
HYPERGEOMETRIC CONSTRUCTIONS OF RATIONAL
APPROXIMATIONS FOR (MULTIPLE) ZETA VALUES

TANGUY RIVOAL

This survey presents certain results concerning the diophantine nature of zeta values

or multiple zeta values that I have obtained over the last few years, with or without

coauthors. I did not try to cover all the known results concerning the diophantine theory

of the Riemann zeta function and more informations are available in [12] for example.

The first part is a presentation of irrationality results for the values of the Riemann zeta

function, together with a description of the memoir [17] joint with Christian Krattenthaler

on the “Denominators conjecture”. The second part describes some of the results in two

papers with J. Cresson and S. Fischler [10, 11], both devoted to the construction of linear

forms in multiple zeta values, which are generalisations of Riemann zeta function. I warmly

thank K. Matsumoto and H. Tsumura, the organisers of the franco-japanese winter school

in january 2008 at Miura seaside, for giving me the opportunity to publish this survey in

the proceedings of that conference.

In diophantine approximation, proofs of irrationality, linear independence, etc, usually

rely on the construction of “auxiliary functions” and this is also the case here. Indeed,

the results presented in both parts of the paper are proved by means of explicit auxiliary

functions, which turn out to be hypergeometric series in one or several variables. (The

underlying aspect “Padé approximants” will not be developped.) Therefore, before going

into the subject, it is useful to remind the reader of the definition of those series. These

are power series defined by

q+1Fq

[
α0, α1, . . . , αq

β1, . . . , βq
; z

]
=

∞∑

k=0

(α0)k (α1)k · · · (αq)k

k! (β1)k · · · (βq)k

zk,

where αj ∈ C, βj ∈ C \ Z≤0 and (x)m = x(x + 1) · · · (x + m − 1) is the Pochhammer

symbol. Such series converge for all z ∈ C such that |z| < 1, and for z = ±1, provided

that Re(β1 + · · · + βq) > Re(α0 + α1 + · · · + αq). The literature (see [3, 16, 22]) contains

various special kind of hypergeometric series whose parameters satisfy particular relations.

For example, a hypergeometric series is said to be
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• balanced if α0 + · · ·+ αq + 1 = β1 + · · ·+ βq;

• nearly-poised (of the first kind) if α1 + β1 = · · · = αq + βq;

• well-poised if α0 + 1 = α1 + β1 = · · · = αq + βq;

• very-well-poised if it is well-poised and α1 = 1
2
α0 + 1.

In ths first section, we will show that the very-well-poised case is of special importance.

In the second section, we will present multiple series which are non-trivial generalisation

of one variable very-well-poised series.

1. Values of the Zeta function and the Denominators Conjecture

In this section, we discuss the appearance of very-well-poised hypergeometric series as a

tool for studying the diophantine nature of the values of the Riemann zeta function at pos-

itive integers. In this context, we give examples of an important and general experimental

phenomenon known as the Denominators Conjecture which in principle should enable us

to obtain better irrationality results. We explain the ideas behind its proof, which was

obtained by C. Krattenthaler and the author in [17].

1.1. A general construction. A simple way of proving irrationality results for zeta values

is to start with a rational function of the form

Rn(k) =
Qn(k)

(k(k + 1) · · · (k + n))A
=

Qn(k)

(k)A
n+1

∈ Q(k)

where n ≥ 0 and A ≥ 1 are integers, Qn(k) ∈ Q[k], and then consider the series

Sn(z) =
∞∑

k=1

Rn(k)z−k

which we assume to be convergent for z = 1, forcing deg(Qn(k)) ≤ A(n + 1) − 2. Then,

by partial fractions expansion of Rn(k), it is easy to prove that there exist polynomials

(Pj,n(z))j=0,...,n in Q[z], of degree at most n such that

Sn(z) = P0,n(z) +
A∑

j=1

Pj,n(z) Lij(1/z).

Here, we have encountered the polylogarithmic functions defined by Lis(z) =
∑∞

k=1 zk/ks

for s ≥ 1, |z| ≤ 1 and (s, z) 6= (1, 1). Note that for s ≥ 2, Lis(1) = ζ(s) and Lis(−1) = (1−
21−s)ζ(s). Furthermore, under these conditions, it can be proved that dA−j

n Pj,n(z) ∈ Z[z],

where dn = l.c.m.{1, 2, . . . , n}, and P1,n(1) = 0. Consequently, we have that

dA
n Sn(1) = p0,n +

A∑
j=2

pj,nζ(s)
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where pj,n = dAPj,n(1) ∈ Z (and a similar expression for Sn(−1)).

We also have at our disposal the “differential” trick, which generalises the previous

construction: let C ≥ 0 be an integer and consider the series

Sn,C(z) =
∞∑

k=1

1

C!

∂CRn(k)

∂kC
z−k.

Then there exist a polynomial P̃0,n(z) ∈ Q[z], of degree at most n, depending on C such

that

Sn,C(z) = P̃0,n(z) + (−1)C

A∑
j=1

(
j + C − 1

j − 1

)
Pj,n(z) Lij+C(1/z)

where the Pj,n are as above and the polylogarithms are shifted by C. It can be proved that

dA+C
n P̃0,n(1) ∈ Z, hence there exist integers p̃j,n such that

dA+C
n Sn,C(1) = p̃0,n +

A∑
j=2

p̃j,nζ(C + j),

and a similar expression holds for Sn,C(−1). Given this very general construction, the

problem is now to choose suitably A and Qn(k) in order to apply the following criteria for

linear independence, due to Nesterenko [18].

