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Abstract. We generalise Dwork’s theory of p-adic formal congruences from the uni-
variate to a multi-variate setting. We apply our results to prove integrality assertions
on the Taylor coefficients of (multi-variable) mirror maps. More precisely, with z =
(z1, z2, . . . , zd), we show that the Taylor coefficients of the multi-variable series q(z) =
zi exp(G(z)/F (z)) are integers, where F (z) and G(z) + log(zi)F (z), i = 1, 2, . . . , d, are
specific solutions of certain GKZ systems. This result implies the integrality of the Taylor
coefficients of numerous families of multi-variable mirror maps of Calabi–Yau complete
intersections in weighted projective spaces, as well as of many one-variable mirror maps
in the “Tables of Calabi–Yau equations” [arχiv:math/0507430] of Almkvist, van Enck-
evort, van Straten and Zudilin. In particular, our results prove a conjecture of Batyrev
and van Straten in [Comm. Math. Phys. 168 (1995), 493–533] on the integrality of the
Taylor coefficients of canonical coordinates for a large family of such coordinates in several
variables.

1. Introduction and statement of the results

In [7, 8, 9, 10, 11], Dwork developed a sophisticated theory for proving analytic and
arithmetic properties of solutions to (p-adic) differential equations. In [7, 11], he focussed
on the case of hypergeometric differential equations. In particular, the article [11] contains
a “formal congruence” criterion that enabled him to address the analytic continuation
of quotients of certain solutions and to establish arithmetic properties satisfied by expo-
nentials of such quotients. These exponentials of ratios of solutions to hypergeometric
differential equations (in fact, of Picard–Fuchs equations) have recently received great
attention in mathematical physics and algebraic geometry under the name of canonical
coordinates. Their compositional inverses, known as mirror maps, are an important ingre-
dient in the computation of the Yukawa coupling in the theory of mirror symmetry. It is
conjectured that the coefficients in the Lambert series expansion of the Yukawa coupling
produce Gromov–Witten invariants of classes of rational curves.
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It is only relatively recent, that Dwork’s theory has been systematically applied to obtain
general arithmetic results on the Taylor coefficients of mirror maps. Partial results in this
direction were found by Lian and Yau [18, 19], by Zudilin [22], and by Kontsevich, Schwarz
and Vologodsky [13, 21]. The (so far) strongest and most general results are contained
in [6, 14, 15], where, in particular, numerous integrality results for the Taylor coefficients
of univariate mirror maps of Calabi–Yau complete intersections in weighted projective
spaces are proven, improving and refining the afore-mentioned results by Lian and Yau,
and by Zudilin. However, all these results do not touch the case of multi-variable mirror
maps, upon which they are not able to say anything. The goal of this paper is to set the
basis of a theory which is capable to address questions of integrality of Taylor coefficients
of multi-variable mirror maps, and to apply this theory systematically to large classes of
such mirror maps.

1.1. Multivariate theory of formal congruences. The proof strategy in [6, 14, 15, 18,
19, 22] for obtaining integrality assertions on the Taylor coefficients of one-variable mirror
maps is crucially based on a series of reductions and results, of which the corner stones
are:

(D1) the conversion of the integrality problem to a p-adic problem;
(D2) a lemma due to Dieudonné and Dwork (cf. [17, Ch. 14, p. 76]) providing a criterion

for deciding whether a power series with coefficients over Qp has coefficients in Zp;
(D3) a reduction lemma for harmonic numbers due to the authors (cf. [14, Lemma 1,

respectively Lemma 5] and [15, Lemma 3]);
(D4) a combinatorial lemma due to Dwork [11, Lemma 4.2] for rearranging sums that

appear in this context in a way tailor-made for p-adic analysis;
(D5) Dwork’s theorem on formal congruences (cf. [11, Theorem 1.1]).

We point out that Lian and Yau, and Zudilin do not need item (D3) due to the nature
of the special families of mirror maps that they were considering. Indeed, item (D3) is
the decisive novelty which enabled the authors to arrive at their general sets of results in
[14, 15]. On the side, we remark that Zudilin also condenses (D4) and (D5) into one step
in the proof of his main result in [22]. However, in order to arrive at the general results in
[14, 15], it turned out to be necessary to follow the full path outlined by (D1)–(D5) above,
as attempts to lift Zudilin’s variation to this generality failed.

