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Abstract. We consider a multi-parameter family of canonical coordinates and mirror
maps originally introduced by Zudilin [Math. Notes 71 (2002), 604–616]. This family in-
cludes many of the known one-variable mirror maps as special cases, in particular many
of modular origin and the celebrated example of Candelas, de la Ossa, Green and Parkes
[Nucl. Phys. B359 (1991), 21–74] associated to the quintic hypersurface in P4(C). In
[Duke Math. J. 151 (2010), 175–218], we proved that all coefficients in the Taylor expan-
sions at 0 of these canonical coordinates (and, hence, of the corresponding mirror maps)
are integers. Here we prove that all coefficients in the Taylor expansions at 0 of these
canonical coordinates are positive. Furthermore, we provide several results pertaining to
the behaviour of the canonical coordinates and mirror maps as complex functions. In
particular, we address analytic continuation, points of singularity, and radius of conver-
gence of these functions. We present several very precise conjectures on the radius of
convergence of the mirror maps and the sign pattern of the coefficients in their Taylor
expansions at 0.

1. Introduction

In the focus of this article there is a multi-parameter family of canonical coordinates
and mirror maps originally introduced by Zudilin [39] (to be defined below). This family
contains many of the known one-variable mirror maps as special cases, including many of
modular origin and the celebrated example of Candelas, de la Ossa, Green and Parkes [10]
associated to the quintic hypersurface in P4(C). For the geometric significance of these
maps see [10, 26, 27, 36]. The number-theoretic properties of the coefficients in the Taylor
expansions at 0 of these canonical coordinates and mirror maps have been investigated
recently in [20] (cf. [13] for a far-reaching generalisation). Our aim here is to provide an as
detailed as possible analysis of the analytic properties of canonical coordinates and mirror
maps. Apart from the intrinsic interest in this kind of investigation, one motivation comes
from the hope of finding more applications of the Diophantine method of (( uniformisation

adélique simultanée )) of André [2], notably to non-modular situations.
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Another connection between number theory and mirror maps can be found in the study
of the arithmetic nature of values of the Riemann zeta function at integers. Apéry’s proof
of the irrationality of ζ(3) (cf. [35]) was recast in terms of modular forms by Beukers [7].
The search for an extension of Beukers’ ideas to ζ(n), n ≥ 4, led Almkvist and Zudilin
[1] to study systematically mirror maps associated to Fuchsian differential equations, not
necessarily of hypergeometric type. In [21], the authors showed that, in fact, many of the
examples of Beukers and of Almkvist and Zudilin can be obtained from suitable specialisa-
tions of hypergeometric multi-variable mirror maps. It would therefore be of great interest
to extend the investigations undertaken in this paper addressing the analytic behaviour of
the family of mirror maps to be introduced below to the family of multi-variable mirror
maps in [21].

Let us now introduce this family of canonical coordinates and corresponding mirror maps.
For a given integer N ≥ 1, let r1, r2, . . . , rd denote the integers in {1, 2, . . . , N} which are
coprime to N . It is well-known that d = ϕ(N), Euler’s totient function, which is given by
ϕ(N) = N

∏
p|N
(
1− 1

p

)
. Set CN := Nϕ(N)

∏
p|Np

ϕ(N)/(p−1), which is an integer because p−1

divides ϕ(N) for any prime p dividing N. Let us also define the Pochhammer symbol (α)m

for complex numbers α and non-negative integers m by (α)m := α(α + 1) · · · (α +m − 1)
if m ≥ 1, and (α)0 := 1. It can be proved (see [39, Lemma 1]) that, for any integer m ≥ 0,

BN(m) := Cm
N

ϕ(N)∏

j=1

(rj/N)m

m!
(1.1)

is an integer.
Let us consider the hypergeometric differential operator L defined by

L :=

(
z

d

dz

)ϕ(N1)+···+ϕ(Nk)

− CNz
k∏

j=1

ϕ(Nj)∏

i=1

(
z

d

dz
+
ri,j

Nj

)
. (1.2)

Here, CN = CN1CN2 · · ·CNk
and the ri,j ∈ {1, 2, . . . , Nj} form the residue classes modulo

Nj which are coprime to Nj. Unless k = 1 and N = (2), the differential equation Ly = 0

is of order ≥ 2. We can construct two solutions as follows. Set H(x,m) :=
∑m−1

n=0
1

x+n
and

HN(m) :=

ϕ(N)∑

j=1

H(rj/N,m) − ϕ(N)H(1,m).

Then, FN(z) and GN(z)+log(z)FN(z) are two C-linearly independent solutions to Ly = 0,
where

FN(z) :=
∞∑

m=0

( k∏

j=1

BNj
(m)

)
zm

and

GN(z) :=
∞∑

m=1

( k∑

j=1

HNj
(m)

)( k∏

j=1

BNj
(m)

)
zm, (1.3)
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and where log(z) denotes the principal branch of the logarithm. For simplicity, we write

BN(m) :=
∏k

j=1 BNj
(m) and HN(m) :=

∑k
j=1 HNj

(m). Since B1(m) = 1 and H1(m) = 0

for all m ≥ 0, the series FN(z) and GN(z) do not change if one omits or adds components
of 1 from/to N. We may therefore assume without loss of generality that Nj ≥ 2 for all j,
which we shall do throughout the paper.

The power series FN(z) and GN(z) have radius of convergence 1/CN. We prove in
Section 3 that the functions FN(z) and GN(z)+log(z)FN(z) can be analytically continued
to C \ [1/CN,+∞) and C \

(
(−∞, 0] ∪ [1/CN,+∞)

)
, respectively.

Given the notation above, we define the canonical coordinate qN(z) as the exponential
of the quotient of the above two solutions, that is, by

qN(z) := z exp(GN(z)/FN(z)). (1.4)

Its compositional inverse, which we denote by zN(q), is called (the corresponding) mirror

map.
When k = 1 and N = (2), we have F(2)(z) = (1− 4z)−1/2, which satisfies the differential

equation (1 − 4z)y′ − 2y = 0. The function G(2)(z) + log(z)F(2)(z) defined formally by
the above formula is not solution of that differential equation, but it turns out that all
theorems stated below are still true in this case because

q(2)(z) = (1 −
√

1 − 4z)2/(4z). (1.5)

However, certain proofs do not work for this case, and we will say when.
The special case N = (5) has been of particular interest since it produces the earlier

mentioned example of Candelas et al. [10].

In [20], we proved that, for any positive integers N1, N2, . . . , Nk, the canonical coordinate
qN(z) has integral Taylor coefficients. Our first result says that these coefficients are, in
fact, positive. Its proof is given in Section 2. An essential ingredient there is a classical
result of Kaluza [19] on the sign of coefficients in certain power series expansions (see
Lemma 2.2).

Theorem 1.1. For all integers N1, N2, . . . , Nk ≥ 2, all Taylor coefficients of qN(z) at 0
are positive, except the constant coefficient.

A problem that suggests itself at this point is to find a combinatorial interpretation for
the Taylor coefficients of qN(z) or of zN(q) (even if the latter may have negative coefficients,
see Conjecture 1.8 below). Some progress in this direction can be found in [23].

The next theorem provides precise information on the radius of convergence and the
asymptotic behaviour of the Taylor coefficients of the canonical coordinate qN(z) as a
power series in z. Here, and in the sequel, given N = (N1, N2, . . . , Nk), we employ the
notation

ΦN :=
k∑

j=1

ϕ(Nj). (1.6)

Theorem 1.2. For all integers N1, N2, . . . , Nk ≥ 2, the following assertions hold:
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(i) The radius of convergence of the Taylor series of qN(z) is equal to 1/CN and the

Taylor series converges for any z such that |z| = 1/CN.

(ii) The function qN(z) has a singularity at z = 1/CN.

(iii) For any z such that |z| ≤ 1/CN, we have |qN(z)| ≤ 1.
(iv) If ΦN = 1, then the m-th Taylor coefficient of q(2)(z) is equal to the m-th Catalan

number 1
m+1

(
2m
m

)
, m ≥ 1, and, hence, as m→ ∞, it is equal to

4m

√
πm3/2

(1 + o(1)) .

(v) If ΦN = 2, then, as m tends to ∞, the m-th Taylor coefficient of qN(z) is equal to

const.× Cm
N

m log2(m)
(1 + o(1)) ,

where throughout the symbol “const.” stands for a non-zero constant.

(vi) If ΦN ≥ 3, then, as m tends to ∞, the m-th Taylor coefficient of qN(z) is equal to

const.× Cm
N

mΦN/2
(1 + o(1)) .

In (iii), the inequality is always strict, except at z = 1/CN when the series FN(1/CN)
diverges to +∞, which happens in five cases: k = 1, N1 = 2, 3, 4 or 6, and k = 2, N1 =
N2 = 2.

Theorem 1.2 is proved in Section 5. There, the analytic continuation of FN(z) and
GN(z), which is discussed in Section 3, plays an important role, as well as the fine behaviour
of these functions near the point 1/CN, which is discussed in detail in Section 4.

By (1.4), the canonical coordinate qN(z) is only defined for z in the disk of convergence
of the series GN(z) and FN(z) involved in its definition. The knowledge of the analytic
continuation of FN(z) and GN(z) from Section 3, combined with a theorem of Pólya [29]
on zeroes of hypergeometric functions, allows us to show that qN(z) can be continued to
a function of the entire complex plane except for a branch cut. The corresponding proof
is the subject of Section 6.

Theorem 1.3. For all integers N1, N2, . . . , Nk ≥ 2, the following assertions hold:

(i) The power series qN(z) can be continued to an analytic function on C\[1/CN,+∞).
(ii) The point 1/CN is a branch point.

(iii) We have

lim
z→∞

qN(z) = − exp
(
− π cot(π/MN)

)
, (1.7)

where MN = max(N1, . . . , Nk), and where the limit has to be performed along a

path that avoids the cut [1/CN,+∞).

The monodromy of qN(z) at z = 1/CN follows from applying the well-known monodromy
theory of solutions to (generalised) hypergeometric equations (cf. [8]) to the series FN(z)
and GN(z) + log(z)FN(z).
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The function qN(z), seen as a formal power series in z, is invertible at z = 0. Its formal
inverse zN(q) is a power series in q which converges in a neighbourhood of q = 0 (cf. [17,
Theorems 2.4b, 2.4c]). The corresponding results for this compositional inverse zN(q) that
we are able to establish are less complete than Theorems 1.1–1.3 for qN(z). First of all,
we use Theorem 1.3 to get some information on the radius of convergence of zN(q) as a
power series in q.

Theorem 1.4. Let N1, N2, . . . , Nk be integers, all at least 2.

(i) The radius of convergence of the Taylor series of zN(q) is at most

exp
(
− π cot(π/MN)

)
.

(ii) If ΦN ≥ 4, then the radius of convergence of the Taylor series of zN(q) is at most

qN(1/CN).

The proof of this theorem is found in Section 7.
Lemma 8.1 in Section 8 provides a comparison of the two values that feature in the above

theorem in the case where ΦN ≥ 4: namely, there it is shown that exp(−π cot(π/MN)) >
qN(1/CN). As we shall see in Section 9, this inequality continues to hold for ΦN = 3, but
it is wrong for the remaining cases ΦN = 1, 2.

In the cases of “small” ΦN, we are able to provide precise information on the analytic
continuation of zN(q), see the theorem below. As we explain in Section 9, this information
is in fact essentially available in the literature on the modular origin of the corresponding
mirror maps. We point out that there exist several other hypergeometric functions (not
covered by our series FN(z)) which give rise to mirror maps of modular origin, see e.g.
[34, 40]. It would be of interest to know if there is a result analogous to the one below for
these mirror maps.

Theorem 1.5. For all integers N1, N2, . . . , Nk ≥ 2 with ΦN ≤ 3, the radius of convergence

of the Taylor series of zN(q) is equal to exp
(
− π cot(π/MN)

)
. The function zN(q) can

be analytically continued to the unit disk with the exception of a set of poles or branch

points which can be described precisely. In particular, − exp
(
− π cot(π/MN)

)
is always a

singularity of zN(q). If N = (2), we have zN(q) = q/(1 + q)2. In all the eight other cases,

the unit circle forms a natural boundary for zN(q).

In Section 9, one also finds precise information on the poles, respectively branch points.
In the case where ΦN ≥ 4, we can offer only the partial result below concerning the

analytic nature of zN(q), with the proof given in Section 10. There, and also later, we use
the notion of a right slit neighbourhood of z0, by which we mean a domain of the form (see
Figure 1)

∆(z0; r, ε) := {z : |z − z0| < r and | arg(z − z0)| > ε} (1.8)

for some r, ε > 0, where it is understood that arg(z − z0) is taken from (−π, π]. A left slit
neighbourhood is defined in the obvious analogous way.