Theorem 1. Given N real numbers θ1, θ2, . . . , θN , suppose there exist N sequences (p`,n)n≥0

of integers such that (i)
∣∣ ∑N

`=1 p`,nθ`

∣∣ = αn+o(n) and (ii) ∀` = 1, . . . , N , |p`,n| ≤ βn+o(n),

for some reals α, β > 0. Then,

dimQ(Q θ1 +Q θ2 + · · ·+Q θN) ≥ 1− log(α)

log(β)
.

If we are only interested in proving the irrationality of one of the numbers θ`, then we

don’t have to check the condition (ii), but only to prove that α < 1 to get a dimension

> 1. Furthermore, in this case, the proof of Theorem 1 is straightforward. Finally, to get

asymptotic values which are as small as possible for |Sn,C(±1)|1/n, heuristically, the first

terms of the sum should be cancelled, i.e. Qn(k) should have a factor ((k−1) . . . (k−m))B =

(k−m)B
m, where B > C (to cancel the effect of the Cth-derivative on Rn(k)). The parameter

m will always be of the form rn for a suitable integer r ≥ 1.

1.2. Irrationality of some values of zeta at the integers. It is well-known that ζ(2) =

π2/6, a result due to Euler, and Legendre proved that π2 is irrational. Hence, one concludes

that ζ(2) is also irrational. But this proof uses a shortcut and it is an interesting problem to

prove the irrationality of ζ(2) without using it. This problem was first solved by Apéry [2],
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who showed that there exist two sequences (αn)n≥0 and (βn)n≥0 such that αn ∈ Z, d2
nβn ∈ Z,

where dn =l.c.m{1, 2, . . . , n} = en+o(n), and

lim
n→+∞

|d2
n(αnζ(2)− βn)|1/n = e2

(√
5− 1

2

)5

< 1. (1.1)

These properties immediately imply that:

Theorem 2. ζ(2) is irrational.

There are many different ways of constructing these sequences and the following “hy-

pergeometric” one is particularly simple:

αnζ(2)− βn = (−1)n n!4

(2n + 1)!2
3F2

[
n + 1, n + 1, n + 1

2n + 2, 2n + 2
; 1

]

= (−1)nn!
∞∑

k=1

(k − n)n

(k)2
n+1

= (−1)n

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)n

(1− (1− x)y)n+1
dxdy.

This hypergeometric series is nearly poised of the first kind. The series on the second

line is suitable for proving, after just expanding in partial fractions the rational function

n!(k − n)n/(k)2
n+1, the existence of αn and βn, while the integral, due to Beukers [5], im-

mediately gives (1.1). The equality between the series and the integral is a straightforward

computation. Furthermore, we obtain

αn =
n∑

j=0

(
n

j

)2(
n + j

n

)
= 3F2

[−n,−n, n + 1
1, 1

; 1

]
.

We now move to the case of ζ(3). Contrary to ζ(2), there is no known shortcut for

proving the irrationality of ζ(3) and in factc, conjecturally, this number has no algebraic

relation with π. Apéry’s great achievement was to give the first proof of this fact (see [2]).

In fact, he proved that there exist two sequences (an)n≥0 and (bn)n≥0 such that an ∈ Z,

d3
nbn ∈ Z and

lim
n→+∞

|d3
n(2anζ(3)− bn)|1/n = e3(

√
2− 1)4 < 1.

These properties imply that:

Theorem 3. ζ(3) is irrational.

Once again, there exist many ways of constructing these sequences. Gutnik [14] and

Beukers [6] independently essentially proposed the following:
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2anζ(3)− bn = −
∞∑

k=1

∂

∂k

(
(k − n)2

n

(k)2
n+1

)

=

∫ 1

0

∫ 1

0

∫ 1

0

xn(1− x)nyn(1− y)nzn(1− z)n

(1− (1− (1− x)y)z)n+1
dxdydz.

Strictly speaking, the series is not hypergeometric but is linked to solutions of a certain

hypergeometric differential equation. Here, the equality between the series and the triple

Beukers’ integral [5] is not completely straightforward. Finally, we have

an =
n∑

j=0

(
n

j

)2(
n + j

n

)2

= 4F3

[−n,−n, n + 1, n + 1
1, 1, 1

; 1

]
.

We now try to give a new and more complicated proof of the irrationality of ζ(2):

the reason for this will become clear later. Let’s consider the following very-well-poised

hypergeometric series

Sn = n!
∞∑

k=1

(
k +

n

2

) (k − n)n(k + n + 1)n

(k)3
n+1

(−1)k (1.2)

=
n!5(3n + 2)!

2(2n + 1)!4
6F5

[
3n + 2, 3

2
n + 2, n + 1, . . . , n + 1

3
2
n + 1, 2n + 2, . . . , 2n + 2

;−1

]
,

which fits into our general scheme. A priori, Sn ∈ Q+Qζ(2) +Qζ(3) but due to the very

special form of the numerator (we will explain this later), we have Sn = −pn
1
2
ζ(2) − qn,

where dnpn and d3
nqn are integers. Unfortunately, such estimates are not enough to give a

new proof of the irrationality of ζ(2), but this would be the case if we could “throw away”

one power of dn for pn and qn. It is possible to give the following expression for pn:

pn = (−1)n+1

n∑
j=0

(n

2
− j

) (
n

j

)3(
n + j

n

)(
2n− j

n

)

·
(

4Hn−j − 4Hj + Hn+j −H2n−j − 1
n
2
− j

)
,

where Hm = 1+1/2+ · · ·+1/m by definition. Hence, there is no reason to expect anything

better than a denominator dn for pn. But, surprisingly, numerical computations suggest

the following:

Claim 1. The number pn and d2
nqn appear to be integers and furthermore, pn and qn are

the same as Apéry’s αn and −βn/2 for ζ(2).