With the exception of (D1), which trivially extends to the multi-variable case, for none of
the above items there exist multi-variate extensions in the current literature. In particular,
no approach for attacking integrality questions for multi-variable mirror maps has been
available so far.

In this paper, we present multi-variate versions for all of (D2)–(D5); all of them seem
to be new. Our multi-variate extension of (D2) is the content of Lemma 1 in Section 2,
our multi-variate version of (D3) can be found in Lemma 3 in Section 2, while Lemma 5
in Section 6 provides our multi-variate extension of (D4). On the other hand, we state our
multi-variate extension of item (D5) in Theorem 1 below. Since its one-variable special
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case enabled Dwork to address the question of analytic extension of certain ratios of gen-
eralised p-adic hypergeometric series in one variable, we expect our result below to be the
appropriate tool for analogous studies of multivariable p-adic hypergeometric series.

For the statement of our multi-variate theorem on formal congruences, we need some
standard multi-index notation. Namely, given a positive integer d, a real number λ, and
vectors m = (m1,m2, . . . , md) and n = (n1, n2, . . . , nd) in Rd, we write m + n for (m1 +
n1,m2 + n2, . . . , md + nd), λm for (λm1, λm2, . . . , λmd), we write m ≥ n if and only if
mi ≥ ni for i = 1, 2, . . . , d, and we write 0 for (0, 0, . . . , 0) ∈ Zd and 1 for (1, 1, . . . , 1) ∈ Zd.

Theorem 1. Let A : Zd
≥0 → Zp \ {0} and g : Zd

≥0 → Zp \ {0} be maps satisfying the
following three properties:

(i) vp

(
A(0)

)
= 0;

(ii) A(n) ∈ g(n)Zp;
(iii) for all non-negative integers s and all integer vectors v,u,n ∈ Zd with v,u,n ≥ 0

with 0 ≤ vi < p and 0 ≤ ui < ps, i = 1, 2, . . . , d,

A(v + pu + nps+1)

A(v + pu)
− A(u + nps)

A(u)
∈ ps+1 g(n)

g(v + pu)
Zp.

Then, for all non-negative integers s and all integer vectors m,K, a ∈ Zd with m ≥ 0
and 0 ≤ ai < p, i = 1, 2, . . . , d, we have

∑

psm≤k≤ps(m+1)−1

(
A(a + pk)A(K− k)− A(a + p(K− k))A(k)

) ∈ ps+1g(m)Zp,

where we extend A to Zd by A(n) = 0 if there is an i such that ni < 0.

While the proofs of Lemmas 1 and 5 (corresponding to items (D2) and (D4)) are relatively
straightforward extensions of the one-variable proofs given in [17, Ch. 14, p. 76] and [11,
proof of Lemma 4.2], respectively, the proofs of Lemma 3 and Theorem 1 (corresponding
to items (D3) and (D5)) need new ideas. The proof of Lemmas 1 is given in Section 3.
Section 5 is devoted to the proof of Lemma 3. This proof was kindly provided by an
anonymous referee. (For our original proof, see [16, Sec. 5].) Even in the one-dimensional
case, this proof (as well as the one in [16]) is new, as it simplifies the earlier proofs [14,
proofs of Lemma 1, respectively Lemma 5] and [15, proof of Lemma 3]. In fact, it turned
out, that these earlier proofs could not be extended to the multi-variate case. The proof
of Lemma 5 can be found in Section 6. Finally, in Section 7 we prove Theorem 1.

The main application of our multi-variate theory of formal congruences that we present
in this paper concerns the proof that, for a large class of multi-variable mirror maps, their
Taylor coefficients are integers. We state the corresponding general theorem in the next
subsection. The subsequent subsection collects some particularly interesting special cases
and consequences.

1.2. A family of GKZ functions and their associated mirror maps. In order to
state the results in this section conveniently, we need to further enlarge our set of multi-
index notations given before Theorem 1. Given vectors m = (m1,m2, . . . , md) and n =
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(n1, n2, . . . , nd) in Rd, we write m ·n for the scalar product m1n1 +m2n2 + · · ·+mdnd, and
we write |m| for m1 + m2 + · · · + md. Furthermore, given a vector z = (z1, z2, . . . , zd) of
variables and n = (n1, n2, . . . , nd) ∈ Zd, we write zn for the product zn1

1 zn2
2 · · · znd

d . On the
other hand, if n is an integer, we write zn for the vector (zn

1 , zn
2 , . . . , zn

d ).

