet-de la Vallée Poussin’s
theorem for the prime numbers, where a similar estimate holds with
1/ϕ(a) (ϕ is Euler’s totient) instead of 1/a and with the further as-
sumption that a and b are coprime. Of course, it is not surprising that
Hawkins’ sieve cannot detect arithmetical facts such as coprimality or
Dickson’s conditions.

The proofs of both theorems will use the following result, which
gives the speed of convergence in a generalisation of the strong law of
large numbers. We will find that the right hand side of (1.5) is easier to
control than the left hand side, the latter corresponding to the quantity
we want to estimate.

Proposition 1. Consider a process (Xn; Fn)n≥1 and an increasing
sequence (bn)n≥1 of real numbers such that

∑∞
n=1 b−2

n Var(Xn) < +∞
and bn → +∞. Then, as k → +∞,

∑

n≤k

Xn =
∑

n≤k

E
(
Xn|Fn−1

)
+ o(bk) a.s.. (1.5)
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A proof can be found in Loeve’s book [9, p. 387, E].

Acknowledgement. I warmly thank the referee for his/her very care-
ful reading of the paper.

2. Proof of Theorem 1

As already implicit in the Introduction, P and E denote respectively
the probability and (conditional) expectation on the probability space
on which the Markov process (pn,mn; Fn)n≥1 and all the other pro-
cesses considered below are defined.

We need two lemmas to prove Theorem 1.

Lemma 1. For all α ≥ 1 and n ≥ 1, we have

P
(
pn+α − pn = α

∣∣Fn

)
=

1

mα
n

α−1∏
j=1

(
1− 1

pn + j

)α−j

, (2.1)

where, by convention, the empty product is 1 for α = 1.

Proof. For simplicity, we note In+1 = 1{1}(pn+1 − pn) where 1A(x) is
the indicator function of a given set A.

We prove (2.1) by induction on α ≥ 1. When α = 1, the iden-
tity (2.1) reduces to the equality E(In+1|Fn) = m−1

n , which is true for
all n ≥ 1 by definition. Let us suppose that (2.1) holds for α − 1 and
for all n ≥ 1. Note that since (pn)n≥1 is strictly increasing, we have

{
pn+α − pn = α

}
=

α⋂
j=1

{
pn+j − pn+j−1 = 1

}
.

Therefore, the basic properties of conditional expectations justify that
the following chain of equalities holds for any integer n ≥ 1:

P
(
pn+α − pn = α

∣∣Fn

)

= E
(
P

(
pn+α − pn = α

∣∣Fn+1

)∣∣∣Fn

)

= E
(
E

(
In+1In+2 · · · In+α

∣∣Fn+1

)∣∣∣Fn

)

= E
(
In+1 E

(
In+2 · · · In+α

∣∣Fn+1

)∣∣∣Fn

)

= E
(
In+1 P

(
pn+1+α−1 − pn+1 = α− 1

∣∣Fn+1

)∣∣∣Fn

)
. (2.2)
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We can apply the induction hypothesis to the probability P
( · · · |Fn+1

)
occuring inside (2.2) and we get

P
(
pn+α − pn = α

∣∣Fn

)

= E
( In+1

mα−1
n+1

α−2∏
j=1

(
1− 1

pn+1 + j

)α−j−1∣∣∣Fn

)

= E
( In+1

mα−1
n

(
1− 1

pn+1

)α−1
α−2∏
j=1

(
1− 1

pn+1 + j

)α−j−1∣∣∣Fn

)

= E
( In+1

mα−1
n

(
1− 1

pn + 1

)α−1
α−2∏
j=1

(
1− 1

pn + j + 1

)α−j−1∣∣∣Fn

)

=
E(In+1|Fn)

mα−1
n

α−1∏
j=1

(
1− 1

pn + j

)α−j

=
1

mα
n

α−1∏
j=1

(
1− 1

pn + j

)α−j

,

where we used the definition of mn+1 in the second equality. This
finishes the induction. ¤
Lemma 2. For all α ≥ 1, we have

k∑
n=1

1

mα
n

=
k

log(k)α
+O

(k log log(k)

log(k)α+1

)
a.s. (2.3)

as k → +∞. The implicit constant depends on α.

Proof. All the implicit constants in theO and¿ symbols below depend
(at most) on α.

Heyde proved in [8] that mn − log(n) ∼ log log(n) a.s. as n → +∞.
Hence, we have

1

mα
n

− 1

log(n)α
=

log(n)α −mα
n

mα
n log(n)α

¿ log log(n)

log(n)α+1
a.s.

and thus
k∑

n=3

1

mα
n

=
k∑

n=3

1

log(n)α
+O

( k∑
n=3

log log(n)

log(n)α+1

)
a.s..