Thus, the proof of this claim would be exactly what we need to give a new proof of

ζ(2) 6∈ Q.
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In fact, the series (1.2) was found after a similar series was produced by K. Ball for ζ(3).

He constructed the following series

Bn = n!2
∞∑

k=1

(
k +

n

2

) (k − n)n(k + n + 1)n

(k)4
n+1

(1.3)

=
n!7(3n + 2)!

2(2n + 1)!5
7F6

[
3n + 2, 3

2
n + 2, n + 1, . . . , n + 1

3
2
n + 1, 2n + 2, . . . , 2n + 2

; 1

]

in the hope that it would give a completely elementary proof of the irrationality of ζ(3), in

the style of the usual irrationality proof of exp(1) (see the introduction of [19]). Of course,

the similarity of Sn and Bn is not an accident, and one has Bn = anζ(3)−bn with dnan and

d4
nbn integers, whereas one would have expected a priori Bn ∈ Q+Qζ(2)+Qζ(3)+Qζ(4).

Note that, once again, the given denominators are to large to get a new proof of ζ(3) 6∈ Q.

The expression for an is

an = (−1)n+1

n∑
j=0

(n

2
− j

) (
n

j

)4(
n + j

n

)(
2n− j

n

)

·
(

5Hn−j − 5Hj + Hn+j −H2n−j − 1
n
2
− j

)

and numerical computations suggest the following improvements:

Claim 2. The numbers an and d3
nbn appear to be integers and furthermore an and bn are

the same as Apéry’s an and bn/2 for ζ(3).

This would be enough to give an elementary proof of the irrationality of ζ(3), since a

simple application of Stirling’s formula proves that

lim
n→+∞

|Bn|1/n = (
√

2− 1)4.

To generalise the series (1.2) and (1.3), the very-well-poised hypergeometric series

Sn,A,r = n!A−2r

∞∑

k=1

(
k +

n

2

) (k − rn)rn(k + n + 1)rn

(k)A
n+1

(−1)kA

= n!A−2r (rn)!A+1((2r + 1)n + 2)!

2((r + 1)n + 1)!A+1

× A+3FA+2

[
(2r + 1)n + 2, 2r+1

2
n + 2, rn + 1, . . . , rn + 1

2r+1
2

n + 1, (r + 1)n + 2, . . . , (r + 1)n + 2
; (−1)A

]
(1.4)

was introduced in [19] and [4] to prove the following result.
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Theorem 4. For any even A ≥ 4,

dimQ(Q+Qζ(3) +Qζ(5) + · · ·+Qζ(A− 1)) ≥ 1 + o(1)

1 + log(2)
log(A). (1.5)

(In fact, it was a similar series without the factor k + n/2, which is useless in this

particular case.) The new parameter r is an integer such that 1 ≤ r ≤ A/2. We now

briefly indicate the steps in the proof of (1.5). The form of the numerator of the summand

first implies that

Sn,A,r = p0,n +
A∑

j=2
j≡A−1[2]

pj,nζ(j),

which involves only odd zeta values if A is even, and dA−j
n is a denominator of pj,n. Using

an explicit expression for the pj,n’s, we can prove that

lim sup
n→+∞

|pj,n|1/n ≤ 2A−2r(2r + 1)2r+1.

Furthermore, we have a Euler type integral representation

Sn,A,r =
((2r + 1)n + 1)!

n!2r+1

∫

[0,1]A+1

∏A+1
j=1 xrn

j (1− xj)
ndxj

(1− x1 · · · xA+1)(2r+1)n

1 + x1 · · · xA+1

(1− x1 · · · xA+1)3

from which we deduce that

0 < lim
n→+∞

|Sn,A,r|1/n ≤ 22r+1r2r−A.

It remains to apply Nesterenko’s linear independence criteria, with the optimal choice

r = [A/ log2(A)], to get (1.5).

Although this is not needed here, we note that, as the reader might have already sus-

pected, numerical computations suggest that:

Claim 3. dA−1
n seems to be a denominator for the pj,n.

Theorem 4 implies that infinitely many numbers ζ(2n + 1) are irrational and the next

problem is of course to decide which ones. Presumably, the answer is all; see the discussion

following the Conjecture 1 in Section 2 for good reasons to believe that. A more modest

aim is to prove the irrationality of ζ(5) or a result in this direction. To do that, let A ≥ 6

be an even integer and consider the series

S̃A,n = n!A−6

∞∑

k=1

1

2

∂2

∂k2

((
k +

n

2

) (k − n)3
n(k + n + 1)3

n

(k)A
n+1

)
,
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which is not exactly hypergeometric, but has enough properties in common with very-well-

poised series to give that

S̃A,n = p̃0,n +
A+1∑
j=5
oddj

p̃j,nζ(j).

Note that differentiating twice together with the numerator of the summand enable us to

have a linear form only in odd zeta values from ζ(5), and not ζ(3). Furthermore, dA+2
n is a

denominator of p̃j,n and we now seek the smallest possible A such that dA+2
n S̃A,n tends to

0 as n tends to infinity. This can be done by first noting that S̃A,n is the real part of the

integral

(−1)nn!A−6

2iπ

∫ c−i∞

c+i∞

(
z +

n

2

) Γ(z)A+3Γ(n− z + 1)3Γ(z + 2n + 1)3

Γ(z + n + 1)A+3
eiπzdz,

(where c is any real in (0, 1)) and then by applying the saddle point method to estimate

the asymptotic behavior of this integral as n tends to infinity. One finds that 20 is the

smallest such A, yielding the following result proved by the author in [20].