Given k vectors N(j) = (N
(j)
1 , N

(j)
2 , . . . , N

(j)
d ) ∈ Zd, j = 1, . . . , k, with N(j) ≥ 0, let us

define the series

FN(z) =
∑
m≥0

zm

k∏
j=1

(N(j) ·m)!
∏d

i=1 mi!N
(j)
i

=
∑
m≥0

zm

k∏
j=1

( ∑d
i=1 N

(j)
i mi

)
!

∏d
i=1 mi!N

(j)
i

.

Since the Taylor coefficients of FN(z) are products of multinomial coefficients, it follows

that FN(z) ∈ 1 +
∑d

i=1 ziZ[[z]], where Z[[z]] denotes the set of all (formal) power series in
the variables z1, z2, . . . , zd with integer coefficients.

This series is a GKZ hypergeometric function (1) and it is known to “come from geom-
etry,” i.e., it can be viewed as the period of certain multi-parameter families of algebraic
varieties in a product of weighted projective spaces (see [12] for details). It satisfies a linear
differential system {Li,N(FN) = 0 : i = 1, . . . , d} defined by the operators

Li,N = θ
N

(1)
i +···+N

(k)
i

i − zi

k∏
j=1

N
(j)
i∏

rj=1

( d∑

`=1

N
(j)
` θ` + rj

)
, i = 1, . . . , d,

where θi = zi
∂

∂zi
. Amongst the other solutions of this system, we find the d functions

log(zi)FN(z) + Gi,N(z), i = 1, . . . , d, defined by

Gi,N(z) =
∑
m≥0

zm

( k∑
j=1

N
(j)
i HN(j)·m −Hmi

k∑
j=1

N
(j)
i

) k∏
j=1

(N(j) ·m)!
∏d

i=1 mi!N
(j)
i

.

Here and in the rest of the article, Hm =
∑m

j=1 1/j denotes the m-th harmonic number,
with the convention H0 = 0.

This set of solutions enables us to define d canonical coordinates qi,N(z) by

qi,N(z) = zi exp
(
Gi,N(z)/FN(z)

)
,

which are objects with many fundamental properties for the “mirror symmetry” study of
the underlying multi-parameter families of varieties. The compositional inverse of the map

z 7→ (q1,N(z), q2,N(z), . . . , qd,N(z))

defines the vector (z1,N(q), z2,N(q), . . . , zd,N(q)) of mirror maps. In this paper, by abuse
of terminology, we will also use the term “mirror map” for any canonical coordinate. (2)

1See [20] for an introduction to these functions, which are a far-reaching generalisation of the classical
hypergeometric functions to several variables.

2Canonical coordinates and mirror maps have distinct geometric meanings. However, in the number-
theoretic study undertaken in the present paper, they play strictly the same role, because qi,N(z) ∈ ziZ[[z]],
i = 1, 2, . . . , d, implies that zi,N(q) ∈ qiZ[[q]], i = 1, 2, . . . , d, and conversely.
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Let us define the series

GL,N(z) =
∑
m≥0

zmHL·m
k∏

j=1

(
N(j) ·m)

!
∏d

i=1 mi!N
(j)
i

∈
d∑

i=1

ziQ[[z]],

where L ∈ Zd is≥ 0. For any i = 1, . . . , d, the function Gi,N(z) is a finite linear combination
with integer coefficients in the functions GL,N(z), where the summation runs over various
vectors L, each one with the property that 0 ≤ L ≤ N(j(L)) for some j(L) ∈ {1, . . . , k}.
Therefore, the following theorem concerns as well our mirror maps qi,N(z) ∈ ziZ[[z]] (see
Corollary 1).

Theorem 2. Let d and k be positive integers. For all vectors L = (L1, L2, . . . , Ld) ∈ Zd

and N(j) = (N
(j)
1 , N

(j)
2 , . . . , N

(j)
d ) ∈ Zd, j = 1, 2, . . . , k, with 0 ≤ L ≤ N(1), N(2) ≥

0, . . . ,N(k) ≥ 0, we have

qL,N(z) := exp
(
GL,N(z)/FN(z)

) ∈ Z[[z]].

