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1. Diophantine results for modular forms

Let z, q ∈ C be such that Im(z) > 0 and |q| < 1.
We consider Ramanujan’s q-series

P (q) = 1− 24
∞∑
n=1

nqn

1− qn
, Q(q) = 1 + 240

∞∑
n=1

n3qn

1− qn
, R(q) = 1− 504

∞∑
n=1

n5qn

1− qn

and the function

J(q) = 1728
Q(q)3

Q(q)3 −R(q)2
.

We also define the Fourier series E2(z) = P (e2iπz), E4(z) = Q(e2iπz), E6(z) = R(e2iπz)
and the modular invariant j(z) = J(e2iπz), where Im(z) > 0: the functions E4, E6 and j
are modular forms with respect to SL2(Z), while E2 is only quasi-modular with respect to
SL2(Z). Sometimes E2(q), E4(q) and E6(q) are just alternative notations for P (q), Q(q)
and R(q) (see [4, p. 159]); the choice of the variable z vs. q makes this clear in the sequel.
These functions satisfy the non-linear differential system (as functions of q)

q
dE2

dq
=
E2

2 − E4

12
, q

dE4

dq
=
E2E4 − E6

3
, q

dE6

dq
=
E2E6 − E2

4

2
. (1.1)

The Diophantine study of the values taken by modular forms and functions has a long
history, see [4]. We quote the following results.

Theorem 1 (Bertrand [3]). For any q such that 0 < |q| < 1, the numbers E4(q) and
E6(q) can not be simultaneously algebraic. Equivalently, for any q such that 0 < |q| < 1 et
J(q) /∈ {0, 1728}, the numbers J(q) and qJ ′(q) can not be simultaneously algebraic.

This is in fact a consequence of a more general result of Schneider, expressed in a different
language. When q is algebraic, Bertrand’s theorem is also a consequence of the more recent

Theorem 2 (Théorème stéphanois [2]). For any q such that 0 < |q| < 1, the numbers q
and J(q) can not be simultaneously algebraic.

Both theorems are now consequences of

Theorem 3 (Nesterenko [6]). For any q such that 0 < |q| < 1, at least three of the numbers
q, E2(q), E4(q) and E6(q) are algebraically independent over Q.
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André obtained a particular case of Bertrand’s theorem in [1], though the result is
stated and proven for certain hypergeometric functions. His method of simultaneous adelic
uniformization is very general in principle but it has been applied so far essentially only to
those he delt with. In particular, his hypergeometric functions have a special connection
to the modular world, which is not universal amongst hypergeometric functions.

2. Hypergeometric functions and modular forms

The generalized hypergeometric function is defined as

p+1Fp

[
a0, a1, · · · , ap

b1, · · · , bp
;x

]
=
∞∑
n=0

(a0)n(a1) · · · (ap)n
(1)n(b1)n · · · (bp)n

xn.

where |x| < 1, (r)0 = 1 and (r)m = r(r + 1) · · · (r +m− 1) for m ≥ 1, and the parameters
aj, bj are suitable complex numbers.

In the sequel, we will be consider the function

F (t) = 2F1

[
1
12
, 5

12
1

; t

]2
= 3F2

[
1
2
, 1

6
, 5

6
1, 1

; t

]
. (2.1)

The second equality is a particular case of Clausen’s identity [7, p. 75, eq. (2.5.7)].
There exists a well-known connection between modular forms and hypergeometric series,

going back to Klein at least. More recently, Stiller obtained a very elegant formulation.
Let us define t(q) = 1728

J(q)
∈ Q[[q]]. It is an holomorphic function at q = 0, and |t(q)| < 1 iff

|J(q)| > 1728 (i.e, if |q| is sufficiently close to 0).

Theorem 4 (Stiller [8]). For any q ∈ C such that |q| < 1 and |J(q)| > 1728, we have

E4(q) = F
(
t(q)

)2
and E6(q) =

(
1− t(q)

)1/2
F
(
t(q)

)3
, (2.2)

where the principal branch of the logarithm is chosen to define the square root.

It is natural question to wonder if E2(q) can also be expressed with similar hypergeo-
metric functions. We prove the following result.