Theorem 5. At least one of the nine numbers ζ(5), ζ(7), . . . , ζ(21) is irrational.

Numerical computations suggest that:

Claim 4. For any even A ≥ 6, dA+1
n seems to be a denominator of the p̃j,n.

Here, the consequences would very important since the same argument shows that

d18+1
n S̃18,n tends to 0 (while d18+2

n S̃18,n does not), thus proving, conjecturally, the irra-

tionality of one of the eight numbers ζ(5), ζ(7), . . . , ζ(19).

1.3. A very general phenomenon. In the light of the previous examples, it is time to

adopt a general approach to very-well-poised series of hypergeometric kind.

Let z be a complex number such that |z| ≥ 1, and A, B, C, r be positive integers such

that 1 ≤ 2Br ≤ A. Consider the series

Sn,A,B,C,r(z) = n!A−2Br

∞∑

k=1

1

C!

∂C

∂kC

((
k +

n

2

) (k − rn)B
rn(k + n + 1)B

rn

(k)A
n+1

)
z−k,

which is really hypergeometric when C = 0. According to the general scheme developed

in section 1.1, we have that

Sn,A,B,C,r(z) = p0,C,n(z) + (−1)C

A∑
m=1

(
C + m− 1

m− 1

)
pm,n(z) LiC+m(1/z),

where the polynomials pm,n(X) also depend on A,B and r, but not C, except p0,C,n(X).

Using the trivial but important relation (α)m = (−1)m(−α − m + 1)m (for any α ∈ C),
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one immediately proves that the rational summand of Sn,A,B,C,r(z)

Rn(k) =
(
k +

n

2

) (k − rn)B
rn(k + n + 1)B

rn

(k)A
n+1

satisfies the symmetry Rn(−n − k) = (−1)A(n+1)+1Rn(k), from which one deduces that

znpj,n(1/z) = (−1)A+j+1pj,n(z) (j ≥ 1). Consequently, when A is even, Sn,A,B,C,r((−1)A)

is a rational linear combination of 1, ζ(C + 3), ζ(C + 5), . . . , ζ(C + A − 1), whereas

when A is odd, Sn,A,B,C,r((−1)A) is a rational linear combination of 1, ζ(C + 2), ζ(C +

4), . . . , ζ(C + A − 1). The coefficients of these linear forms satisfy dA+C
n p0,C,n(X) ∈ Z[X]

and dA−m
n pm,n(X) ∈ Z[X], but the evidence above, along with many other numerical com-

putations, led the author to formulate the following conjecture in [21], which contains the

previous Claims 1–4.

Denominators Conjecture. Fix integers A ≥ 2, B ≥ 0, r ≥ 0 and n ≥ 0 (with

0 ≤ 2Br ≤ A). Then the rational numbers dA+C−1
n p0,C,n

(
(−1)A

)
and dA−m−1

n pm,n

(
(−1)A

)

(for all m ∈ {1, . . . , A}) are integers.

Nothing similar holds if the factor k + n/2 is omitted from the series: it corresponds

to the word very in very-well-poised and its presence is crucial. After many partial steps

towards the proof of the conjecture (as witnessed by the different versions posted in the

arXiv), C. Krattenthaler and the author finally proved it completely in [17].

Theorem 6. The Denominators Conjecture is true.

It follows that Claims 1 to 4 are all true. We now explain the ideas behind this result,

which are based on a refined Denominators Conjecture. We will only consider the case

of the “leading” coefficient, that is to say the coefficient pA−1,n

(
(−1)A

)
of ζ(C + A − 1),

which depends on A, B and r but not on C. From now on, we assume that r = 1 and set

Pn(A,B) = (−1)B(n+1)pA−1,n

(
(−1)A

)
. Then,

Pn(A,B) =
n∑

j=0

(n

2
− j

) (
n

j

)A(
n + j

n

)B(
2n− j

n

)B

·
(

(A + B)Hn−j − (A + B)Hj + BHn+j −BH2n−j − 1
n
2
− j

)
. (1.6)

The general estimates prove that dnPn(A,B) ∈ Z.

The Denominators Conjecture claims that Pn(A,B) is always an integer, which is not at

all obvious, all the more because the summands on the right hand side of (1.6) are almost
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never integers themselves. In the case of ζ(2) (A = 3, B = 1) and ζ(3) (A = 4, B = 1), we

could even identify these coefficients as Apéry’s numbers:

Pn(3, 1) = αn and Pn(4, 1) = an. (1.7)

The advantage of (1.7) is that it is much easier to prove an identity and, in fact, (1.7) can

be proved with the help of Zeilberger’s program Ekhad: both sides are shown to satisfy

the same recurrences relations, with the same initial values (see the introduction of [17]

for references). But in the general situation, we do not have an identity to prove and the

first thing to do is to find one. This can be done as follows. In [25], Vasilyev introduced

the following generalisation of Beukers’ integrals for ζ(2) and ζ(3): let E ≥ 2 and

Jn,E =

∫

[0,1]E

∏E
j=1 xn

j (1− xj)
n dxj

QE(x1, x2, . . . , xE)n+1

where QE(x1, x2, . . . , xE) = 1 − (· · · (1 − (1 − x1)x2) · · · )xE. He proved that Jn,4 ∈ Q +

Qζ(2)+Qζ(4) and Jn,5 ∈ Q+Qζ(3)+Qζ(5), while Beukers showed that Jn,2 ∈ Q+Qζ(2)

and Jn,3 ∈ Q+Qζ(3). Vasilyev conjectured that this dichotomy is valid for all E, depending

on the parity of E and this was obtained by Zudilin in [30], who proved the following result.