Proposition 1.6. For all integers N1, N2, . . . , Nk ≥ 2 with ΦN ≥ 4, the series zN(q) can

be analytically continued to a domain that contains the half-open segment [0,qN(1/CN)).
Moreover, this domain can be chosen so that it contains as well a right slit neighbourhood
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z0

ε

r

Figure 1. The right slit neighbourhood ∆(z0; r, ε) of z0

of qN(1/CN) (where the angle of the slit, controlled by the parameter ε in (1.8), can be

chosen arbitrarily small).

Remark. The function qN(z) can also be locally inverted at z = ∞. Consequently, the
corresponding local inverse function z̃N(q) is defined in a left slit neighbour-
hood of − exp(−π cot(π/MN)) (see the last paragraph in Section 10). The point
− exp(−π cot(π/MN)) is always a singular point. Whether it is a pole, a branch point,
or an essential singularity, this can be decided in each case by inspecting the expansions at
∞ for qN(z) given in Lemma 4.1 (taking also into consideration the remark after the state-
ment of the lemma), and by subsequently applying Lemma 4.6, with the accompanying
remark in mind. Unfortunately, we do not know how to relate z̃N(q) and zN(q).

Certainly, the above result cannot even answer the innocent question of what the ra-
dius of convergence of zN(q) as a power series in q is. However, we performed extensive
calculations using the computer algebra system PARI/GP [28], in which we computed ap-
proximations to the radius of convergence using the quotient rule up to many digits. These
computations provide abundant evidence for the exact value of the radius of convergence
for the cases where ΦN is “large.”

Conjecture 1.7. For all integers N1, N2, . . . , Nk ≥ 2 with ΦN ≥ 4, the radius of conver-

gence of the Taylor series of zN(q) is equal to qN(1/CN). Moreover, the point qN(1/CN)
is the only singularity of zN(q) on the boundary of its disk of convergence.

We discuss a possible line of argument to prove this conjecture in Section 11.

While, for ΦN = 2, 3, Theorem 1.5 shows that the mirror map zN(q) has a natural
boundary, our computer experiments for ΦN ≥ 4 did not allow us to develop an intuition
whether or not there is a natural boundary for zN(q) in these cases.

Concerning the Taylor coefficients of zN(q) at q = 0, our numerical calculations suggest
a very predictable behaviour.

Conjecture 1.8. Let N1, N2, . . . , Nk be positive integers, all at least 2.

(i) If ΦN ≤ 3, the Taylor coefficients of zN(q) have alternating signs.
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(ii) If ΦN = 4, the coefficients of q and of q3 in the Taylor series of zN(q) are posi-

tive, while all other coefficients are negative, except the constant coefficient, which

vanishes.

(iii) If ΦN ≥ 5, the coefficient of q in the Taylor series of zN(q) is positive, while all

other coefficients are negative, except the constant coefficient, which vanishes.

We show in Section 12 that Conjecture 1.8 implies the first assertion in Conjecture 1.7.
On the other hand, as we show in Section 13, Conjecture 1.7 implies a weak version of
Conjecture 1.8.

There are three cases, where Conjecture 1.8.(i) is a theorem: in the case N = (2, 6),
where z(2,6)(q) = 1/j(τ) (with q = exp(2iπτ) and j(τ) the Dedekind–Klein j-invariant; see
Section 9.3), this has been established by Asai, Kaneko and Ninomiya [4, Cor. 2, p. 94].
In the case N = (2, 2), alternance of coefficients follows immediately upon inspection of
the explicit expression for z(2,2)(q) given in (9.8). Similarly, in the case N = (2, 2, 2),
alternance of coefficients follows immediately upon inspection of the explicit expression
for z(2,2,2)(q) given in (9.15). Moreover, Theorem 1.5, Lemma 4.2, Lemma 4.6, together
with the standard theorems of singularity analysis (see [14, Ch. VI]) imply that Conjec-
ture 1.8.(i) holds “asymptotically,” meaning that the coefficients of qm of zN(q) alternate
in sign for all sufficiently large m.

The expression for qN(z) in terms of FN(z) and GN(z) is not very convenient for a
study of fine analytic properties of qN(z) and of the corresponding mirror map zN(q). The
following conjecture, extending Theorem 1.1, is motivated by the search for an alternative
expression, as we explain below.

Conjecture 1.9. For all integers N1, N2, . . . , Nk ≥ 2 and positive integers n, the coefficient

of zm in (CNz − 1)nqN(z) is positive for all m ≥ n+ 1.

Computer calculations indicate that, actually, the coefficients of zm in (CNz− 1)nqN(z)
are alternating for m ≤ n+1 until the sign stabilises as described in the conjecture. That it
must stabilise eventually follows from the singular expansion for qN(z) given in Lemma 4.2
together with the standard theorems of singularity analysis (see [14, Ch. VI]). So the point
here is that the sign stabilises already for m ≥ n+ 1.

By a classical theorem of Hausdorff [16], Conjecture 1.9 implies that the sequence of
coefficients of qN(z) is a moment sequence for a finite measure dχ(t) on (0, CN). As a
consequence, qN(z) could be written in the form

qN(z) = z

∫ CN

0

dχ(t)

1 − zt
.

By a theorem of Wirths [37], it would then follow that qN(z) is univalent in the open
half plane Re(z) < 1/CN. In particular, this would lead to the following strength-
ening of Proposition 1.6: For all integers N1, N2, . . . , Nk ≥ 2 with ΦN ≥ 4, the se-
ries zN(q) can be analytically continued to a domain that contains the open segment
(− exp(−π cot(π/MN)),qN(1/CN)). Moreover, this domain can be chosen so that it con-
tains as well a right slit neighbourhood of qN(1/CN) and a left slit neighbourhood of
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− exp(−π cot(π/MN)) (where the angle of the slit can be chosen arbitrarily small; cf. the
last paragraph in Section 10).

From now on, in order to simplify notation, we let C := CN, Φ := ΦN, and M := MN.

2. Proof of Theorem 1.1

A formal power series f(z) =
∑∞

n=0 fnz
n ∈ C[[z]] with f0 6= 0 is invertible in C[[z]]. We

can thus see f̂(z) = 1− 1/f(z) as a formal power series. For the proof of Theorem 1.1, we
need the following auxiliary result, whose proof can be found further down in this section.

Lemma 2.1. Let f(z) =
∑∞

n=0 fnz
n, f0 = 1, be such that the Taylor coefficients of f̂(z)

are non-negative. Let us consider g(z) =
∑∞

n=0 hnfnz
n where the sequence of real numbers

(hn)n≥0 is non-decreasing and non-negative. Then the Taylor coefficients of g(z)/f(z) are

non-negative.

If, in addition, all Taylor coefficients of f and f̂ are positive (except the constant coef-

ficient of f̂) and the sequence (hn)n≥0 is strictly increasing, then the Taylor coefficients of

g(z)/f(z) are positive, except the constant coefficient if h0 = 0.

To apply Lemma 2.1 to our situation, we need two further results. The first is a theorem
due to Kaluza [19, Satz 3]. Strictly speaking, the assertion in Satz 3 in [19] deals only with
the condition fn+1fn−1 ≥ f 2

n; however, the strengthening given below is easily extracted
from the proof in [19].

Lemma 2.2. Let f(z) =
∑∞

n=0 fnz
n, f0 = 1, be such that f1 > 0 and fn+1fn−1 ≥ f 2

n for

all n ≥ 1. Then the Taylor coefficients of f̂(z) are non-negative.

If the stronger condition fn+1fn−1 > f2
n is satisfied for all n ≥ 1, then the Taylor

coefficients of f̂(z) are positive (except the constant coefficient).

(It is easy to see that, if f̂(z) has non-negative Taylor coefficients, then fn ≥ 0 for all
n ≥ 0, but the converse is not true in general.)

Lemma 2.3. Let us fix the integers N1, N2, . . . , Nk ≥ 2. We have BN(1) > 0 and

BN(m+ 1)BN(m− 1) > BN(m)2

for all m ≥ 1. Furthermore, the sequence (HN(m))m≥0 is positive and strictly increasing.

The proof of this lemma can be found at the end of this section. The combination of
Lemmas 2.2 and 2.3 immediately implies the following corollary.

Corollary 2.4. Let N1, N2, . . . , Nk be positive integers, all at least 2. Then the Taylor

coefficients of F̂N(z) are positive (except the constant coefficient).

The above corollary shows that we can take f = FN and g = GN in Lemma 2.1.
Hence, the power series GN(z)/FN(z) has positive Taylor coefficients (except the constant
coefficient), a property which obviously remains true when we take the exponential. This
proves Theorem 1.1.
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Proof of Lemma 2.1. Let us write f̂(z) =
∑∞

n=1 f̂nz
n. The relation f(z)

(
1 − f̂(z)

)
= 1

translates into

fn −
n∑

k=1

f̂kfn−k = δn,0, for all n ≥ 0, (2.1)

where δn,0 is the Kronecker symbol. Furthermore, we have

g(z)

f(z)
= g(z)

(
1 − f̂(z)

)
=

∞∑

n=0

zn
(
hnfn −

n∑

k=1

f̂kfn−khn−k

)
.

Since (hn)n≥0 is non-decreasing and non-negative, by (2.1) we have

hnfn −
n∑

k=1

f̂kfn−khn−k ≥ hnfn −
n∑

k=1

f̂kfn−khn = hn

(
fn −

n∑

k=1

f̂kfn−k

)
= hnδn,0 ≥ 0. (2.2)

The additional assertion in the lemma follows as well from the above arguments by
observing that, because of the stronger assumptions, the first inequality in (2.2) is strict
for n ≥ 1. �

Proof of Lemma 2.3. It is clear that BN(m) > 0 for all m ≥ 0.
We want to prove that

BN(m+ 1)BN(m− 1)

BN(m)2
> 1 (2.3)

for all m ≥ 1. By definition, we have

BN(m+ 1)BN(m− 1)

BN(m)2
=

k∏

j=1

ϕ(Nj)∏

i=1

(ri,j/N)m+1(ri,j/N)m−1

(ri,j/N)2
m

.

We observe that for every real number x > 0 and every integer m ≥ 1, we have

(x)m+1(x)m−1

(x)2
m

=
x+m

x+m− 1
> 1,

which immediately implies (2.3).

Concerning the second claim, we have

HN(m) =
k∑

j=1

( ϕ(Nj)∑

i=1

H(ri,j/N,m) − ϕ(Nj)H(1,m)

)

=
k∑

j=1

ϕ(Nj)∑

i=1

(
H(ri,j/Nj,m) −H(1,m)

)
,

from which we deduce that

HN(m+ 1) − HN(m) =
k∑

j=1

ϕ(Nj)∑

i=1

(
1

m+ ri,j/Nj

− 1

m+ 1

)
> 0,
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because 0 < ri,j/Nj < 1. Since HN(0) = 0, we have proved that the sequence (HN(m))m≥1

is positive and strictly increasing. �

3. Analytic continuation of FN(z) and GN(z)

For z complex with | arg(−z)| < π, let Log(z) denote the branch of the logarithm which
assigns values with imaginary part between 0 and 2π. We shall continue to use log( . ) for
the principal branch of the logarithm. In order to facilitate the reading of the following
paragraphs, as rule of thumb, below, whenever there appears zγ , it has to be understood
as zγ = exp(γ Log(z)), whereas whenever there appears (−z)γ, it has to be understood as
(−z)γ = exp(γ log(−z)).

For a real number h ≥ 0, set

F (h, z) :=
∞∑

n=0

(α1 + h)n · · · (αΦ + h)n

(1 + h)Φ
n

zn+h, (3.1)

where Φ = ΦN is given by (1.6) and the α’s run through the elements of the multiset (1)

{ri,j/Nj : i = 1, . . . , ϕ(Nj), j = 1, . . . , k}.
We have

F (0, Cz) = FN(z) and
∂F

∂h
(0, Cz) = Log(Cz)FN(z) + GN(z). (3.2)

Generalised hypergeometric functions, such as the sum on the right-hand side of (3.1) have
a Barnes-type integral representation, see [33, Sec. 4.6]. If we apply this to the right-hand
side of (3.1) then, for any complex number z such that | arg(−z)| < π and any h ≥ 0, we
obtain

∞∑

n=0

(α1 + h)n · · · (αΦ + h)n

(1 + h)Φ
n

zn =

− 1

2iπ

Γ(1 + h)Φ

Γ(α1 + h) · · ·Γ(αΦ + h)

∫

C

Γ(α1 + h+ s) · · ·Γ(αΦ + h+ s)

Γ(1 + h+ s)Φ

π

sin(πs)
(−z)sds, (3.3)

where C is a path from −i∞ to +i∞ such that 0, 1, 2, . . . lie on the right of C and the poles
of the Γ(αℓ + h+ s), ℓ = 1, . . . ,Φ, lie to the left.