Remarks 1. (a) Given the fact that the canonical coordinates qi,N(z) (which, in their turn,
define the mirror maps zi,N(q)) can be expressed as products of several series of the form
qL,N(z) (with varying L), we call qL,N(z) a mirror-type map.

(b) By carefully going through our arguments, one sees that minor modifications lead
to the slightly stronger statement that, under the assumptions of Theorem 2, we have

exp
(
GL,N(z)/FN(z)

) ∈
k∏

j=2

(
min{N (j)

1 , N
(j)
2 , . . . , N

(j)
d })!Z[[z]].

The statement of the theorem might suggest that N(1) plays a special role amongst
the vectors N(1),N(2), . . . ,N(k). Of course, this is not the case: by symmetry, given any
j ∈ {1, . . . , k}, a similar result holds for any L such that 0 ≤ L ≤ N(j). This remark
implies the following result for the mirror maps qi,N(z) ∈ ziZ[[z]], proving a conjecture of
Batyrev and van Straten [3, Conjecture 7.3.4] for a large family of canonical coordinates
in several variables.

Corollary 1. Let d, k be positive integers. For all vectors N(j) = (N
(j)
1 , N

(j)
2 , . . . , N

(j)
d ) ∈

Zd, j = 1, 2, . . . , k, with N(1) ≥ 0, N(2) ≥ 0, . . . ,N(k) ≥ 0, we have qi,N(z) ∈ Z[[z]],
i = 1, 2, . . . , d.

We outline the proof of Theorem 2 in Section 2, thereby showing how the various pieces
of our multi-variate theory of formal congruences fit together in order to prove integrality
assertions for multi-variable mirror(-type) maps. The details are deferred to Sections 3–9.

1.3. Consequences of Theorem 2. In order to illustrate the range of applicability of
Theorem 2, we collect in this subsection some examples and applications that are of par-
ticular interest to multi-variable and one-variable mirror-type maps.

(1) A classical multi-variate example, studied in detail in [3, Sec. 7] and [20, Sec. 8.4], is
the case of the two parameters (w and z say) family of hypersurfaces V of degree (3, 3) in
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P2(C)× P2(C), which is a family of Calabi–Yau threefolds. The periods of the associated
mirror family of Calabi–Yau hypersurfaces can be expressed in term of the double series

F (w, z) =
∑
m≥0

∑
n≥0

(3m + 3n)!

m!3n!3
wmzn, (1.1)

which is symmetric and holomorphic in {(w, z) ∈ C2 : |w|1/3 + |z|1/3 < 1
3
}. It is a solution

of the linear differential system {L1(F ) = 0,L2(F ) = 0} defined by the operators
{
L1 = θ3

1 − w(3θ1 + 3θ2 + 1)(3θ1 + 3θ2 + 2)(3θ1 + 3θ2 + 3),

L2 = θ3
2 − z(3θ1 + 3θ2 + 1)(3θ1 + 3θ2 + 2)(3θ1 + 3θ2 + 3),

where θ1 = w ∂
∂w

and θ2 = z ∂
∂z

.
Two solutions of this system are of the form log(w)F (w, z)+G1(w, z) and log(z)F (w, z)+

G2(w, z) where G1(w, z) and G2(w, z) are holomorphic in {(w, z) ∈ C2 : |w|1/3+|z|1/3 < 1
3
},

and are given explicitly by

G1(w, z) =
∑
m≥0

∑
n≥0

(
3H3m+3n − 3Hm

)(3m + 3n)!

m!3n!3
wmzn,

G2(w, z) =
∑
m≥0

∑
n≥0

(
3H3m+3n − 3Hn

)(3m + 3n)!

m!3n!3
wmzn.

Let us now define the two variable mirror maps q1(w, z) = w exp
(
G1(w, z)/F (w, z)

)
and

q2(w, z) = z exp
(
G2(w, z)/F (w, z)

)
. Here, q1(w, z) = q2(z, w), but this is not the case in

general. It was observed in the early developments of mirror symmetry theory that q1(w, z)
and q2(w, z) seem to have integral Taylor coefficients (see the end of Section 7.1 in [3] for
example). Corollary 1 with d = 2, k = 1, N(1) = (3, 3) now provides a proof for this
observation.