Theorem 7. For all E ≥ 2, we have that

Jn,E =
n!2E+1(3n + 2)!

2(2n + 1)!E+2 E+4FE+3

[
3n + 2, 3

2
n + 2, n + 1, . . . , n + 1

3
2
n + 1, 2n + 2, . . . , 2n + 2

; (−1)E+1

]
. (1.8)

Indeed, the hypergeometric series (1.8) is a special case of the very-well-poised series (1.4)

and consequently it can be represented as a linear form in odd/even zeta values, where

the coefficient of ζ(E) is exactly (−1)n+1Pn(E + 1, 1). But it is also possible, though quite

difficult, to expand the integral on the left hand side of (1.8) as a linear combinations

of zeta values (and also some multiple zeta values), and then to isolate the coefficient

of ζ(E). Assuming the reasonable, but still conjectural, fact that the values ζ(n), n ≥ 2,

are Q–linearly independent, the comparison of both sides of (1.8) led to guess the following

Refined Denominators Conjecture in the case B = 1. For A = 2m + 1 ≥ 3 odd, set

pn(A, 1) =
∑

0≤i1≤i2≤···≤im≤n

(
n

im

)2(
n + im

n

) m−1∏

k=1

(
n

ik

)2(
n + ik+1 − ik

n

)
,

and for A = 2m ≥ 2 even, set

pn(A, 1) =
∑

0≤i1≤i2≤···≤im≤n

(−1)im

(
n

im

)(
n + im

n

) m−1∏

k=1

(
n

ik

)2(
n + ik+1 − ik

n

)
,
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Then, for all integers A ≥ 2, n ≥ 0, we have that Pn(A, 1) = (−1)An+1pn(A, 1).

It is now quite clear why Pn(A, 1) should be integers, since these refined conjectures

express them as multiple sums of products of binomial coefficients. C. Krattenthaler has

produced an extremely useful electronic version, which he called HYP, of Gasper & Rah-

man’s book [16] that lists the almost infinitely many identities between (q–)hypergeometric

series: HYP is not only an electronic library but, more importantly, a “tool box”, that is

to say one can feed it a hypergeometric series, ask it to perform a certain transform and

output the result. Using this software, it becomes easier (but still very difficult in our

situation) to handle hypergeometric sums and prove the “refined conjectural identities”

above, which are in fact special cases of the following key identity:

2s+5F2s+4

[
a, a

2
+ 1, b1, c1, . . . , bs+1, cs+1,−N

a
2
, 1 + a− b1, 1 + a− c1, . . . , 1 + a− bs+1, 1 + a− cs+1, 1 + a + N

; 1

]

=
(1 + a)N (1 + a− bs+1 − cs+1)N

(1 + a− bs+1)N (1 + a− cs+1)N

∑

k1,k2,...,ks≥0

(−N)k1+···+ks

(bs+1 + cs+1 − a−N)k1+···+ks

·
s∏

j=1

(1 + a− bj − cj)kj
(bj+1)k1+···+kj

(cj+1)k1+···+kj

kj! (1 + a− bj)k1+···+kj
(1 + a− cj)k1+···+kj

. (1.9)

Note that the left hand side is a very-well-poised hypergeometric series. It turned out that

this identity had already been proved by Andrews [1] in the seventies, but without HYP.

From the key identity, it is not only possible to prove the refined Denominators Conjecture

for Pn(A, 0) mentioned above, but also to handle the case of B = 0 and B ≥ 2. Thus

the truth of the Denominators Conjecture for the “leading” coefficients follows more or

less from Andrews’ identity (1.9). More “human” work is required to extract from the

key identity the conjectured denominators of the other coefficients: the interested reader is

refered to [17] for the details, which are far from trivial. For completeness, the conjecture

is proved for 2p0,C,n(±1) rather than for p0,C,n(±1): this is the most difficult case of the

conjecture, and also the most important since its denominator is always the one of the

linear forms in zeta values.

As we have already mentioned in Section 1.2, the Denominators Conjecture enables

us to give new proofs that ζ(2), ζ(3) are irrational and, more importantly, that at least

one of the eight numbers ζ(5), ζ(7), . . . , ζ(19) is irrational. This is proved via the series

(corresponding to A = 18, B = 3, C = 2 and r = 1)

n!12

∞∑

k=1

1

2

∂2

∂k2

((
k +

n

2

) (k − n)3
n(k + n + 1)3

n

(k)18
n+1

)
= p̃0,n +

19∑
j=5
j odd

p̃j,nζ(j),
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where the a priori denominator d20
n of p̃j,n can now be replaced by d19

n . But this refinement

is useless since W. Zudilin proved the following much better result in [31].

Theorem 8. At least one of the four numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational.

To prove this, he uses more complicated very-well-poised series (in a sense, those con-

sidered in this text are the simplest of this kind) and he also formulates a “super” Denom-

inators Conjecture for his linear forms, which is still open. Hence there might be room to

prove that at least one of three numbers ζ(5), ζ(7), ζ(9) is irrational.

2. Linear forms in Multiple Zeta Values

We now turn our attention to a generalisation of the Riemann zeta function ζ(s), given

by the multiple zeta values (abreviated as MZVs; note that in french, the word polyzêtas

is now often used for these series). These are multiple series defined for all integers p ≥ 1

and all p-tuples s = (s1, s2, . . . , sp) of integers ≥ 1, with s1 ≥ 2, by

ζ(s1, s2, . . . , sp) =
∑

k1>k2>...>kp≥1

1

ks1
1 ks2

2 . . . k
sp
p

.