By multiplying both sides of (3.3) by zh, and by using the relation Log(z) = log(−z)+iπ
(recall the convention on the branches of the logarithm that we made in the first paragraph
of this section), one obtains for | arg(−z)| < π and h ≥ 0 the equation

F (h, z) =

− eiπh

2iπ

Γ(1 + h)Φ

Γ(α1 + h) · · ·Γ(αΦ + h)

∫

C

Γ(α1 + h+ s) · · ·Γ(αΦ + h+ s)

Γ(1 + h+ s)Φ

π

sin(πs)
(−z)s+hds.

(3.4)

1A multiset is a “set” where one allows repetitions of elements.
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In particular, for h = 0 and z changed to Cz, this provides the analytic continuation of
FN(z) to the cut plane | arg(−z)| < π. Since FN(z) is also analytic at any real point
z ∈ [0, 1/C[, we get in this way the analytic continuation of FN(z) to the cut plane
| arg(1/C − z)| < π.

We now differentiate both sides of (3.4) with respect to h, and then set h = 0 and change
z to Cz. After simplification, we get

GN(z) =
(
Φψ(1) −

Φ∑

ℓ=1

ψ(αℓ)
)
FN(z)

− 1

2iπΓ(α1) · · ·Γ(αΦ)

∫

C

Γ(α1 + s) · · ·Γ(αΦ + s)

Γ(1 + s)Φ

( Φ∑

ℓ=1

ψ(αℓ +s)−Φψ(1+s)
)π(−Cz)s

sin(πs)
ds,

(3.5)

where ψ is the digamma function. A standard argument shows that the integral on the
right-hand side of (3.5) is analytic in the cut plane | arg(−z)| < π, hence this is also the
case for GN(z). Then, from the series representation (1.3), we conclude that, in fact,
GN(z) is analytic in the cut plane | arg(1/C − z)| < π.

In [20, p. 216], we proved that

(
Φψ(1) −

Φ∑

ℓ=1

ψ(αℓ)
)

=
k∑

j=1

ϕ(Nj)∑

i=1

(
ψ(1) − ψ(ri,j/N)

)
= log(C). (3.6)

This quantity will reappear in the sequel.
We now prove the following result, which will be needed in the proof of Theorem 1.3.(iii)

in Section 6.

Lemma 3.1. For integers N1, . . . , Nk ≥ 2, let M = max(N1, . . . , Nk), as before. Then we

have

lim
z→∞

(
Log(z) +

GN(z)

FN(z)

)
= −π cot(π/M) + iπ,

where the limit has to be performed along a path that avoids the cut [0,+∞). Here, FN(z)
and GN(z) are given by their analytic continuations discussed just above, while Log(z)
denotes the branch of the logarithm described at the beginning of this section.

Proof. By a well-known method, the integral (3.4) enables us to obtain an alternative
expression for F (h, z) for |z| > 1/C in the cut plane | arg(1/C − z)| < π: we shift the
contour C to the left, taking into account the various poles of the integrand coming from
the product Γ(α1 + s) · · ·Γ(αΦ + s).
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Let us start with the case k = 1, in which case αj = rj/N . Then, for |z| > 1/C and
| arg(1/C − z)| < π, we have

F (h, z) = eiπh

ϕ(N)∑

j=1

πΓ(1 + h)ϕ(N)

sin
(
π(

rj

N
+ h)

)∏ϕ(N)
ℓ=1 Γ( rℓ

N
+ h)

∞∑

ℓ=0

∏ϕ(N)
ℓ=1,ℓ6=j Γ(

rℓ−rj

N
− ℓ)

ℓ! Γ(1 − rj

N
− ℓ)ϕ(N)

(−z)−ℓ−rj/N ,

(3.7)
and similarly

∂F

∂h
(h, z)

=

ϕ(N)∑

j=1

∂

∂h

(
eiπh πΓ(1 + h)ϕ(N)

sin
(
π(

rj

N
+ h)

)∏ϕ(N)
ℓ=1 Γ( rℓ

N
+ h)

) ∞∑

ℓ=0

∏ϕ(N)
ℓ=1,ℓ6=j Γ(

rℓ−rj

N
− ℓ)

ℓ! Γ(1 − rj

N
− ℓ)ϕ(N)

(−z)−ℓ−rj/N .

(3.8)

In both cases, the leading term is the one corresponding to (−z)−1/N , and thus

lim
z→∞

∂F
∂h

(0, z)

F (0, z)
= log(C) − π cot(π/N) + iπ.

(Again, we use (3.6) to get the value log(C).) Using (3.2), the lemma follows in this case.
In the general case, it can be much more complicated to compute precisely the expansions

because the poles might have multiplicity (i.e., some of the α’s might be equal or differ by
an integer). The expected expansions are linear forms in the functions

(−z)−αℓ logj(−z)gℓ,j(1/z), j = 0, . . . , βℓ − 1,

with coefficients that depend on h. Here βℓ is the multiplicity of αℓ, and the gℓ,j(z)’s
are holomorphic functions at z = 0. The main term in the expansions of FN(z) and
GN(z) + Log(Cz)FN(z) are those corresponding to (−z)−1/M logβ−1(−z) (with the same
maximal β in both cases), which can be computed without difficulty from (3.4). We get
again

lim
z→∞

∂F
∂h

(0, z)

F (0, z)
= log(C) − π cot(π/M) + iπ,

and the lemma follows. �

4. Singular expansions for qN(z) and zN(q)

The purpose of this section is to discuss the singular expansions of qN(z) at z = ∞ (see
Lemma 4.1) and z = 1/CN (see Lemma 4.2), and of zN(q) at the “corresponding” points
q = − exp

(
−π cot(π/MN)

)
(recall (1.7)) and q = qN(1/CN). To obtain the latter, one has

to combine Lemma 4.1 with Lemmas 4.3–4.5, respectively Lemma 4.2 with Lemma 4.6.
We start with the singular expansion of qN(z) at z = ∞.
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Lemma 4.1. Let N1, N2, . . . , Nk be positive integers, all of which at least 2, and let M =
MN, as before. Furthermore, let R be the least number different from 1/M in the multiset

R = {ri,j/Nj : i = 1, 2, . . . , ϕ(Nj), j = 1, 2, . . . , k}.
(i) If both 1/M and R appear exactly once in the multiset R, then qN(z) admits a

singular expansion at ∞ of the form

qN(z) = q0 + q1(−z)−R+ 1
M + O

(
(−z)−R+ 1

M
− 1

L logB3−1(−z)
)
, (4.1)

where q0 = − exp
(
− π cot(π/M)

)
, q1 is a non-zero constant, L = lcm(N1, N2, . . . ,

Nk), and B3 is the multiplicity of the third-smallest element in R.

(ii) If 1/M appears exactly once in the multiset R, while R appears with multiplicity

B2, then qN(z) admits a singular expansion at ∞ of the form

qN(z) = q0 + q1(−z)−R+ 1
M logB2−1(−z) + O

(
(−z)−R+ 1

M logB2−2(−z)
)
, (4.2)

where q0 and q1 are the same constants as in (i).
(iii) If 1/M appears with multiplicity at least 2 in R, then qN(z) admits a singular

expansion at ∞ of the form

qN(z) = q0 + q̃1 log−1(−z) + O
(
log−2(−z)

)
, (4.3)

where q0 has the same meaning as in (i), and q̃1 is a non-zero constant.

Remark. If the multiset R is in fact a set, i.e., if all elements of R appear with multiplicity 1,
then qN(z) admits a Puiseux expansion in (−z)−1/L, of which (4.1) shows the first terms.
In all other cases, the singular expansion at z = ∞ has terms containing log(−z).
Proof of Lemma 4.1. (i) By (3.2) and (in case B3 ≥ 2: the appropriately generalised)
expansions (3.7) and (3.8), we know that

qN(z) =
1

C
exp

( ∂F
∂h

(0, Cz)

F (0, Cz)

)
, (4.4)

where

F (0, Cz) = F1(−Cz)−
1
M + F2(−Cz)−R + O

(
(−z)−R− 1

L logB3−1(−z)
)

(4.5)

and

∂F

∂h
(0, Cz) = G1(−Cz)−

1
M +G2(−Cz)−R + O

(
(−z)−R− 1

L logB3−1(−z)
)
. (4.6)

Here, F1, F2, G1, G2 are explicit non-zero constants. If we use this in (4.4), then we obtain

qN(z) =
1

C
exp

(
G1

F1

(
1 +

(
G2

G1

− F2

F1

)
(−Cz)−R+ 1

M + O
(
(−z)−R+ 1

M
− 1

L logB3−1(−z)
)))

.

From the explicit expressions and (3.6), it is not difficult to see that G1/F1 = log(C) −
π cot(π/M) + iπ and that, furthermore, G2

G1
6= F2

F1
. The assertions in (i) now follow easily

upon expansion of the exponential.
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(ii) We proceed in the same way as in (i). Here, the expansions (4.5) and (4.6) must be
replaced by

F (0, Cz) = F1(−Cz)−
1
M + F2(−Cz)−R logB2−1(−z) + O

(
(−z)−R logB2−2(−z)

)

and
∂F

∂h
(0, Cz) = G1(−Cz)−

1
M +G2(−Cz)−R logB2−1(−z) + O

(
(−z)−R logB2−2(−z)

)
.

The constants F1, F2, G1, G2 are the same as in (i). The remaining steps are completely
analogous to those in (i) and are therefore omitted.

(iii) Again, we proceed in the same way as in (i). Here, the expansions (4.5) and (4.6)
must be replaced by

F (0, Cz) = F1(−Cz)−
1
M logB1−1(−z) + F̃2(−Cz)−

1
M logB1−2(−z)

+ O
(
(−z)− 1

M logB2−3(−z)
)

and

∂F

∂h
(0, Cz) = G1(−Cz)−

1
M logB1−1(−z) + G̃2(−Cz)−

1
M logB1−2(−z)

+ O
(
(−z)− 1

M logB1−3(−z)
)
.

The constants F1, F2 are the same as in (i). The remaining steps are completely analogous
to those in (i) and are therefore omitted. �

The next lemma addresses the singular expansion of qN(z) at z = 1/CN.

Lemma 4.2. Let N1, N2, . . . , Nk be positive integers, all of which at least 2, and let C =
CN, Φ = ΦN, as before.

(i) If Φ = 2, then qN(z) admits a singular expansion at 1/C of the form

qN(z) = 1 + q1 log−1(1 − Cz) + O
(
log−2(1 − Cz)

)
, (4.7)

where q1 > 0.
(ii) If Φ ≥ 3 is odd, then qN(z) admits a singular expansion at 1/C of the form

qN(z) = qN(1/C) + q1(1 − Cz) + q2(1 − Cz)2 + · · ·
+ qd(1 − Cz)d + qd+ 1

2
(1 − Cz)d+ 1

2 + O
(
(1 − Cz)d+1

)
, (4.8)

where d = Φ−3
2

, q1 < 0, and (−1)d+1
qd+ 1

2
> 0.

(iii) If Φ ≥ 4 is even, then qN(z) admits a singular expansion at 1/C of the form

qN(z) = qN(1/C) + q1(1 − Cz) + q2(1 − Cz)2 + · · ·
+ qd−1(1 − Cz)d−1 + qd+(1 − Cz)d log(1 − Cz) + O

(
(1 − Cz)d

)
, (4.9)

where d = Φ−2
2

, q1 < 0, and (−1)d+1
qd+ > 0.
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Proof. We proceed by using the theory of hypergeometric differential equations to deter-
mine the form of the singular expansion of the quotient GN(z)/FN(z), see (4.19). This is
then translated in the final step into the claimed singular expansions for qN(z).

First of all, from Section 3 we know that FN(z) and GN(z) + log(az)FN(z) (for any
a 6= 0) can be analytically continued to C \ [1/C,+∞) and C \

(
(−∞, 0] ∪ [1/C,+∞)

)
,

respectively. We want to determine their behaviour around the point z = 1/C. The
exponents at the regular singular point z = 1/C of the differential equation Ly = 0 (with
L being defined in (1.2)) are 0, 1, . . . ,Φ − 2, and

(Φ − 1) −
k∑

j=1

ϕ(Nj)∑

i=1

ri,j

Nj

. (4.10)

By the elementary identity

k∑

j=1

ϕ(Nj)∑

i=1

ri,j

Nj

=
Φ

2
, (4.11)

the value (4.10) simplifies to Φ
2
− 1. By the theory of hypergeometric differential equations

(cf. [11, Ch. 4, Sec. 8]), a basis over C of solutions of L consists of Φ − 1 functions
f1(z), . . . , fΦ−1(z) holomorphic at z = 1/C, together with another solution fΦ(z) which
can be described as follows:

a) if Φ is odd, then fΦ(z) = (1−Cz)Φ/2−1u(z), where u(z) is holomorphic at z = 1/C;
b) if Φ is even, then fΦ(z) = v(z) + (1 − Cz)Φ/2−1 log(1 − Cz)u(z), where both u(z)

and v(z) are holomorphic at z = 1/C.