Since
k∑

n=3

1

log(n)α
=

k

log(k)α
+O

( k

log(k)α+1

)

and
k∑

n=3

log log(n)

log(n)α+1
¿ log log(k)

k∑
n=3

1

log(n)α+1
¿ k log log(k)

log(k)α+1
,
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the result follows. ¤

We are now ready to prove Theorem 1. We have to estimate the
asymptotic behavior of

Πα(k) := #
{
1 ≤ n ≤ k : pn+α = pn + α

}
=

k∑
n=1

Xn+1,

where Xn+1 = 1{α}(pn+α − pn). Using Lemma 1, we have

E(Xn+1|Fn) = P(pn+α − pn = α|Fn) = xnm−α
n ,

where

xn =
α−1∏
j=1

(
1− 1

pn + j

)α−j

.

Furthermore, since Xn+1 = 0 or 1, we have

Var(Xn+1) = E
(
X2

n+1

)− E
(
Xn+1

)2 ≤ 1.

Despite what is suggested by the notation, the random variable Xn+1

is not Fn+1-measurable if α ≥ 2 but only Fn+α-measurable. There-
fore, if α ≥ 2, we cannot apply Proposition 1 directly to estimate∑k

n=1 Xn+1 in terms of
∑k

n=1 E
(
Xn+1|Fn

)
, as we would like to do. To

solve this problem, let us define recursively the random variables X
(j)
n+1,

j = 0, . . . , α, n ≥ 1, by X
(0)
n+1 = Xn+1 and

X
(j)
n+1 = E

(
X

(j−1)
n+1 |Fn+α−j

)
.

For any given j, n, the random variable X
(j)
n+1 is Fn+α−j-measurable

and we also have X
(j)
n+1 = E

(
Xn+1|Fn+α−j

)
. In particular, X

(α)
n+1 =

E
(
Xn+1|Fn

)
. Furthermore, the inequality E(Z|G )2 ≤ E(Z2|G ), which

is a special case of Jensen’s inequality, implies that

Var
(
X

(α)
n+1

) ≤ Var
(
X

(α−1)
n+1

) ≤ · · · ≤ Var
(
Xn+1

) ≤ 1. (2.4)

Using (2.4), for a given j ∈ {0, . . . , α−1}, we can apply Proposition 1

to the process (X
(j)
n+1; Fn+α−j)n≥1 with, for example, bn = n1/2+ε for any

fixed ε > 0 to be specified later. We obtain that

k∑
n=1

X
(j)
n+1 =

k∑
n=1

E
(
X

(j)
n+1|Fn+α−j−1

)
+ o(bk)

=
k∑

n=1

X
(j+1)
n+1 + o(bk) a.s.,
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where the constant in the o depends on α and j. Hence,

α−1∑
j=0

k∑
n=1

(X
(j)
n+1 −X

(j+1)
n+1 ) =

α−1∑
j=0

o(bk) = o(bk) a.s..

On the left hand side, we have a telescoping sum (on j) and after
simplifications, we get

k∑
n=1

Xn+1 =
k∑

n=1

E
(
Xn+1|Fn

)
+ o(bk) a.s..

The last equality can be rewritten as

Πα(k) =
k∑

n=1

xn

mα
n

+ o(k1/2+ε) a.s.

as k → +∞. Since pn → +∞, we have xn = 1 + O(p−1
n ), where the

implicit constant only depends on α, and thus

Πα(k) =
k∑

n=1

1

mα
n

+O
( k∑

n=1

1

mα
npn

)
+ o

(
k1/2+ε

)
a.s..

To finish the proof of the theorem, we note that the series of term
1/(mα

npn) is almost surely convergent by the results of Wunderlich
quoted in the introduction (remember that α ≥ 1). Therefore, using
Lemma 2 we get that, almost surely,

Πα(k) =
k

log(k)α
+O

(k log log(k)

log(k)α+1

)
+O(1) + o(k1/2+ε)

=
k

log(k)α
+O

(k log log(k)

log(k)α+1

)
,

provided that ε < 1/2. This finishes the proof of Theorem 1.

3. Proof of Theorem 2

Given a real number x, the smallest integer ≥ x will be denoted as
usual by dxe and we set Rn = 1−m−1

n . Consider the random variable
Yn which takes the value 1 if pn ∈ aN+ b and 0 otherwise. The process
(Yn)n≥1 is Fn-adapted. We want to estimate ΠD(k) :=

∑k
n=1 Yn as

k → +∞ and for this we follow the same approach as previously: we
seek an increasing sequence bk, as small as possible, such that

k∑
n=1

Yn+1 =
k∑

n=1

E(Yn+1|Fn) + o(bk).
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We have

E
(
Yn+1|Fn

)
= P(pn+1 ∈ aN+ b|Fn)

= P(pn+1 − pn ∈ aN− pn + b|Fn)

=
1

mn

∑

k≥d(pn−b+1)/ae
Rak−pn+b−1

n

=
1

mn(1−Ra
n)

Rad(pn−b+1)/ae−(pn−b+1)
n ,

where we summed the geometric series to get the last equality.
Since Yn = 0 or 1, we have Var(Yn) ≤ 1. Therefore, we can ap-

ply Proposition 1 to the process (Yn; Fn)n≥1 with (bk)k any increas-
ing sequence of real numbers such that

∑
k 1/b2

k < +∞, for exam-
ple bk = k1/2+ε for any ε > 0 to be further specified later. Then,
ΠD(k) = Sk + o(k1/2+ε), where

Sk =
k∑

n=1

1

mn(1−Ra
n)

Rad(pn−b+1)/ae−(pn−b+1)
n .