The integers p and s1 + s2 + . . . + sp are the depth and the weight of ζ(s1, s2, . . . , sp)

respectively.

2.1. Goncharov-Zagier’s conjecture. MZVs naturally appear when, for example, one

considers products of values of the zeta function, e.g ζ(n)ζ(m) = ζ(n + m) + ζ(n,m) +

ζ(m,n). In a certain sense, this enables us to “linearise” these products. Except a few

identities such as ζ(2, 1) = ζ(3) (due to Euler), the arithmetical nature of MZVs is no

better understood than that of ζ(s). However, the set of MZVs has a very rich structure

which is well understood, at least conjecturally. (See [26]). For example, let us consider

the Q-vector spaces Zp of R which are spanned by the 2p−2 MZVs of weight p ≥ 2:

Z2 = Qζ(2), Z3 = Qζ(3) + Qζ(2, 1), Z4 = Qζ(4) + Qζ(3, 1) + Qζ(2, 2) + Qζ(2, 1, 1), etc.

Set vp = dimQ(Zp). We have the following conjecture, whose (i) is due to Zagier and (ii)

to Goncharov.

Conjecture 1. (i) For any integer p ≥ 2, we have vp = cp, where cp is defined by the

linear recursion cp+3 = cp+1 + cp, where c0 = 1, c1 = 0 and c2 = 1.

(ii) The Q-vector spaces Q and Zp (p ≥ 2) are in direct sum.

Hence, the sequence (vp)p≥2 should grow like αp (where α ≈ 1, 3247 is a root of the

polynomial X3 − X − 1), which is much less than 2p−2. Thus, conjecturally, there exist
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many linear relations between MZVs of the same weight and none between those of different

weight: in this direction, the theorem of Goncharov [13] and Terasoma [24] claims that

vp ≤ cp for all integers p ≥ 2. It remains to prove the opposite inequality to show (i), but no

non-trivial lower bound for vp is yet known: even if classical relations give v2 = v3 = v4 = 1,

we do not know how to prove that v5 = 2, which is equivalent to the irrationality of

ζ(5)/(ζ(3)ζ(2)). Conjecture 1 is also interesting because it implies the following one.

Conjecture 2. The numbers π, ζ(3), ζ(5), ζ(7), ζ(9), etc, are algebraically independent

over Q.

This conjecture seems completely out of reach. As mentioned in Section 1, a number

of diophantine results have been proved in weight 1, i.e, in the case of the Riemann zeta

function and we saw that these results can all be proved by the study of certain series of

the form
∞∑

k=1

P (k)

(k)A
n+1

(2.1)

where P (X) ∈ Q[X], n ≥ 0, A ≥ 1. The above series can be written as a linear combination

over Q of 1 and the values of zeta at integers. The crucial point is that we can find special

polynomials P such that in these combinations only certain value of zeta occur: ζ(3) in

case (i), values ζ(s) with s odd in cases (ii) and (iii). This comes from a symmetry linked

to the very-well-poised properties of the series (2.1), which we summarize by the following

result.

Proposition 1. Let P ∈ Q[X] of degree at most A(n + 1)− 2, such that

P (−n−X) = (−1)A(n+1)+1P (X).

Then, the series (2.1) is a linear combination, with rational coefficients, of 1 and ζ(s) with

s an odd integer between 3 and A.

2.2. Well-poised-symmetry in several dimensions. Our aim is to present two gener-

alisations, in arbitrary depth, of the symmetry phenomenon stated in Proposition 1, and

whose proofs are given in [11]. Even though no new diophantine results (like those pre-

sented in Section 1) have been obtained so far for the underlying MZVs possible, we hope

that such generalisations will provide new ideas towards such theorems.

Our first result deals with “uncoupled” series, i.e, series over all p-tuples (k1, . . . , kp) ∈
N∗p :
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Theorem 9. Consider integers p ≥ 1, n ≥ 0 and A ≥ 1. Let P ∈ Q[X1, . . . , Xp] be a

polynomial of degree ≤ A(n + 1)− 2 with respect to each of the variables, such that

P (X1, . . . , Xj−1,−Xj − n,Xj+1, . . . , Xp)

= (−1)A(n+1)+1P (X1, . . . , Xj−1, Xj, Xj+1, . . . , Xp)

for any j ∈ {1, . . . , p}. Then, the multiple series

∑

k1,...,kp≥1

P (k1, . . . , kp)

(k1)A
n+1 . . . (kp)A

n+1

(2.2)

is a polynomial with rational coefficients, of degree at most p, in the ζ(s), for s an odd

integer between 3 and A.

For example, when A = 3 or A = 4, this series is a polynomial in ζ(3). When p = 1, we

exactly obtain Proposition 1 (for all A).

From the point of view of diophantine applications, the main drawback of Theorem 9 is

that the summation of k1, . . . , kp is uncoupled. We now describe three disadvantages of

uncoupled series.