It follows that, in a neighbourhood of 1/C avoiding the cut [1/C,+∞), we have (2)

FN(z) = f(z) + (1 − Cz)Φ/2−1L(z)g(z) (4.12)

GN(z) = f̆(z) + (1 − Cz)Φ/2−1L(z)ğ(z), (4.13)

where f, f̆ , g and ğ are holomorphic around z = 1/C and L(z) = 1 if Φ is odd, respectively
L(z) = − log(1 − Cz) if Φ is even.

Concerning the coefficients of FN(z), by Stirling’s formula, we have

BN(m) =

( k∏

j=1

ϕ(Nj)∏

i=1

1

Γ(ri,j/Nj)

)
· Cm

mΦ/2
(1 + o(1)) , m→ ∞, (4.14)

which implies that g(1/C) > 0 by the classical link between singularities of an analytic
function h and the asymptotic behaviour of the Taylor coefficients of h when these are
positive (see [14, Ch. VI]).

2Since the function GN(z) + log(az)FN(z) (with a 6= 0) is a solution of Ly = 0, it can be written in
a form similar to the right-hand side of (4.12). Application of (4.12) to log(az)FN(z) then gives (4.13)
because log(az) is holomorphic at z = 1/C.
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Concerning the coefficients of GN(z), we have

BN(m)HN(m) = BN(m)

(
log(C) − Φ

2m
+ O

( 1

m2

))
. (4.15)

(In fact, log(C) appears under the form
∑k

j=1

∑ϕ(Nj)
i=1

(
ψ(1)−ψ(ri,j/N)

)
, see (3.6).) Hence,

using (4.15), we can make (4.13) more precise (3):

GN(z) = log(C)FN(z) + f̃(z) + (1 − Cz)Φ/2L(z)g̃(z), (4.16)

where f̃ and g̃ are holomorphic at z = 1/C, and g̃(1/C) 6= 0.
In order to proceed, we need the following auxiliary result.

For any vector N of positive integers, the limit

S := lim
z→1/C

(
GN(z) − log(C)FN(z)

)
(4.17)

exists, is finite and is < 0. Furthermore, it is equal to f̃(1/C).
Above and in the sequel, the limit z → 1/C is understood along real numbers z < 1/C.
In order to see (4.17), we observe that, for |z| < 1/C, we have

GN(z) − log(C)FN(z) =
∞∑

m=0

BN(m)
(
HN(m) − log(C)

)
zm.

The series on the right-hand side converges for z = 1/C because

∣∣BN(m)
(
HN(m) − log(C)

)∣∣ = O
(

Cm

mΦ/2+1

)

and Φ/2 + 1 > 1. By Abel’s theorem, the limit S in (4.17) exists and

S =
∞∑

m=0

BN(m)
(
HN(m) − log(C)

)
C−m,

the right-hand side being finite.
Secondly, since H(x, n) = ψ(n+ x) − ψ(x), it is easy to see that

HN(m) − log(C) =
k∑

j=1

ϕ(Nj)∑

i=1

(
ψ
(
m+

ri,j

Nj

)
− ψ(m+ 1)

)
,

where we used (3.6) again. Since the function ψ is strictly increasing on (0,+∞), and since
0 <

ri,j

N
< 1, we deduce that

HN(m) − log(C) < 0 for all m ≥ 0. (4.18)

Hence S < 0.
Finally, since Φ/2 > 0, Eq. (4.16) implies that

lim
z→1/C

(
GN(z) − log(C)FN(z)

)
= lim

z→1/C

(
f̃(z) + (1 − Cz)Φ/2L(z)g̃(z)

)
= f̃(1/C),

3This is more precise when one transforms log(C)FN(z) using (4.12).
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thus completing the proof of (4.17).

We may now continue with the proof of the lemma. By the remarks preceding (4.17),
we have

GN(z)

FN(z)
= log(C) +

f̃(z) + (1 − Cz)Φ/2L(z)g̃(z)

f(z) + (1 − Cz)Φ/2−1L(z)g(z)
. (4.19)

This is now translated to qN(z) = z exp
(
GN(z)/FN(z)

)
. Let us for the moment restrict

ourselves to the case Φ ≥ 3. It was argued in the paragraph between (4.13) and (4.15)
that g(1/C) > 0. Furthermore, by the definition of f(z) in (4.12), we have f(1/C) =

FN(1/C) 6= 0. Finally, by (4.17), we have f̃(1/C) < 0. If we use these observations,
together with our assumption that Φ ≥ 3, from (4.19) we obtain the singular expansion

qN(z) = z exp

(
GN(z)

FN(z)

)

= Cz exp
(
f̃(z)/f(z)

)(
1 + α1(1 − Cz)Φ/2−1L(z) + O

(
(1 − Cz)Φ/2L(z)

))
(4.20)

for z → 1/C. Here,

α1 = − exp

(
f̃(1/C)

f(1/C)

)
g(1/C)f̃(1/C)

f 2(1/C)
= qN(1/C)

g(1/C)
(
FN(1/C) log(C) − GN(1/C)

)

F2
N

(1/C)
,

which is positive because of (4.18) and g(1/C) > 0. The singular expansions (4.8) and
(4.9) now follow routinely: the claim on the sign of qd+ 1

2
, respectively of qd+, is a direct

consequence of α1 being positive, while the claim on the sign of q1 follows from the fact that
qN(z) is monotone increasing on the interval [0, 1/C] (which is implied by Theorem 1.1).

Finally, if Φ = 2, then, leaving the details to the reader, the singular expansion in this
case is

qN(z) = 1 +
α2

log(1 − Cz)
+ O

(
1

log2(1 − Cz)

)
(4.21)

for z → 1/C. Here, α2 = −f̃(1/C)
/
g(1/C), which is positive by our earlier observations.

�

The remaining lemmas in this section are general results that describe the singular ex-
pansion of a function z(q) at q = q0, given the singular expansion of its compositional
inverse q(z) at the corresponding point. They are tailor-made for obtaining singular ex-
pansions of zN(q) at q = − exp

(
−π cot(π/M)

)
, respectively at q = qN(1/C), by combining

the appropriate lemma with Lemma 4.1, respectively with Lemma 4.2.
We start with the results which, upon combination with Lemma 4.2, imply singular

expansions of zN(q) at q = qN(1/C). In the statements, we make use of right and left slit
neighbourhoods, notions that have been defined in the paragraph above Proposition 1.6 in
the Introduction.
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Lemma 4.3. Suppose we are given a complex function q(z) which is analytic in a right

slit neighbourhood of z = z0 and has a singular expansion that begins

q(z) = q0 + q1(z − z0) + q2(z − z0)
2 + · · ·

+ qd(z − z0)
d + qd+ 1

2
(z0 − z)d+ 1

2 + O
(
(z − z0)

d+1
)
, (4.22)

where d ≥ 0, qd+ 1
2
6= 0 and, if d > 0, then also q1 6= 0. Then there exists a local inverse

function z(q) which, in a right slit neighbourhood of q = q0, is analytic and has a singular

expansion that begins

z(q) = z0 + z2(q − q0)
2 + O

(
(q − q0)

4
)

if d = 0, where z2 = −1/q2
1/2, and begins

z(q) = z0 + z1(q − q0) + z2(q − q0)
2 + · · ·

+ zd(q − q0)
d + zd+ 1

2
(q0 − q)d+ 1

2 + O
(
(q − q0)

d+1
)

if d > 0, where z1 = 1/q1 and zd+ 1
2

= −q−d− 3
2

1 qd+ 1
2
.

Proof. We concentrate on the case where d > 0. By standard bootstrap arguments (see
[12, Sections 2.5–2.7]), one sees that, in a right slit neighbourhood of q0,

z(q) = z0 + z1(q − q0) + z2(q − q0)
2 + · · · + zd(q − q0)

d + z̃(q), (4.23)

where the coefficients z0, z1, . . . , zd agree with the corresponding Taylor coefficients of the
compositional inverse of the truncated series

q0 + q1(z − z0) + q2(z − z0)
2 + · · · + qd(z − z0)

d,

and where z̃(q) is a function which is analytic in the same slit neighbourhood, and which
satisfies z̃(q) = o

(
(q−q0)d

)
. In particular, z1 = 1/q1. Continuing the bootstrap, the expan-

sion (4.23) (with q replaced by x in order to minimise the number of possible confusions)
is now substituted in (4.22). In that manner, we obtain

0 = q1z̃(x) + qd+ 1
2
z

d+ 1
2

1 (q0 − x)d+ 1
2 + O

(
(x− q0)

d+1
)
.

The claimed result is now obvious. �

Lemma 4.4. Suppose we are given a complex function q(z) which is analytic in a right

slit neighbourhood of z = z0, where it has a singular expansion that begins

q(z) = q0 + q1(z − z0) + q2(z − z0)
2 + · · ·

+ qd−1(z − z0)
d−1 + qd+(z − z0)

d log(z0 − z) + O
(
(z − z0)

d
)
, (4.24)

where d ≥ 1, qd+ 6= 0, and, if d > 1, then also q1 6= 0. Then there exists a local inverse

function z(q) which, in a right slit neighbourhood of q = q0, is analytic and has a singular

expansion that begins

z(q) = z0 + z1+(q − q0) log−1(q0 − q) + o
(
(q − q0) log−1(q0 − q)

)
(4.25)



19

if d = 1, where z1+ = 1/q1+, and begins

z(q) = z0 + z1(q − q0) + z2(q − q0)
2 + · · ·

+ zd−1(q − q0)
d−1 + zd+(q − q0)

d log(q0 − q) + O
(
(q − q0)

d
)

(4.26)

if d > 1, where z1 = 1/q1 and zd+ = −q−d−1
1 qd+.

Proof. For (4.26), one proceeds exactly in the same fashion as in the proof of Lemma 4.3.
In order to establish the expansion (4.25), one replaces z by z(x) in (4.24), and subse-

quently one applies the logarithm on both sides. This leads to

log(q0 − x) = log(q1+) + log(z0 − z(x)) + log log(z0 − z(x)) + O
(
log−1(z0 − z(x))

)
.

In order to simplify, we replace q0 − x by X and log(z0 − z(x)) by Z(X):

log(X) = log(q1+) + Z(X) + log(Z(X)) + O
(
Z(X)−1

)
. (4.27)

Applying bootstrapping again in a neighbourhood of X = 0, we must have Z(X) =
log(X) + Z̃(X), where Z̃(X) = o(log(X)). If we substitute this in (4.27), we obtain, after
little simplification,

0 = log(q1+) + Z̃(X) + log log(X) + o(1). (4.28)

Now we see that Z̃(X) = − log log(X) + ˜̃Z(X), where ˜̃Z(X) = o(log log(X)). By substi-
tuting this in (4.28), we arrive at

0 = log(q1+) + ˜̃Z(X) + o(1), (4.29)

from which we deduce ˜̃Z(X) = − log(q1+) + o(1). If we now put everything together, then
we obtain

Z(X) = log(X) − log log(X) − log(q1+) + o(1),

or, in the original notation,

z0 − z(x) =
q0 − x

q1+ log(q0 − x)

(
1 + o(1)

)
.

After replacement of x by q, one sees that this is equivalent to (4.25). �

Lemma 4.5. Suppose we are given a complex function q(z) which is analytic in a right

slit neighbourhood of z = z0, where it has a singular expansion that begins

q(z) = q0 + q1log−1(z0 − z) + O
(
log−2(z0 − z)

)
,

where q1 6= 0. Then there exists a local inverse function z(q) which, in a right slit neigh-

bourhood of q = q0, is analytic and has a singular expansion of the form

z(q) = exp

(
q1

q − q0
+ O(1)

)
.

In particular, z(q) has an essential singularity at q = q0.

Proof. This is again easily derived by bootstrapping. �
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Finally we provide a general result which, upon combination with Lemma 4.1, yields the
singular expansion of zN(q) at q = − exp

(
− π cot(π/M)

)
.

Lemma 4.6. Let q(z) be a complex function that is analytic near ∞ except for a cut on

the positive real axis.