It is not clear why it is simpler to estimate Sk rather than ΠD(k) but
this turns out to be the case, as we will now show.

Since

0 ≤ ad(pn − b + 1)/ae − (pn − b + 1) ≤ a,

we have
k∑

n=1

Ra
n

mn(1−Ra
n)
≤ Sk ≤

k∑
n=1

1

mn(1−Ra
n)

.

Furthermore, since 0 < Rn < 1, we trivially have that

1

a
≤ 1−Rn

1−Ra
n

≤ 1

aRa−1
n

.

Hence, together with the fact that 1−Rn = m−1
n , we obtain that

1

a

k∑
n=1

Ra
n ≤ Sk ≤ 1

a

k∑
n=1

1

Ra−1
n

. (3.1)

For any real number d, we have Rd
n = 1 + O(m−1

n ) as n → +∞,
where the implicit constant depends on d. Thus, we deduce from (3.1)
that

Sk =
1

a

k∑
n=1

(
1+O

( 1

mn

))
=

k

a
+O

( k∑
n=1

1

mn

)
=

k

a
+O

( k

log(k)

)
a.s.,



10

where we used (a weak form of) Lemma 2 with α = 1 to estimate∑k
n=1 m−1

n . Hence, we have

ΠD(k) =
k

a
+O

( k

log(k)

)
+ o

(
k1/2+ε

)
a.s.

and the result follows provided we choose ε < 1/2.

4. Further readings and some problems

We conclude by mentioning other results in the literature, which
were not necessarily used in this paper but which might interest the
reader. We set li(x) =

∫∞
2

dt
log(t)

, which is equivalent to x/ log(x) when
x → +∞.

– Neudecker and Williams [12] proved the following analogue of the
Riemann hypothesis: there exists a finite non zero random variable L
such that L = limn pn exp(−mn) a.s. and L li(pn/L) = n + O(n1/2+ε)
a.s.. Remember that one of the many formulations of the Riemann’s
hypothesis is that li(pn) = n +O(n1/2+ε).

– Heyde [7] improved the previous result and showed that

lim sup
n→+∞

|L li(pn/L)− n|√
2n log log(n)

≤ 3 a.s.,

In [8], he also proved that pn−n log(n) ∼ n log log(n) and mn−log(n) ∼
log log(n) a.s. as n → +∞.

– Neudecker [11] showed that

lim sup
n→+∞

pn+1 − pn

log(pn)2
= 1 a.s., (4.1)

which is an analogue of Cramér’s conjecture [2] (i.e., that (4.1) holds if
the pn are replaced by the prime numbers). Cramér made his conjecture
in the setting of his famous probabilistic model for the primes, which
has nothing to do with Hawkins’ model.

It would be interesting to continue the study of Hawkins’ sieve. For
example, is it possible to obtain non trivial bounds for the repartition
of random primes which are values of a given polynomial of degree
d ≥ 2? What about random primes which are of the form an + b, for
fixed a ≥ 2, b ∈ Z? What can be said about the integers which can be
written as the sum of two random primes?

Bibliography

[1] H. M. Bui and J. P. Keating, On twin primes associated with the Hawkins
random sieve, J. Number Theory 119.2 (2006), 284–296.



11

[2] H. Cramér, On the order of magnitude of the difference between consecutive
prime numbers, Acta Arith. 2 (1936), 23–46.

[3] L. Dickson, A new extension of Dirichlet’s theorem on prime numbers, Messen-
ger of Math. 33 (1904), 155–161.

[4] G. H. Hardy and J. E. Littlewood, Some Problems of ’Partitio Numerorum.’
III. On the Expression of a Number as a Sum of Primes, Acta Math. 44 (1923),
1–70.

[5] D. Hawkins, The random sieve, Math. Mag. 31 (1957/1958), 1–3.
[6] D. Hawkins, Random sieves. II, J. Number Theory 6 (1974), 192–200.
[7] C. C. Heyde, A loglog improvement to the Riemann hypothesis for the Hawkins

random sieve, Ann. Probab. 6 (1978), no. 5, 870–875.
[8] C. C. Heyde, On asymptotic behavior for the Hawkins random sieve, Proc. AMS

56 (1976), 277–280.
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