Theorem 5. For any q ∈ C such that |q| < 1 and |J(q)| > 1728, we have

E2(q) =
(
1− t(q)

)1/2(
F
(
t(q)

)
+ 6t(q)F ′

(
t(q)

))
(2.3)

= 2F1

[
1
12
, 5

12
1

; t(q)

]
· 2F1

[
− 1

12
, 7

12
1

; t(q)

]
. (2.4)

Proof. The hypergeometric function F (t) is solution of the differential equation[
θ3 − t

(
θ +

1

2

)(
θ +

1

6

)(
θ +

5

6

)]
y(t) = 0, θ = t

d

dt
. (2.5)

Moreover,

J ′(q) = − E6(q)

qE4(q)
J(q)
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from which we deduce that

t′(q) =
E6(q)

qE4(q)
t(q). (2.6)

Let D(q) denote the function on the right-hand side of (2.3), which is holomorphic at
q = 0. Using (2.2), (2.5) and (2.6), some tedious computations show that D(q), E4(q) and
E6(q) satisfy

q
dD

dq
=
D2 − E4

12
, q

dE4

dq
=
DE4 − E6

3
, q

dE6

dq
=
DE6 − E2

4

2
. (2.7)

This system is formally the same as (1.1) with E2(q) replaced by D(q), and we shall now
prove that D(q) = E2(q).

For this, let us consider the differential equation (extracted from (2.7)):

12q
dY

dq
= Y 2 − E4 (2.8)

where Y (q) =
∑∞

n=0 ynq
n ∈ C[[q] is an unknown function. For simplicity, we set E4(q) =∑∞

n=0 enq
n. Eq. (2.8) implies that

12nyn = −en +
n∑
j=0

yjyn−j, n ≥ 0.

For n = 0, we deduce that y20 = 1. Moreover, for n ≥ 1, we have

(12n− 2y0)yn = −en +
n−1∑
j=1

yjyn−j

which determines each yn uniquely once the value of y0 is fixed. Hence, (2.8) has exactly
two solutions Y (q) ∈ C[[q]], one for y0 = 1 and the other one for y0 = −1. Now, D(q) and
E2(q) are both solutions of (2.8) and D(0) = E2(0) = 1. Hence D(q) = E2(q) as expected.

Eq. (2.4) follows from (2.1) and (2.3) by Euler’s hypergeometric identity [7, p. 10, eq.
(1.3.15)]. �

3. Further remarks

Let us consider the three series in Q[[t]], of hypergeometric type, defined by

A(t) := (1− t)1/2
(
F (t) + 6tF ′(t)

)
, B(t) := F (t)2, C(t) := (1− t)1/2F (t)3.

Using Ramanujan’s system for E2(q), E4(q), E6(q) and Eq. (2.6), we get
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Proposition 1. We have

t
A(t)

dt
=

B(t)

12C(t)

(
A(t)2 −B(t)

)
t
B(t)

dt
=

B(t)

3C(t)

(
A(t)B(t)− C(t)

)
t
C(t)

dt
=

B(t)

2C(t)

(
A(t)C(t)−B(t)2

)
.

Up to the multiplicative factor B(t)/C(t), this is the same differential system as the
one satisfied by E2(q), E4(q), E6(q). Hence, the ring C[A(t), B(t), C(t)] is left stable by the

differential operator tC(t)
B(t)

d
dt

.

As we now explain, the functions A,B,C are “universal” in some sense. Let T (q) be
an hauptmodul holomorphic at 0 and vanishing at q = 0. We can use T (q) instead of
t(q) = 1728

J(q)
. Since J(q) generates over C the field of modular functions (over SL2(Z)),

there exists ϕ(X) ∈ C(X) such that T (q) = ϕ(t(q)).
Given such a T , consider a(t), b(t), c(t) the functions (holomorphic at t = 0) such that

E2(q) = a(T (q)), E4(q) = b(T (q)), E6(q) = c(T (q)).

We thus have

A(t(q)) = a(T (q)), B(t(q)) = b(T (q)), C(t(q)) = c(T (q))

in a neighborhood of q = 0, so that

A(t) = a(ϕ(t)), B(t) = B(ϕ(t)), c(t) = C(ϕ(t)),

in a neighborhood of t = 0.
Thus, we see that a, b, c are not really different from A,B,C as they can expressed in

terms of the hypergeometric function F and the reciprocal of ϕ. We remark that the func-
tions in the sets {a(t), b(t), c(t)}, {a(t), a′(t), a′′(t)}, {b(t), b′(t), b′′(t)} et {c(t), c′(t), c′′(t)}
are algebraically dependent over C(t). It is thus not clear if one can get Nesterenko’s theo-
rem with such functions by means of [1, p. 119, Theorem 4], where algebraic independence
is an hypothesis.

André did not use Stiller’s hypergeometric F (t), but instead 2F1[
1
2
, 1
2
; 1; t], which satisfies

2F1

[
1
2
, 1

2
1

;
(θ2(q)
θ3(q)

)4]4
= θ3(q)

8

where

θ2(q) = 2
∞∑
n=1

q(n−1/2)
2

, θ3(q) = 1 + 2
∞∑
n=1

qn
2

.

Note that
( θ2(q)
θ3(q)

)4
is a modular function and that

E4(q
2) = θ2(q)

8 + θ3(q)
8 − θ2(q)4θ3(q)4.
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