(i) Suppose that q(z) has a singular expansion at z = ∞ that begins

q(z) = q0 + q1(−z)−
r
n + O

(
(−z)− r+1

n logb(−z)
)
,

where q1 6= 0 and r, n, b are non-negative integers such that r ≥ 1. Then there exists

a local inverse function z(q) which, in a neighbourhood of q = q0, has a singular

expansion that begins

z(q) = −q
n
r

1 (q − q0)
−n

r + O
(
(q − q0)

−n−1
r logb

(
q0 − q

))
.

(ii) Suppose that q(z) has a singular expansion at z = ∞ that begins

q(z) = q0 + q1(−z)−
r
n logb(−z) + O

(
(−z)− r

n logb−1(−z)
)
,

where q1 6= 0 and r, n, b are non-negative integers with r, b ≥ 1. Then there exists

a local inverse function z(q) which, in a neighbourhood of q = q0, has a singular

expansion that begins

z(q) = −
(
−n

r

) br
n q

n
r

1 (q − q0)
−n

r log
bn
r

(
q0 − q

)
+ O

(
(q − q0)

−n
r log

bn
r
−1
(
q0 − q

))
.

(iii) Suppose that q(z) has a singular expansion at z = ∞ that begins

q(z) = q0 + q1 log−1(−z) + O
(

log−2(−z)
)
,

where q1 6= 0. Then there exists a local inverse function z(q) which, in a neighbour-

hood of q = q0, has a singular expansion that begins

z(q) = exp

(
q1

q − q0
+ O(1)

)
.

Remark. If, in Case (i) with r = 1, the series q(z) admits in fact a Puiseux expansion in

(−z)− 1
n , then it is not difficult to see that z(q) has a pole of order n at q = q0. If the

singular expansion of q(z) at z = −∞ should have terms containing log(−z) (which is
often the case in the situation of Lemma 4.1; see the remark accompanying that lemma),
then the point q = q0 will be a branch point of z(q).

Proof. Once more, this is easily derived by bootstrapping. �

5. Proof of Theorem 1.2

For the proof of the theorem, we shall require the following auxiliary result.

Lemma 5.1. The function FN(z) does not vanish on its disk of convergence |z| < 1/CN.
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Proof. The following argument is borrowed from [22, page 94, last corollary]. By Corol-

lary 2.4, the Taylor coefficients B̂N(m) of F̂N(z) are positive and satisfy Equation (2.1),
i.e.,

δn,0 +
n∑

k=1

B̂N(k)BN(n− k) = BN(n).

Since the coefficients BN(m) are also positive and BN(0) = 1, it follows that 0 ≤ B̂N(n) ≤
BN(n) for all n ≥ 0. Hence, the radius of convergence of the Taylor series of 1/FN(z) at
z = 0 is at least as large as the radius of convergence of FN(z) at z = 0. It is necessarily
equal to the latter because z = 1/C is a branch point of FN(z), and thus also of 1/FN(z).

In particular, FN(z) cannot vanish at some point z0 such that |z0| < 1/C, because
otherwise the radius of convergence of 1/FN(z) would be at most |z0|, a contradiction. �

Remark. In the proof of Theorem 1.3.(i) (given in Section 6), we show that a classical
result of Pólya [29] on hypergeometric series implies that FN(z) vanishes nowhere in the
slit plane C \

[
1/C,+∞). Nevertheless, we believe that that the above argument, proving

a weaker result, is still worth being recorded since it is only based on the positivity of the

coefficients BN(m) and B̂N(m) and not on the hypergeometric nature of FN(z).

We now turn to the proof of items (i)–(vi) of Theorem 1.2.

(i), (ii) In view of the explicit expression (1.5), the claim is trivial for Φ = 1. We
therefore assume Φ ≥ 2 from now on.

Clearly, the discussion in the proof of Lemma 5.1 also implies that the radius of conver-
gence of the Taylor series at z = 0 of exp(GN(z)/FN(z)) is at least 1/C. By Lemma 4.2,
which says in particular that qN(z) has a singularity at z = 1/C, it cannot be larger.

It remains to prove that the Taylor series
∑

m≥1 qmz
m of qN(z) converges on the circle

|z| = 1/C. By (4.17), we have

lim
z→1/C

GN(z)

FN(z)
= log(C) + lim

z→1/C

GN(z) − log(C)FN(z)

FN(z)
= log(C) +

S

FN(1/C)
, (5.1)

where the second term must be understood as 0 if limz→1/C FN(z) = +∞. Hence qN(1/C)
exists and is finite. By Abel’s theorem, qN(1/C) =

∑
m≥1 qm/C

m, and since the qm are
non-negative,

∑
m≥1 qmz

m converges for any z such that |z| = 1/C.

(iii) We have

max
|z|=1/C

|qN(z)| = qN(1/C).

By (5.1), we have

qN(1/C) = exp
( S

FN(1/C)

)
≤ 1

because S < 0 and FN(1/C) > 0. There is equality to 1 only if FN(1/C) = +∞, which,
by (4.14), happens exactly when Φ = 1 or Φ = 2.

(iv) The claimed assertions follow from (1.5) upon little calculation.
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(v) By the standard theorems of singularity analysis (see [14, Ch. VI]), the assertion
follows immediately from Lemma 4.2.(i).

(vi) Again, by the standard theorems of singularity analysis, the assertion follows im-
mediately from Lemma 4.2.(ii), (iii). �

6. Proof of Theorem 1.3

(i) From Section 3, we know that FN(z) and GN(z) can both be analytically continued
to C \ [1/C,+∞). Hence

qN(z) = exp
(GN(z) + log(z)FN(z)

FN(z)

)
= z exp

(GN(z)

FN(z)

)

can be continued at least to C \
(
[1/C,+∞) ∪ Z

)
, where Z is the set of zeroes of FN(z).

The reader should recall that Lemma 5.1 says that the intersection of Z and the open
disk of convergence of FN(z) is empty. We now show that, in fact, the entire set Z is empty.
For this, we apply a result of Pólya [29, p. 192] on hypergeometric functions. Recalling the
hypergeometric notation

q+1Fq

[
a0, a1, . . . , aq

b1, . . . , bq
; z

]
=

∞∑

k=0

(a0)k (a1)k · · · (aq)k

k! (b1)k · · · (bq)k

zk,

Pólya’s result implies in particular that the above hypergeometric function does not vanish
for any z ∈ C \ [1,+∞) when 0 < a0 < 1, 0 < a1 < b1, . . . , 0 < aq < bq. Now, indeed,
FN(z) can be written in hypergeometric notation:

FN(z) = ΦFΦ−1

[
r1,1/N1, . . . , rk,ϕ(Nk)/Nk

1, . . . , 1
;Cz

]
.

In particular, we see that Pólya’s conditions are satisfied by this hypergeometric function,
which proves that Z is empty.

(ii) If Φ ≥ 2, this is a consequence of the singular expansion of qN(z) at z = 1/C given
in Lemma 4.2.

If Φ = 1, then we know that q(2)(z) = (1−
√

1 − 4z)2/(4z), which has evidently a branch
point with non-trivial monodromy at z = 1/C(2) = 1/4.

(iii) The assertion concerning the limit of qN(z) at infinity is an immediate consequence
of Lemma 3.1. �

7. Proof of Theorem 1.4

(i) We know from Theorem 1.3 that

lim
z→∞

qN(z) = − exp(−π cot(π/M)) =: ρ,
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where the limit has to be performed along a path that avoids the cut [1/C,+∞). Let us
suppose that the radius of convergence of zN(q), R say, is strictly larger than |ρ|. One can
find ε > 0 and A(ε) > 0 with the property that, if |x| > A(ε) and x /∈ [1/C,+∞), then

|qN(x) − ρ| < ε and |ρ| + ε < R.

For the above x, the quantity zN(qN(x)) is well-defined and equals x. Consequently,

∞ = lim
x→∞

|x|>A(ε)

x/∈[1/C,+∞)

x = lim
x→∞

|x|>A(ε)

x/∈[1/C,+∞)

zN(qN(x)) = lim
q→ρ

zN(q),

where the last limit is along a suitable path. Hence, the point q = ρ is a singularity of
zN(q), which contradicts our assumption that R > |ρ|. Therefore the radius of convergence
R is in fact ≤ |ρ|. �

(ii) Arguing by contradiction, we suppose that the radius of convergence of zN(q) is
strictly larger than qN(1/C). In that case, zN(q) is analytic around qN(1/C). For the
derivative of zN, we have

z′
N

(
qN(z)

)
=

1

q′
N

(z)
. (7.1)

Let us first assume that Φ > 4. From Theorem 1.2.(vi), we know that them-th coefficient
of qN(z), qm say, behaves like Cm/mΦ/2 (up to a multiplicative constant). Hence, since
Φ/2 > 2, the series

∑∞
m=0mqm/C

m−1 converges, and by Abel’s theorem it agrees with the
limit

ω1 := lim
z→1/C

|z|<1/C

q′
N

(z).

Hence, by (7.1) and the continuity of z′
N

(q), we have z′
N

(qN(1/C)) = 1/ω1, which is
different from zero. As a consequence, by [17, Theorems 2.4b, 2.4c], zN(q) can be inverted
in a neighbourhood of q = qN(1/C). This would imply that qN(z) is analytic around 1/C,
which contradicts Theorem 1.2.(ii).

On the other hand, if Φ = 4, the above argument has to be adapted in order to lead to
a contradiction. To begin with, by Lemma 4.2.(iii), we have

qN(z) − qN(1/C) = ω2(1 − Cz) log(1 − Cz)(1 + o(1)) (7.2)

for z → 1/C, where ω2 is some non-zero constant. Next, we compute the derivative of
qN(z) using the expression given in (4.19) for the quotient GN(z)/FN(z). Subsequently,
we compute its singular expansion for z → 1/C in the same style as the one for qN(z).
The result is that

q′
N

(z) = ω3 log(1 − Cz)(1 + o(1)) (7.3)

for z → 1/C, where ω3 is some non-zero constant. Consequently,

z′
N

(
qN(1/C)

)
= lim

z→1/C

|z|<1/C

1

q′
N

(z)
= 0.
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Since z′
N

(q) is analytic in a neighbourhood of q = qN(1/C), and since z′
N

(q) cannot be
constant (this would imply that qN(z) is linear, which contradicts Theorem 1.2.(ii)), we
have

z′
N

(q) = ω4

(
q − qN(1/C)

)s
(1 + o(1))

for q → qN(1/C), where ω4 is a non-zero constant and s is a positive integer. If we use
this in (7.1), together with (7.2) and (7.3), we obtain

ω4ω
s
2(1 − Cz)s logs(1 − Cz)(1 + o(1)) =

1 + o(1)

ω3 log(1 − Cz)

for z → 1/C, which is absurd. �

Remark. The above argument for the case where Φ = 4 does not lead to a contradiction
when applied to the case Φ = 3. This is in accordance with Theorem 1.5 and the fact that
exp

(
− π cot(π/M)

)
is larger than qN(1/CN) in the relevant cases, see Section 9.

8. Comparison of the two critical values exp(−π cot(π/MN)) and qN(1/CN)

Because of (1.7), the point q = exp(−π cot(π/MN)) is a potential singularity of zN(q).
In Theorem 1.4.(ii) we have shown that the radius of convergence of zN(q) is at most
qN(1/CN). It is therefore important to know whether exp(−π cot(π/MN)) is less
than qN(1/CN) or not. In this section, we show that for ΦN ≥ 4 we have in fact
exp(−π cot(π/MN)) > qN(1/CN), which fits well with Conjecture 1.7.