First of all, uncoupled series always give polynomials in values of ζ at integers, even if

we omit the symmetry condition in Theorem 9. This remark shows that MZVs cannot

really appear in this setup. Secondly, let us consider again Ball’s series

Bn = n!2
∞∑

k=1

(k +
n

2
)
(k − n)n(k + n + 1)n

(k)4
n+1

.

introduced in Section 1. For all integer n, Bn is a linear form in 1 and ζ(3); this follows

from Proposition 1. For all integers p ≥ 1, the series Bp
n is obviously an uncoupled series

of the the form considered in Theorem 9 with

P (X1, . . . , Xp)

= n!2p(X1 +
n

2
) . . . (Xp +

n

2
)(X1 − n)n . . . (Xp − n)n(X1 + n + 1)n . . . (Xp + n + 1)n

and A = 4. Therefore, Bp
n is a polynomial in ζ(3) of degree (at most) p, from which we

could hope to deduce the transcendence of ζ(3). However, Bp
n does not contain anymore

diophantine information than Bn and it can only gives the irrationality of ζ(3). Finally,

the multiple series which appear in irrationality proofs are generally of the form

∑

k1≥...≥kp≥1

P (k1, . . . , kp)

(k1)A
n+1 . . . (kp)A

n+1

, (2.3)
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i.e, the summation is over ordered indices; it is to this kind of series that one can apply

the algorithm decribed in [10]. For example, when p = 2, A = 2 and

P (X1, X2) = n!(X1 −X2 + 1)n(X2 − n)n(X2)n+1,

Sorokin [23] shows that the sum (2.3) is exactly the linear form in 1 and ζ(3) used by Apéry.

More generaly, a conjecture of Vasilyev [25] claimed that a certain multiple integral, equals

to

n!p−ε
∑

k1≥···≥kp≥1

(k1 − k2 + 1)n . . . (kp−1 − kp + 1)n(kp − n)n

(k1)2
n+1 . . . (kp−1)2

n+1(kp)
2−ε
n+1

, (2.4)

is a rational linear form in zeta values at integers ≥ 2 of the same parity as ε ∈ {0, 1}. The

integral formulation of this conjecture was proved in [30] and a refined version was proved

in [17]: the method is to prove that the series (2.4) is also equal to a simple series to which

Theorem 1 applies. Zlobin [28] recently obtained a completely different proof by a direct

study of the series (2.4), in the spirit of the combinatorial methods developped in [10, 11].

It is then possible to prove results of essentially the same nature as those of [4, 19]: this

confirms our feeling that multiple series with ordered indices are the interesting ones.

We showed in [10] that any convergent series of the form (2.3) can be written as a

rational linear form in MZVs of weight at most pA and of depth at most p (this result

was also obtained independently by Zlobin [27]). Furthermore, we produced an algorithm,

implemented [9] in Pari, to explicitly compute such a linear combination. This enabled us

to discover the symmetry property that we now describe in the special case of depth 2 for

the reader’s convenience.

Theorem 10. Consider integers n ≥ 0 et A ≥ 1, with n even. Let P ∈ Q[X1, X2] be a

polynomial in two variables, of degree ≤ A(n + 1)− 2 in each one, such that




P (X1, X2) = −P (X2, X1)
P (−n−X1, X2) = (−1)A(n+1)+1P (X1, X2)
P (X1,−n−X2) = (−1)A(n+1)+1P (X1, X2)

(2.5)

Then, the double series (2.3) is a linear combination, with rational coefficients,

• of 1,

• of the values ζ(s) with s an odd integer such that 3 ≤ s ≤ 2A,

• of the differences ζ(s, s′)− ζ(s′, s) with s, s′ odd integers such that 3 ≤ s < s′ ≤ A.

(Let us note here that in the series (2.3), the variables k1, . . . , kp are linked by non-strict

inequalities, as in [10], but contrary to the definition of MZVs. This does not cause any
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problems, since it is easy to go from statements with non-strict inequalities to statements

with strict inequalities, and vice-versa.)

Of course, in (2.5), the third condition is a consequence of the first two. If A = 4, this

theorem shows that the double series

∑

k1≥k2≥1

P (k1, k2)

(k1)4
n+1(k2)4

n+1

is a linear form in 1, ζ(3), ζ(5) and ζ(7) (which was far from obvious a priori since this a

double series). For A = 3, we get a linear form in 1, ζ(3), ζ(5). Finally, for A = 2, we get

a linear form in 1 and ζ(3).

To state our main result in arbitrary depth, we need the following notation. For integers

p ≥ 0 and s1, . . . , sp ≥ 2, we set

ζas(s1, . . . , sp) =
∑

σ∈Sp

εσζ(sσ(1), . . . , sσ(p)),

where εσ is the signature of the permutation σ. We call such a linear combination of

MZVs an antisymmetric MZV (even if, for p ≥ 2, it is not an MZV in general). These are

convergent series since each si is supposed ≥ 2. For p = 1, we have ζas(s) = ζ(s). The

natural convention is to set ζas(s1, . . . , sp) = 1 when p = 0 because there exists one unique

bijection of the empty set onto itself. For p = 2, we have ζas(s1, s2) = ζ(s1, s2)− ζ(s2, s1)

and, when p = 3,

ζas(s1, s2, s3)

= ζ(s1, s2, s3) + ζ(s2, s3, s1) + ζ(s3, s1, s2)− ζ(s2, s1, s3)− ζ(s1, s3, s2)− ζ(s3, s2, s1).

By definition, for all σ ∈ Sp, we have

ζas(sσ(1), . . . , sσ(p)) = εσζ
as(s1, . . . , sp),

and ζas(s1, . . . , sp) = 0 once two of the si’s are equal. It seems reasonable to us that in

general an antisymmetric MZV is not a polynomial in values of the Riemann zeta function.

However, any “symmetric” MZV (defined as ζas(s1, . . . , sp) but omiting the signature εσ)

is a polynomial in ζ(s) (by [15], Theorem 2.2).
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Let Ap denotes the set of polynomials P (X1, . . . , Xp) ∈ Q[X1, . . . , Xp] such that:




For all σ ∈ Sp, we have

P (Xσ(1), Xσ(2), . . . , Xσ(p)) = εσP (X1, X2, . . . , Xp).

