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Interpolation series theory (i.e., expansion of entire functions in series of polynomials
where the roots of the polynomials belong to a fixed set of C) played an important rôle in
diophantine approximation at the beginning of the twentieth century. In particular, it was
used by Pólya [6] when he proved that the function 2z is the entire function of smallest
growth which sends N in Z. The transcendence of eα for any algebraic number α 6= 0 was
also obtained by Siegel [8] by expanding exp(z) at suitable interpolation points.

Interpolation methods were crucial in Gel’fond’s proof the transcendence of eπ (see [3]):
this was a first step towards the proof of Hilbert’s 7th problem that αβ is transcendental
when α, β are algebraic numbers, with α 6= 0, 1 and β irrational. He first expanded the
entire function exp(πz) in interpolation series at interpolation points (αn)n≥0 given by the
gaußian integers ordered by increasing modulus and argument, without multiplicity: we
have eπz =

∑∞
n=0 An z(z − α1) · · · (z − αn−1) for all z ∈ C, where the coefficients An are

given by a certain complex integral. By the residue theorem, we obtain

An =
n∑

k=0

eπαk

∏
0≤j≤n

j 6=k
(αk − αj)

=
n∑

k=0

eπαk

ωn,k

= Pn(eπ),

where Pn(X) ∈ Q(i)[X, 1/X] is of degree
√

n/π + o(
√

n) in X and 1/X. Gel’fond then
proved the following results:

1) The number Pn(eπ) is non zero for infinitely many n because exp(πz) is not a poly-
nomial.

2) There exists Ωn ∈ Q(i) such that ΩnPn(eπ) ∈ Z[i][eπ, e−π] and the height Hn of the
Laurent polynomial ΩnPn(X) is bounded by eO(n).

3) We have ΩnPn(eπ) ¿ exp(−n log(n) +O(n)).
The conclusion follows by standard arguments. Despite some works by Boehle [2],

Kuzmin [4] and Siegel [8] for example, interpolation methods were replaced by more pow-
erful (and less explicit) methods based on auxiliary functions contructed thanks to Siegel’s
lemma.

The aim of my talk during the Oberwolfach meeting was to report on my recent work [7],
in which I show how another kind of interpolation process can be used in irrationality
theory. More precisely, I show that the irrationality of log(2), ζ(2) and ζ(3) (Apéry’s
theorem [1]) can be obtained by expanding the Hurwitz zeta function ζ(s, z) =

∑∞
k=1 1/(k+

z)s or related functions in interpolation series of rational functions (not only polynomials).
Such an interpolation process was first studied by René Lagrange [5] in 1935 when the
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degree of the numerators and denominators of the rational summands are essentially equal.
For example, using certain of his formulae, I proved the following:

Theorem 1 (Rivoal, 2006). For all z ∈ C \ {−1,−2, . . .}, we have that

ζ(2, z) =
∞∑

n=0

A2n
(z − n + 1)2

n

(z + 1)2
n

+
∞∑

n=0

A2n+1
(z − n + 1)2

n

(z + 1)2
n

z − n

z + n + 1
,

where A0 = ζ(2) and, for all n ≥ 0,

A2n+1 =
2n + 1

2πi

∫

Cn

(x + 1)2
n

(x− n)2
n+1

ζ(2, x) dx ∈ Qζ(3) +Q

and

A2n+2 =
2n + 2

2πi

∫

Cn

(x + 1)2
n

(x− n)2
n+1

x + n + 1

x− n− 1
ζ(2, x) dx ∈ Qζ(3) +Q.

The curve Cn encloses the points 0, 1, . . . , n but none of the poles of ζ(2, z).

(By definition, (u)0 = 1 and (u)m = u(u+1) · · · (u+m−1) for m ≥ 1.) The irrationality
of ζ(3) is a corollary of this theorem. Indeed, by the residue theorem, it is easy to compute
explicitely the coefficient An and to deduce that

d3
nAn = unζ(3)− vn ∈ Zζ(3) + Z

where dn = lcm(1, 2, . . . , n). Furthermore, from the integral representation of An, we obtain
that

lim sup
n→+∞

(d3
nAn)1/n ≤ e3(

√
2− 1)4 < 1.

Since ζ(2, z) is not a rational function of z, we necessarily have An 6= 0 for infinitely many n
and the irrationality of ζ(3) is proved.

Similarly, the irrationality of log(2) can be deduced from the following result. Let

ζ̃(1, z) =
∞∑

n=1

(−1)n

n + z
.

Theorem 2 (Rivoal, 2006). For all z ∈ C \ {−1,−2, . . .}, we have

ζ̃(1, z) =
∞∑

n=1

An
(z − n + 2)n−1

(z + 1)n

(1)

where, for all n ≥ 0,

An+1 =
2n + 1

2πi

∫

Cn

(x + 1)n

(x− n)n+1

ζ̃(1, x) dx ∈ Q log(2) +Q.

The curve Cn encloses the points 0, 1, . . . , n but none of the poles of ζ̃(1, z).
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I don’t know if it is possible to obtain the irrationality of ζ(2) by means of R. Lagrange’s
interpolation. Instead, I found new interpolation formulae which enabled me to use rational
functions with unequal degrees for the numerators and denominators. The irrationality of
ζ(2) is then a consequence of the following theorem. By a slight abuse of notations, let

ζ(1, z) =
∞∑

n=1

(
1

n
− 1

n + z

)
.

Theorem 3 (Rivoal, 2006). For all z ∈ C \ {−1,−2, . . .}, we have

ζ(1, z) =
∞∑

n=0

An
(z − n + 1)2

n

(z + 1)n

+
∞∑

n=0

Bn
(z − n + 1)2

n

(z + 1)n

z − n

z + n + 1

where A0 = B0 = 0 and, for all n ≥ 1,

An =
1

2πi

∫

Cn

(x + 1)n(x− n)

(x− n)2
n+1

ζ(1, x) dx ∈ Qζ(2) +Q

and

Bn =
2n

2πi

∫

Cn

(x + 1)n

(x− n)2
n+1

ζ(1, x) dx ∈ Qζ(2) +Q.

The curve Cn encloses the points 0, 1, . . . , n but none of the poles of ζ(1, z).
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