Lemma 8.1. Let N1, N2, . . . , Nk be positive integers, all of which at least 2, such that

Φ = ΦN ≥ 4. Furthermore, let M = MN, as before. Then

exp(−π cot(π/M)) > qN(1/C). (8.1)

Proof. From [31, inequality on top of p. 157, which, as the proof shows, remains valid for
real n] we know that for x ≥ 1 we have

Γ(x+ 1) =
√

2πx
(x
e

)x

eλx , with
1

12x+ 1
< λx <

1

12x
. (8.2)

We use these effective bounds on the gamma function to provide an upper bound for
BN(m). Let us first suppose that m ≥ 2. Then we have

BN(m) =
k∏

j=1

BNj
(m) = Cm

k∏

j=1

ϕ(Nj)∏

i=1

(ri,j/Nj)m

m!
= Cm

k∏

j=1

ϕ(Nj)∏

i=1

Γ
(
m+

ri,j

Nj

)

Γ
(

ri,j

Nj

)
Γ(m+ 1)

< CmeΛm

k∏

j=1

ϕ(Nj)∏

i=1

1

Γ(ri,j/Nj)

(
m+

ri,j

Nj
− 1

m

)m+ 1
2
(
m+

ri,j

Nj
− 1

e

) ri,j
Nj

−1

, (8.3)

where

Λm =
k∑

j=1

ϕ(Nj)∑

i=1

(
1

12(m+
ri,j

Nj
− 1)

− 1

12m+ 1

)
.
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The quantity Λm may be estimated from above as follows:

Λm =
k∑

j=1

ϕ(Nj)∑

i=1

(
13 − 12

ri,j

Nj

12(m+
ri,j

Nj
− 1)(12m+ 1)

)
≤

k∑

j=1

ϕ(Nj)∑

i=1

(
13 − 12

ri,j

Nj

12(m− 1)(12m+ 1)

)

≤
k∑

j=1

ϕ(Nj)

(
13 − 121

2

12(m− 1)(12m+ 1)

)
≤ 7Φ

12(m− 1)(12m+ 1)
≤ 7

300
Φ. (8.4)

On the other hand, using the well-known elementary inequality
(
1 + x

m

)m ≤ ex, valid for
x > −m, we have

(
m+

ri,j

Nj
− 1

m

)m+ 1
2
(
m+

ri,j

Nj
− 1

e

) ri,j
Nj

−1

=

(
1 +

ri,j

Nj
− 1

m

)m e
1− ri,j

Nj

(
1 +

ri,j
Nj

−1

m

) 1
2

(
m+

ri,j

Nj
− 1
)1− ri,j

Nj

≤ 1

(m− 1)
1− ri,j

Nj

. (8.5)

Finally, by the reflection formula (cf. [3, Theorem 1.2.1])

Γ(x)Γ(1 − x) =
π

sin(πx)

for the gamma function, in the case that all Nj’s are different from 2 (in which case ϕ(Nj)
is always even) we get

k∏

j=1

ϕ(Nj)∏

i=1

1

Γ(ri,j/Nj)
=

k∏

j=1

ϕ(Nj)/2∏

i=1

sin (πri,j/Nj)

π
≤ π−Φ/2. (8.6)

One can then see that the inequality above holds even if some of the Nj’s should happen
to equal 2. If (8.4)–(8.6) are substituted back in (8.3), then the result is

BN(m) < Cme
7

300
Φπ−Φ/2(m− 1)

−
Pk

j=1

Pϕ(Nj)

i=1

(
1− ri,j

Nj

)

< Cme
7

300
Φπ−Φ/2 (m− 1)−Φ/2 , (8.7)

where we used (4.11) to obtain the last line.
The case of m = 1 has to be treated separately. In that case, we see that

BN(1) =
k∏

j=1

BNj
(1) = C

k∏

j=1

ϕ(Nj)∏

i=1

ri,j

Nj

= C
k∏

j=1

ϕ(Nj)/2∏

i=1

ri,j(N − ri,j)

N2
j

≤ C · 2−Φ (8.8)

if all Nj’s are different from 2. Again, it is readily seen that the inequality also holds if
some of the Nj’s should happen to equal 2.
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We now combine (8.7) and (8.8) in order to estimate FN(1/C):

FN(1/C) =
∞∑

m=0

BN(m)C−m

< 1 +
1

2Φ
+

(
e

7
300

π1/2

)Φ ∞∑

m=2

(m− 1)−Φ/2

< 1 +
1

2Φ
+

(
e

7
300

π1/2

)Φ

ζ(Φ/2)

< 1 +
1

2max{4,k} +

(
e

7
300

π1/2

)max{4,k}

ζ
(
max{4, k}/2

)
. (8.9)

In the sequel, we denote the quantity on the right-hand side of (8.9) by ck.
We are now in the position to establish the inequality (8.1) for “large enough” N.

Namely, since
π cot(π/M) ≤M

and (see (4.18))
GN(1/C) − log(C)FN(1/C) < − log(C),

it suffices to prove the inequality

exp(−M) ≥ exp

(
− logC

FN(1/C)

)
,

or, equivalently,
logC ≥M · FN(1/C).

We now make use of the estimation (cf. [5, Theorem 8.8.7])

ϕ(n) ≥ max

{
1,

n

eγ log log n+ 3
log log n

}
(8.10)

for the totient function, where γ denotes Euler’s constant. For convenience, let us write
ϕ(n) for the right-hand side of (8.10). Then, use of (8.10) in the definition of C gives

logC ≥
k∑

j=1

logN
ϕ(Nj)
j =

k∑

j=1

ϕ(Nj) logNj ≥
k∑

j=1

ϕ(Nj) logNj.

If we put this together with (8.9), we see that the inequality (8.1) will be proved whenever

k∑

j=1

ϕ(Nj) logNj ≥ ckM. (8.11)

It remains to consider the cases where (8.11) does not hold. We claim that this is only a
finite number of cases. Indeed, for fixed k, there can only be a finite number of k-tuples
(N1, N2, . . . , Nk) for which (8.11) is violated, since trivially ck is constant for fixed k, and
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since ϕ(M) logM grows faster than M . On the other hand, if k ≥ 15, then (8.11) holds
automatically. For, we have

min
M≥2

{ϕ(M) logM − c15M} ≥ −9,

and therefore (assuming that M = N1 without loss of generality)

k∑

j=1

ϕ(Nj) logNj = ϕ(M) logM +
k∑

j=2

ϕ(Nj) logNj

≥ c15M − 9 + (k − 1) log 2

≥ ckM − 9 + (k − 1) log 2

≥ ckM

for k ≥ 15, where we used the simple fact that the ck’s are monotone decreasing in k in
the third line.

In summary, there is indeed only a finite number of cases left where (8.11) does not hold.
For these cases, we have verified on the computer that the inequality (8.1) is satisfied. For
carrying out this verification, we used the estimation

qN(1/C) = exp

(∑∞
m=0 BN(m)

(
HN(m) − logC

)
C−m

∑∞
m=0 BN(m)C−m

)

< exp

( ∑20
m=0 BN(m)

(
HN(m) − logC

)
C−m

∑20
m=0 BN(m)C−m + e

7
300

Φπ−Φ/2
∑∞

m=21 (m− 1)−Φ/2

)

< exp

( ∑20
m=0 BN(m)

(
HN(m) − logC

)
C−m

∑20
m=0 BN(m)C−m + e

7
300

Φπ−Φ/2
(

Φ
2
− 1
)−1

19−
Φ
2
+1

)
(8.12)

(with the third line following again from (4.18) and (8.7), and the last line from∑∞
m=21 (m− 1)−Φ/2 <

∫∞
19
x−Φ/2 dx), and we actually compared the left-hand side of (8.1)

with the upper bound on the right-hand side given in (8.12). This completes the proof of
the lemma. �

9. Proof of Theorem 1.5: the cases ΦN = 1, 2, 3

The case of Φ = 1 is a trivial case. We provide the details nevertheless for the sake
of completeness. For the cases Φ = 2, 3, it is well documented in the literature that the
corresponding functions zN(q) live in the world of modular forms. We refer the reader to
[34, 40] for reviews of the corresponding classical theory. Despite of this, it seems that the
questions that we treat in the present paper — namely questions concerning the analytic
nature of the function zN(q) — have not been recorded in sufficient detail to extract
complete information about the singularities of the function, for example, and, thus, of the
radius of convergence of the Taylor series at q = 0.

The purpose of this section is to compile the relevant facts, to provide a coherent
overview, and to fill possible gaps whenever necessary.
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Since we shall make use of it below, we record here some basic facts on modular forms.
Given a subgroup Γ of the modular group SL2(Z) and a non-negative integer k, a function
f(τ) from the complex upper half plane H to the complex numbers is called a modular

form of weight k for Γ if it is meromorphic on H and

f(T (τ)) = (cτ + d)kf(τ) (9.1)

for all elements T = ( a b
c d ) of Γ, where the action of T is defined by T (τ) = (aτ+b)/(cτ+d).

Modular forms of weight k for Γ satisfy the valence formula (cf. [30, Theorem 4.1.4])

∑

ζ∈F

ord(f, ζ)

| stabζ(Γ̂)|
=

|ŜL2(Z)/Γ̂|
12

k. (9.2)

Here,

− F is a fundamental region for the action of Γ on H to which one adds the cusps
(a system of representatives of the orbit of ∞ under the action of SL2(Z) when
restricted to Γ);

− Γ̂ is the mapping group corresponding to Γ, i.e., the group arising from Γ upon
identification of T and −T if both of them should be contained in Γ (the action
(9.1) on H of T and −T is identical);

− ord(f, ζ) is the usual order of f at ζ if ζ is not a cusp;
− if ζ is a cusp, ζ = T∞ for T = ( a b

c d ) ∈ SL2(Z), then ord(f, ζ) is defined as the order
of the series expansion of (cτ + d)−kf(T (τ)) in q̃ = exp(2iπτ/nT ) (as a Laurent
series in q̃), where k is the weight of f , and where nT is the least positive integer
such that ( 1 1

0 1 )nT ∈ TΓT−1;

− stabζ(Γ̂) is the subgroup of Γ̂ consisting of the elements fixing ζ.

The stabiliser stabi Γ̂ of i in Γ̂ can be 2 or 1 depending on whether or not V = ( 0 −1
1 0 )

or −V is in Γ. The stabiliser stabρ Γ̂ of ρ = exp(2iπ/3) in Γ̂ can be 3 or 1 depending on
whether or not P = ( 0 −1

1 1 ) or −P is in Γ. All other stabilisers consist only of one element.
Below we shall make frequent use of the following special functions. The Eisenstein

series (in Ramanujan’s notation) Q(q) and R(q) are defined by

Q(q) = 1 + 240
∞∑

n=1

σ3(n)qn and R(q) = 1 − 504
∞∑

n=1

σ5(n)qn

and σk(n) =
∑

d|n d
k. The Eisenstein series E4(τ) := Q

(
exp(2iπτ)

)
is a modular form of

weight 4 for the full modular group SL2(Z), while E6(τ) := R
(
exp(2iπτ)

)
is a modular

form of weight 6 for the same group. It is well-known (see [32, p. 143]) that the zeroes of
Q(q) are of the form q = exp(2iπτ), where τ runs through the elements of the orbit of ρ
under SL2(Z). All of these are simple zeroes. Similarly (see [32, p. 143]), R(q) has only
simple zeroes which are of the form q = exp(2iπτ), where τ runs through the elements of
the orbit of i under SL2(Z). The unit circle is a natural boundary for both Q(q) and R(q).
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The Dedekind–Klein j-invariant is given by

j(τ) = 1728
E3

4(τ)

E3
4(τ) − E2

6(τ)
.

We shall rather use the variant

J(q) =
Q3(q)

Q3(q) −R2(q)
, (9.3)

so that j(τ) = 1728J(exp(2iπτ)). The function j(τ) is a modular form of weight 0 for
SL2(Z). J(q) is meromorphic in the unit disk with a unique pole at q = 0, which is a
simple pole, and the unit circle is a natural boundary.

The Dedekind η-function is defined by

η(τ) = exp(iπτ/12)
∞∏

n=1

(1 − exp(2iπnτ)).

We shall rather use the variant

H(q) = q1/24

∞∏

n=1

(1 − qn).

The function η24(τ) can be expressed in terms of Eisenstein series in the form

η24(τ) = E3
4(τ) − E2

6(τ),

and it is therefore a modular form of weight 12 for SL2(Z).
Two of Jacobi’s theta functions will sometimes appear: the function θ2(q) defined by

θ2(q) =
∞∑

n=−∞
q(n+ 1

2
)2 = 2q1/4

∞∏

j=1

(1 − q2j)(1 + q2j)2

(the equality of the two expressions above follows from Jacobi’s triple product identity, see
[3, Theorem 10.4.1]), and the function θ3(q) defined by

θ3(q) =
∞∑

n=−∞
qn2

=
∞∏

j=1

(1 − q2j)(1 + q2j−1)2

(with again Jacobi’s triple product identity explaining the equality).
We shall also frequently use the fact that, if f(τ) is a modular form of weight k for

SL2(Z), then f(Nτ) is a modular form of weight k for Γ0(N), where Γ0(N) is the subgroup
of SL2(Z) consisting of all matrices ( a b

c d ) with c ≡ 0 mod N . Furthermore, we have

|ŜL2(Z)/Γ̂0(2)| = 3 and |ŜL2(Z)/Γ̂0(3)| = 4 (see [30, (1.4.23)]).

We are now ready to discuss all cases in which Φ = 1, 2, 3.
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9.1. Φ = 1. There is only a single example in which Φ = 1, namely if N = (2). In that
case (see (1.5)), we have q(2)(z) = (1 −

√
1 − 4z)2/(4z) and z(2)(q) = q/(1 + q)2. Hence,

q(2)(z) has exactly one singularity at z = 1/4, which is of square root type, and the radius
of convergence is 1/4 = 1/C. Moreover, z(2)(q) = q/(1 + q)2 has exactly one singularity at
q = −1. Its radius of convergence is 1 = exp(−π cot(π/2)).