For all j ∈ {1, . . . , p}, we have

P (X1, . . . , Xj−1,−Xj − n,Xj+1, . . . , Xp)

= (−1)A(n+1)+1P (X1, . . . , Xj−1, Xj, Xj+1, . . . , Xp).

There are redondances in these conditions. If the first one is satisfied, then it is enough

to check the second one for one single value of j. For example, A2 is exactly the set of

polynomials P satisfying the conditions (2.5). Moreover, if P ∈ Ap then P has the same

degree in each variable X1, . . . , Xp. Clearly, the definition of Ap also depends on the parity

of A(n + 1). We can now state our main result.

Theorem 11. Consider integers n ≥ 0 and A, p ≥ 1, with n even. Let P ∈ Ap be of degree

≤ A(n + 1)− 2 in each of the variables. Then, the series

∑

k1≥...≥kp≥1

P (k1, . . . , kp)

(k1)A
n+1 . . . (kp)A

n+1

(2.6)

is a rational linear combination of products of the form

ζ(s1) . . . ζ(sq)ζ
as(s′1, . . . , s

′
q′),

where 



q, q′ ≥ 0 integers such that 2q + q′ ≤ p,
s1, . . . , sq, s

′
1, . . . , s

′
q′ odd integers ≥ 3,

si ≤ 2A− 1 for all i ∈ {1, . . . , q},
s′i ≤ A for all i ∈ {1, . . . , q′}.

(2.7)

When q′ = 0, the antisymmetric MZV ζas(s′1, . . . , s
′
q′) is equal to 1 and we obtain a

product of values of ζ at odd integers. When q = q′ = 0, this produit is empty and we

obtain 1.

If p = 1, Theorem 11 states that (2.6) is a linear combination of 1 and the ζ(s) with odd

s such that 3 ≤ s ≤ A: this is just Theorem 1.

If p = 2, we obtain exactly Theorem 10.

If p = 3, the theorem states that the series is a linear combination of

• products of at most two values of ζ at odd integers ≥ 3,

• antisymmetric MZVs ζas(s1, s2) with s1, s2 ≥ 3 odd,

• antisymmetric MZVs ζas(s1, s2, s3) with s1, s2, s3 ≥ 3 odd.
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In depth p ≥ 4, terms such as q ≥ 1 and q′ ≥ 2 can appear: it seems that the series is not

always the sum of a polynomial in values of ζ(s) (with s odd) and of a linear combination

of antisymmetric MZVs ζas(s1, . . . , sq) with s1, . . . , sq odd.

2.3. Corollaries and examples. When A ≤ 2, we necessarily have q′ = 0 in all the

products, which implies the following corollary.

Corollary 1. Under the hypotheses of Theorem 11, if A ≤ 2, then the series (2.6) is a

polynomial in ζ(3) with rationals coefficients.

Theorem 11 also contains, for example, the following special case.

Corollary 2. Consider integers n, r, t, ε ≥ 0 and A, p ≥ 1, with n even, such that

ε ≡ (A + 1)(n + 1) + 1 mod 2

and

ε + (4r + 2)p + 2t ≤ (A− 1)(n + 1) + 4r.

Then, the convergent series

∑

k1≥...≥kp≥1

[ p∏
i=1

(ki+
n

2
)

]ε

[ ∏
1≤i<j≤p

(ki − kj − r)2r+1(ki + kj + n− r)2r+1

][ p∏
i=1

(ki − t)2t+n+1

]

(k1)A
n+1 . . . (kp)A

n+1

is a linear combination as described in Theorem 11.

An example of application of this corollary is the following series (in which we take

t = 0 and the Pochhammer symbols (ki)n+1 at the numerator cancel out with those at the

denominator):

∑

k1≥k2≥k3≥1

(
k1 +

1

2

)(
k2 +

1

2

)(
k3 +

1

2

)

× (k1 − k2)(k2 − k3)(k1 − k3)(k1 + k2 + 1)(k1 + k3 + 1)(k2 + k3 + 1)

(k1)4
2 (k2)4

2 (k3)4
2

= −1

4
− ζ(3) +

1

4
ζ(5) + ζ(3)2 − 1

4
ζ(7).

∑

k1≥k2≥1

(
k1 +

1

2

)(
k2 +

1

2

)(k1 − k2 − 1)3(k1 + k2)3(k1 − 1)4(k2 − 1)4

(k1)7
2 (k2)7

2

= −1156 + 891 ζ(3) +
189

2
ζ(5) + 78

(
ζ(5, 3)− ζ(3, 5)

)
.
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Finally, let us mention that the series described in the above theorems are related to

the multiple hypergeometric series that can be associated to root systems: see [7, 8] for

example as well as the discussion in [11].
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Théor. Nombres Bordeaux 15.1 (2003), 351–365.
[22] L. J. Slater, Generalized hypergeometric functions, Cambridge University Press, Cambridge, 1966.
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[26] M. Waldschmidt, Valeurs zêta multiples : une introduction, J. Théor. Nombres Bordeaux 12 (2000),
no. 2, p. 581–595.

[27] S. Zlobin, Expansion of multiple integrals in linear forms, Mat. Zametki [Math. Notes] 77 (2005),
no. 5, 683–706 [630–652].

[28] S. Zlobin, Properties of coefficients of certain linear forms in generalized polylogarithms, Fundamental-
naya i Prikladnaya Matematika [Fundamental and Applied Mathemetics] 11 (2005), no. 6, p. 41–58,

[29] W. Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational, Uspekhi Mat. Nauk [Russian
Math. Surveys] 56 (2001), no. 4, p. 149–150 [774–776].

[30] W. Zudilin, Well-poised hypergeometric service for diophantine problems of zeta values, J. Théor.
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