9.2. Φ = 2. In this case, according to Theorem 1.2.(ii) and the remark after the state-
ment of the theorem, the point z = 1/C is always a singularity of qN(z), with qN(1/C) = 1.
Moreover, because of (4.7), this singularity is of “1/ log”-type. Consequently, by Lemma 4.5,
the mirror map zN(q) has an essential singularity at q = qN(1/C) = 1.

Case N = (3). Here, we have

F(3)(z) =
∞∑

n=0

(3n)!

n!3
zn = 2F1

[
1/3, 2/3

1
; 27z

]
.

It is well-known (cf. e.g. [40, (23)]) that

z(3)(q) = (Q
3/2
3 (q) −R3(q))/(54Q

3/2
3 (q)), (9.4)

where Q3(q) = (Q(q) + 9Q(q3))/10 and R3(q) = (R(q) + 27R(q3))/28. An alternative
expression (cf. [9, Theorem 2.3]) is given by

z(3)(q) =

(
θ2(q

1/3)θ2(q) + θ3(q
1/3)θ3(q) − θ2(q)θ2(q

3) − θ3(q)θ3(q
3)
)3

216 (θ2(q)θ2(q3) + θ3(q)θ3(q3))3

=
q

27q +
∞∏

n=1

(1 − qn)12

(1 − q3n)12

=
1

27 +
H12(q)

H12(q3)

.

The second equality can be easily derived using standard reasoning that involves an esti-
mation of the orders of both expressions at the cusps of a fundamental region of Γ0(12),
application of the valence formula (9.2), and a verification that sufficiently many coeffi-
cients in the power series expansion in q agree; see [15, Sections 3 and 4] for a detailed
description of this kind of argument.

Again alternatively, z(3)(q) is solution of the equation (cf. [24, Sec. 5.1, p. 176])

1728J(q) =
(1 + 216z(3)(q))

3

z(3)(q)(1 − 27z(3)(q))3
. (9.5)

By Lemma 4.1 (with M = 3, L = 3, R = 2/3) and Lemma 4.6, we know that z(3)(q) has

a pole of order 3 at q = − exp(−π/
√

3). (This corrects the statement in the paragraph
containing (3) in [38].) Hence, by (9.4), q = − exp(−π/

√
3) must be a zero of Q3(q) of

order at least 2. Since the function E4(τ) is a modular form of weight 4 for SL2(Z), the

function Q̃3(τ) := Q3

(
exp(2iπτ)

)
is a modular form of weight 4 for Γ0(3). It is easy to

see that the orbit of ρ under SL2(Z) splits under the action of Γ0(3) into three orbits: one

orbit containing ρ, another orbit containing ρ+ 1 = 1
2

+ i
√

3
2

, and another orbit containing



31

ρ1 = 1
2

+ i
2
√

3
. The reader should note that exp(2iπρ1) = − exp(−π/

√
3). If we now apply

the valence formula (9.2) to Q̃3(τ), then, since | stabρ1(Γ̂0(3))| = 3, while | stabρ(Γ̂0(3))| = 1

and | stabi(Γ̂0(3))| = 1, we obtain

1

3
ord
(
Q̃3, ρ1

)
+

∑

ζ∈F\{ρ1}
ord(Q̃3, ζ) =

4

3
.

We know that Q̃3(τ) is analytic in the upper half plane, that ord(Q̃3, ζ) = 0 for all cusps

ζ, and that ord(Q̃3, ρ1) ≥ 2. Therefore, if the above equation wants to hold then neces-

sarily ord(Q̃3, ρ1) = 4, and all other orders must be zero. (As a by-product, we see that
R3(q) has a zero of order 3 at q = − exp(−π/

√
3). We remark that the valence formula

applied to R3(q) implies that there exists another, simple zero in a fundamental region of

Γ̂0(3). We claim that this is q = exp(−2π
√

3) and all elements in its orbit. To see this,
one first observes that (9.3) and the previously quoted fact that Q

(
− exp(−π

√
3)
)

= 0

imply that J
(
− exp(−π

√
3)
)

= 0. Combining this with the modular equation of level
2, which provides a polynomial relation between J(q) and J(q2) (cf. [18, expression for
H2(x, y) given on p. 192]), we infer that J

(
exp(−2π

√
3)
)

= 125/4. If this is substituted

in (9.5), one obtains four possible values for z(3)

(
exp(−2π

√
3)
)
, one of which is 1/54. By

a numerical calculation, the other three values can be ruled out. Finally, by inserting
z(3)

(
exp(−2π

√
3)
)

= 1/54 in (9.4), we see that R
(
exp(−2π

√
3)
)

= 0, as we claimed.)
In summary, the above arguments prove that z(3)(q) is meromorphic on the unit disk

|q| < 1 with poles of third order at all points exp(2iπτ), where τ is an element of the
orbit of ρ1 under Γ0(3). It is not difficult to see that exp(2iπρ1) = − exp(−π/

√
3) is

the element of smallest modulus in this set, and that the other elements become dense
near the boundary |q| = 1. In particular, the Taylor expansion of z(3)(q) has radius of

convergence exp(−π/
√

3) = exp(−π cot(π/3)) = 0.163033 . . . , and z(3)(q) has |q| = 1 as
natural boundary.

Case N = (4). Here, we have

F(4)(z) =
∞∑

n=0

(4n)!

(2n)!n!2
zn = 2F1

[
1/4, 3/4

1
; 64z

]
.

It is known (cf. [9, Theorem 2.6]) that

z(4)(q) =
θ4
2(q)θ

4
3(q)

16 (θ4
2(q) + θ4

3(q))
2

=
q

64q +
∞∏

n=1

(1 − qn)24

(1 − q2n)24

=
1

64 +
H24(q)

H24(q2)

. (9.6)

(The second equality can again be proven by arguments as in [15, Sections 3 and 4].)
Again alternatively, it is well-known that z(4)(q) is solution of the equation (cf. [24,

Sec. 5.1, p. 176])

1728J(q) =
(1 + 192z(4)(q))

3

z(4)(q)(1 − 64z(4)(q))2
.
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By Lemma 4.1 (with M = 4, L = 4, R = 3/4) and Lemma 4.6, we know that z(4)(q) has
a pole of order 2 at q = − exp(−π). Hence, by (9.6), q = − exp(−π) must be a zero of

64 + H24(q)
H24(q2)

of order 2. The function f(τ) := 64 + H24(exp(2iπτ))
H24(exp(4iπτ))

is a modular form of weight

0 for Γ0(2). It is easy to see that the orbit of i under SL2(Z) splits under the action of
Γ0(2) into two orbits: one orbit containing i and another orbit containing δ1 = −1

2
+ i

2
.

The reader should note that exp(2iπδ1) = − exp(−π). If we now apply the valence formula

(9.2) to f(τ), then, since | stabδ1(Γ̂0(2))| = 2, while | stabi(Γ̂0(2))| = 1, ord∞(f) = −1,

ordV ∞(f) = ord0(f) = 0, and | stabi(Γ̂0(2))| = 1, we obtain

−1 +
1

2
ord
(
f, δ1

)
+

∑

ζ∈F\{δ1,∞,V ∞}
ord(f, ζ) = 0.

We know that f is analytic in the upper half plane and that ord(f, δ1) = 2. Therefore, if
the above equation wants to hold then necessarily all other orders must be zero.

In summary, the above arguments prove that z(4)(q) is meromorphic on the unit disk
|q| < 1 with poles of second order at all points exp(2iπτ), where τ is an element of
the orbit of δ1 under Γ0(2). It is not difficult to prove that exp(2iπδ1) = − exp(−π) is the
element of smallest modulus in this set, and that the other elements become dense near the
boundary |q| = 1. In particular, the Taylor expansion of z(4)(q) has radius of convergence
exp(−π) = exp(−π cot(π/4)) = 0.0432139 . . . , and z(4)(q) has |q| = 1 as natural boundary.

Case N = (6). Here, we have

F(6)(z) =
∞∑

n=0

(6n)!

(3n)! (2n)!n!
zn = 2F1

[
1/6, 5/6

1
; 432z

]
.

It is well-known that z(6)(q) is solution of the equation (cf. [24, Sec. 5.1, p. 176])

1728J(q) =
1

z(6)(q)(1 − 432z(6)(q))
. (9.7)

By Lemma 4.1 (with M = 6, L = 6, R = 5/6) and Lemma 4.6, we know that z(6)(q) has an

algebraic branch point with exponent −3/2 at q = − exp(−π
√

3). More precisely, since,
by solving (9.7), we have

z(6)(q) =
1

864

(
1 −

√
J(q) − 1

J(q)

)
,

the only singularities of z(6)(q) in the interior of the unit disk can occur at points where
J(q) = 0 or J(q) = 1. These are points q where Q(q) = 0, respectively where R(q) = 0.
The corresponding values of q are q = exp(2iπτ), where τ runs through the elements of the
orbit of ρ under SL2(Z), respectively the elements of the orbit of i under SL2(Z). However,
since R(q) appears as a square in the definition of J(q), each point q = exp(2iπτ), where

τ is in the orbit of i, is a zero of even order of J(q) − 1, whence
√
J(q) − 1 is analytic at

these points.
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In summary, the singularities of z(6)(q) in the interior of the unit disk are q = exp(2iπτ),
where τ runs through the elements of the orbit of ρ under SL2(Z). Each of them is a branch
point. It is not difficult to prove that exp(2iπρ) = − exp(−π

√
3) is the element of smallest

modulus in this set, and that the other elements become dense near the boundary |q| = 1.
In particular, the Taylor expansion of z(6)(q) has radius of convergence exp(−π

√
3) =

exp(−π cot(π/6)) = 0.00433342 . . . , and z(6)(q) has |q| = 1 as natural boundary.

Case N = (2, 2). Here, we have

F(2,2)(z) =
∞∑

n=0

(2n)!2

n!4
zn = 2F1

[
1/2, 1/2

1
; 16z

]
.

It is well-known (cf. [9, Theorem 2.2]) that

z(2,2)(q) =
θ4
2(q)

16 θ4
3(q)

= q
∞∏

n=1

(1 − q4n)8

(1 − (−q)n)8
= eiπ/3 H

8(q4)

H8(−q) . (9.8)

(In this case, the second equality results upon minor simplification from the product ex-
pressions for θ2(q) and θ3(q).)

Alternatively, z(2,2)(q) is solution of the equation (cf. [24, Sec. 5.1, p. 176])

1728J(q) =
(1 + 224z(2,2)(q) + 256z2

(2,2)(q))
3

z(2,2)(q)(1 − 16z(2,2)(q))4
. (9.9)

From (9.8), it is evident that the radius of convergence of z(2,2)(q) is 1 = exp(−π cot(π/2)),
and that z(2,2)(q) has |q| = 1 as natural boundary. We remark that this is consistent with
Lemma 4.1.(iii) and Lemma 4.6.(iii), which imply that z(2,2)(q) has an essential singularity
at q = − exp(−π cot(π/2)) = −1.

9.3. Φ = 3. In this case, according to Theorem 1.2.(ii), the point z = 1/C is always a
singularity of qN(z). Furthermore, because of Lemma 4.2.(ii) (with d = 0), this singularity
is of square root type. Consequently, according to Lemma 4.3 (with d = 0), the mirror
map zN(q) is analytic at qN(1/C), with z′

N
(qN(1/C)) = 0.

Case N = (2, 3). Here, we have

F(2,3)(z) =
∞∑

n=0

(2n)! (3n)!

n!5
zn = 3F2

[
1/2, 1/3, 2/3

1, 1
; 108z

]
= 2F1

[
1/3, 1/6

1
; 108z

]2

.

The identity between the hypergeometric series is a special case of Clausen’s formula (cf.
[33, (2.5.7)])

3F2

[
2a, 2b, a+ b

2a+ 2b, a+ b+ 1
2

; z

]
= 2F1

[
a, b

a+ b+ 1
2

; z

]2

. (9.10)

It is well-known (cf. e.g. [40, (23)]) that z(2,3)(q) = (Q3
3(q)−R2

3(q))/(108Q3
3(q)), where Q3(q)

and R3(q) are defined as in the case N = (3). From the considerations concerning the zeroes
of Q3(q) and R3(q) in the case N = (3), we conclude that z(2,3)(q) has poles of order 6 at all
points exp(2iπτ), where τ is an element of the orbit of ρ1 = 1

2
+ i

2
√

3
under Γ0(3). The point
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exp(2iπρ1) = − exp(−π/
√

3) is the element of smallest modulus in this set, and the other
elements become dense near the boundary |q| = 1. In particular, the Taylor expansion of
z(2,3)(q) has radius of convergence exp(−π/

√
3) = exp(−π cot(π/3)) = 0.163033 . . . , and

z(2,3)(q) has |q| = 1 as natural boundary.
Case N = (2, 4). Here, we have

F(2,4)(z) =
∞∑

n=0

(4n)!

n!4
zn = 3F2

[
1/2, 1/4, 3/4

1, 1
; 256z

]
= 2F1

[
1/8, 3/8

1
; 256z

]2

,

again with Clausen’s formula (9.10) explaining the identity between the hypergeometric
series. It is well-known (cf. e.g. [40, (23)]) that

z(2,4)(q) = (Q3
2(q) −R2

2(q))/(256Q3
2(q)), (9.11)

where Q2(q) = (Q(q) + 4Q(q2))/5 and R2(q) = (R(q) + 8R(q2))/9. An alternative expres-
sion can be found, if one observes that, by the quadratic transformation formula (see [6,
Ex. 4.(iii), p. 97])

2F1

[
a, b

1
2

+ a+ b
; z

]
= 2F1

[
2a, 2b

1
2

+ a+ b
;
1 −

√
1 − z

2

]
, (9.12)

we have

2F1

[
1/8, 3/8

1
; 256z

]
= 2F1

[
1/4, 3/4

1
;
1 −

√
1 − 256z

2

]
,

which enables us to identify 1
2

(
1 −

√
1 − 256z(2,4)(q)

)
with 64z(4)(q), or, explicitly,

z(2,4)(q) = z(4)(q) − 64z2
(4)(q). (9.13)

By Lemma 4.1 (with M = 4, L = 4, R = 1/2) and Lemma 4.6, we know that z(2,4)(q)
has a pole of order 4 at q = − exp(−π). We can now either use the expression (9.11) in
combination with arguments as in the case N = (4), or (9.13) and similar arguments, to
conclude that z(2,4)(q) is meromorphic on the unit disk |q| < 1 with poles of fourth order
at all points exp(2iπτ), where τ is an element of the orbit of δ1 = −1

2
+ i

2
under Γ0(2). The

point exp(2iπδ1) = − exp(−π) is the element of smallest modulus in this set, and the other
elements become dense near the boundary |q| = 1. In particular, the Taylor expansion
of z(2,4)(q) has radius of convergence exp(−π) = exp(−π cot(π/4)) = 0.0432139 . . . , and
z(2,4)(q) has |q| = 1 as natural boundary.

We remark that, as a by-product, we obtain that Q2(q) has a zero of order 2 and R2(q)
has a simple zero at q = − exp(−π).

Case N = (2, 6). Here, we have

F(2,6)(z) =
∞∑

n=0

(6n)!

(3n)!n!3
zn = 3F2

[
1/2, 1/6, 5/6

1, 1
; 1728z

]
= 2F1

[
1/12, 5/12

1
; 1728z

]2

,

again with Clausen’s formula (9.10) behind the identity between the hypergeometric series.
It is well-known (cf. [25, Sec. 2]) that z(2,6)(q) = 1/(1728J(q)). By the considerations in
the case where N = (6), we conclude that z(2,6)(q) has a pole of order 3 at all points
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q = exp(2iπτ), where τ runs through the elements of the orbit of ρ under SL2(Z). The
point exp(2iπρ) = − exp(−π

√
3) is the element of smallest modulus in this set, and the

other elements become dense near the boundary |q| = 1. In particular, the Taylor expansion
of z(2,6)(q) has radius of convergence exp(−π

√
3) = exp(−π cot(π/6)) = 0.00433342 . . . ,

and z(2,6)(q) has |q| = 1 as natural boundary.

Case N = (2, 2, 2). Here, we have

F(2,2,2)(z) =
∞∑

n=0

(2n)!3

n!6
zn = 3F2

[
1/2, 1/2, 1/2

1, 1
; 64z

]
= 2F1

[
1/4, 1/4

1
; 64z

]2

,

again with Clausen’s formula (9.10) behind the identity between the hypergeometric series.
By applying (9.12), we can relate the 2F1-series to the 2F1-series from the case where
N = (2, 2). Namely, we have

2F1

[
1/4, 1/4

1
; 64z

]
= 2F1

[
1/2, 1/2

1
;
1 −

√
1 − 64z

2

]
,

which enables us to identify 1
2

(
1 −

√
1 − 64z(2,2,2)(q)

)
with 16z(2,2)(q), or, explicitly,

z(2,2,2)(q) = z(2,2)(q) − 16z2
(2,2)(q). (9.14)

The expression on the right-hand side of (9.14) can be rewritten in the form

z(2,2,2)(q) = q
∞∏

n=1

(1 − q2n)24

(1 − (−q)n)24
= − H24(q2)

H24(−q) . (9.15)

(This follows again by arguments as in [15, Sections 3 and 4].) From (9.15), it is evident
that the radius of convergence of z(2,2,2)(q) is 1=exp(−π cot(π/2)), and that z(2,2,2)(q) has
|q| = 1 as natural boundary. We remark that this is consistent with Lemma 4.1.(iii)
and Lemma 4.6.(iii), which imply that z(2,2,2)(q) has an essential singularity at q =
− exp(−π cot(π/2)) = −1.

10. Proof of Proposition 1.6

By Theorem 1.2.(i), the radius of convergence of qN(z) is 1/C. Moreover, by Theo-
rem 1.1, the Taylor coefficients of qN(z) at 0 are all positive. Hence, q′

N
(z) > 0 for all z in

the segment [0, 1/C). By the inverse function theorem, qN(z) has a compositional inverse
in a domain containing [0, 1/C). This implies the first assertion.

The additional assertion on the analytic nature of zN(q) around qN(1/C) results from
Lemma 4.2.(ii), (iii). Strictly speaking, the lemma makes no assertion about the angle
(depending on ε) of the slit neighbourhood at 1/C. However, it is not very difficult to see
that the assertion that there exists such a slit neighbourhood with an arbitrary ε > 0 can
be derived by an appropriate refinement of the proof of Lemma 4.2.

The argument for the assertion on the analytic nature of zN(q) around the point
− exp

(
− π cot(π/M)

)
given in the second paragraph after Conjecture 1.9 is similar. It is

based on the singular expansion of qN(z) at z = ∞ given in Lemma 4.1 and its consequence
for the singular expansion of zN(q) at − exp

(
− π cot(π/M)

)
given in Lemma 4.6.
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0 1/C
C1

C◦

C+

C−

Figure 2. The contour C

11. What do we need to prove Conjecture 1.7?

By the Lagrange inversion formula (cf. [17, Theorem 1.9b with R(x) = x]), we can
express the m-th Taylor coefficient of zN(q) in the form

1

2iπm

∫

D

dz

qN
m(z)

, (11.1)

where D is a sufficiently small contour that encircles the origin once in positive (that is,
counter-clockwise) direction. We now deform D to a contour C consisting of four parts,

C = C1 ∪ C+ ∪ C− ∪ C◦,
where

(1) C1 is a (small) piece of length ℓ, say, that passes through 1/C,
(2) C◦ is a segment {Reiθ : δ ≤ θ ≤ 2π − δ} of a (large) circle of radius R, for some

δ > 0,
(3) C+ is a path that connects the ends of C1 and C◦ with positive real parts,
(4) C+ is a path that connects the ends of C1 and C◦ with negative real parts,
(5) |qN(z)| ≥ qN(1/C) for all z ∈ C,

if there exists such a contour (see Figure 2 for a symbolic illustration of such a contour).
There is no problem with the existence of C1 since Lemma 4.2.(ii), (iii) says that the
coefficient of 1 − Cz in the singular expansion of qN(z) about z = 1/C must be negative,
nor is there with the existence of C◦, the latter due to Theorem 1.3 and Lemma 8.1. The
problem here is the question of existence of a suitable path C+ connecting a point in the
neighbourhood of qN(1/C) with a point “far out” (these points being indicated by circles in
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Figure 2) so that, along the path, all values of qN(z) are larger in modulus than qN(1/C).
There cannot be any doubt that, if Φ ≥ 4, such a path exists, but, unfortunately, we have
not been able to establish this. It is easy to see that (by exploiting that qN(z) = qN(z)),
once we know that a suitable path C+ exists, there is as well a suitable path C−.

Let us continue under the assumption that paths C+ and C− as described above exist.
Then we may estimate

∣∣∣∣
1

2iπm

∫

D

dz

qN
m(z)

∣∣∣∣ =

∣∣∣∣
1

2iπm

∫

C

dz

qN
m(z)

∣∣∣∣ ≤
b

m · qN
m(1/C)

,

where b is some constant. Since the contour integral (11.1) gives the coefficient of qm in the
Taylor expansion of zN(q), this implies that the radius of convergence of the series zN(q)
must be at least qN(1/C). From Theorem 1.4.(ii) it then follows that it must be exactly

qN(1/C).

Whether or not qN(1/C) is the only point of singularity of zN(q) on the boundary of its
disk of convergence would have to be decided by an additional argument.

12. Conjecture 1.8 implies the first assertion in Conjecture 1.7

Let Φ ≥ 4. Conjecture 1.8 says that all but a finite number of coefficients in the Taylor
series expansion of zN(q) are negative. Let this Taylor series expansion be

∑∞
m=0 zmq

m. A
well-known theorem of Pringsheim (cf. [14, Theorem IV.6]) says that, if a function f(z) can
be represented in a neighbourhood of z = 0 as a power series with non-negative coefficients
with radius of convergence R, then f(z) has a singularity at z = R. If we apply this theorem
to −∑∞

m=4 zmq
m, then we conclude that the radius of convergence of zN(q) is a positive

real number which is at the same time a singularity of zN(q). By Proposition 1.6, we know
that zN(q) is analytic at all points q ∈ [0,qN(1/C)). Thus, we know that the radius of
convergence of zN(q) must be at least qN(1/C). On the other hand, by Theorem 1.4 we
know that it cannot be larger, whence the conclusion. �

13. Conjecture 1.7 implies a weak version of Conjecture 1.8.(ii) and (iii)

Here we prove that Conjecture 1.7 implies that, if ΦN ≥ 4, almost all coefficients in the
Taylor expansion of zN(q) at q = 0 are negative.

Proposition 13.1. Let N1, N2, . . . , Nk be positive integers, all at least 2, such that ΦN ≥ 4,
and assume that Conjecture 1.7 holds. Then there exists an AN > 0 such that the coefficient

of qm in the Taylor series of zN(q) is negative for every m > AN.

Proof. By Lemma 4.2.(ii), (iii), we know that qN(z) admits a singular expansion at z =
1/C of the form

qN(z) = qN(1/C) + q1(1 − Cz) + q2(1 − Cz)2 + · · ·
+ qd−1(1 − Cz)d−1 +Qd(1 − Cz)dL̃(z) + O

(
(1 − Cz)d

)
,
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where d =
⌊

Φ−2
2

⌋
, q1 < 0, and (−1)d+1Qd > 0, where

L̃(z) =

{
(1 − Cz)

1
2 if Φ is odd,

− log(1 − Cz) if Φ is even.

By Lemma 4.3, respectively Lemma 4.4, it follows that zN(q) admits a singular expansion
at q = qN(1/C) of the form

zN(q) =
1

C
+ z1

(
q − qN(1/C)

)
+ z2

(
q − qN(1/C)

)2
+ · · ·

+ zd−1

(
q − qN(1/C)

)d−1
+ Zd

(
q − qN(1/C)

)d
L̂(q) + O

((
q − qN(1/C)

)d+1)
, (13.1)

where d =
⌊

Φ−2
2

⌋
, z1 = −1/(Cq1), and Zd > 0, where

L̂(z) =

{(
qN(1/C) − q

) 1
2 if Φ is odd,

− log
(
qN(1/C) − q

)
if Φ is even.

If we now use Conjecture 1.7, then the standard theorems of singularity analysis (see

[14, Ch. VI]) imply that the term in (13.1) containing L̂(q) contributes the main term to
the asymptotics of the Taylor coefficients of zN(q). More precisely, for m → ∞, the m-th
Taylor coefficient of zN(q) is equal to

−const. 1 + o(1)

qm
N

(1/C)m
Φ
2

, (13.2)

where const. is a positive constant which can be computed explicitly in terms of Zd, Φ,
and m. The claim of the proposition is now obvious. �
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[19] T. Kaluza, Über die Koeffizienten reziproker Potenzreihen, Math. Z. 28 (1928), 161–170.
[20] C. Krattenthaler and T. Rivoal, On the integrality of Taylor coefficients of mirror maps, Duke Math.

J. 151 (2010), 175–218.
[21] C. Krattenthaler and T. Rivoal, Multivariate p-adic formal congruences and integrality of Taylor
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[29] G. Pólya, Application of a theorem connected with the problem of moments, Mess. of Math. 55 (1926),

189–192.
[30] R. A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge, 1977.
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