(2) Interesting consequences result also by considering the series expansion qL,N(z) for
cases where some or all of the variables zi are equal to each other. The obtained series is
obviously still a formal power series. Furthermore, since the initial power series has integer
coefficients, any such specialisation leads again to a series with integer coefficients. In this
way, we can construct many new mirror-type maps, and, for several of them, this leads to
proofs of conjectures in the literature on the integrality of their Taylor coefficients.

Here, we provide details for a corresponding example derived from the mirror-type map
of item (1). Subsequently, Item (3) will address another family of one-variable examples
derived from two-variable series, which, for example, includes the series whose coefficients
form the famous sequences that appear in Apéry’s proof of the irrationality of ζ(2) and
ζ(3). Finally, in Item (4), we mention briefly certain cases studied in [1, 2, 3].

We put w = z in the example (1.1) considered in Item (1) above and get

f(z) =
∑
m≥0

∑
n≥0

zm+n (3m + 3n)!

m!3n!3
=

∞∑

k=0

zk (3k)!

k!3

k∑
j=0

(
k

j

)3
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after rearrangement. This map is studied in [3, Sec. 7.3], where it is shown to be of signif-
icance in the theory of mirror symmetry. The function f satisfies a Fuchsian differential
equation of order 4 with maximal unipotent monodromy at the origin: it is annihilated by
the minimal operator

θ4 − 3z(7θ2 + 7θ + 2)(3θ + 1)(3θ + 2)− 72z2(3θ + 5)(3θ + 4)(3θ + 2)(3θ + 1).

Another solution is g(z) + log(z)f(z), where g(z) is given by

g(z) =
∞∑

k=0

zk (3k)!

k!3

k∑
j=0

(
k

j

)3

(3H3k − 3Hk−j).

The function g(z) is a linear combination with integer coefficients of the functions

gL(z) =
∞∑

k=0

zk (3k)!

k!3

k∑
j=0

(
k

j

)3

HL1j+L2(k−j),

where L = (L1, L2) ∈ Z2 is such that 0 ≤ L1, L2 ≤ 3. For these L, equating the variables
in Theorem 2 leads to

exp
(
gL(z)/f(z)

) ∈ Z[[z]],

which, in particular, implies the new result that z exp
(
g(z)/f(z)

) ∈ zZ[[z]].

(3) For any integers α, β such that 0 ≤ β ≤ α, we consider the function

∑
m≥0

∑
n≥0

(
(m + n)!

m! n!

)α−β (
(2m + n)!

m!2n!

)β

wmzn. (1.2)

The specialisation w = z produces the function

Aα,β(z) =
∞∑

k=0

( k∑
j=0

(
k

j

)α(
k + j

j

)β)
zk,

to which we associate the function Bα,β(z) + log(z)Aα,β(z) defined by

Bα,β(z) =
∞∑

k=0

( k∑
j=0

(
k

j

)α(
k + j

j

)β(
(α− β)Hk − αHk−j + βHk+j

))
zk.

Let Lα,β denote the minimal Fuchsian differential operator that annihilates Aα,β(z): it
does not always have maximal unipotent monodromy at z = 0, as the case (α, β) = (6, 0)
shows (cf. [1, Sec. 10]). The operator Lα,β also annihilates Bα,β(z) + log(z)Aα,β(z) and
we define the mirror map z exp

(Bα,β(z)/Aα,β(z)
)
. We observe that Bα,β(z) is a linear

combination with integer coefficients in the functions

BL,α,β(z) =
∞∑

k=0

( k∑
j=0

(
k

j

)α(
k + j

j

)β

HL1j+L2(k−j)

)
zk.
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Here, L = (L1, L2) ∈ Z2 is such that 0 ≤ L1 ≤ 2 and 0 ≤ L2 ≤ 1. For these L, equating
the variables in Theorem 2 leads to

exp
(BL,α,β(z)/Aα,β(z)

) ∈ Z[[z]],

and this implies that z exp
(Bα,β(z)/Aα,β(z)

) ∈ zZ[[z]]. This example is particularly inter-
esting because it proves that maximal unipotent monodromy at the origin is not a necessary
condition to obtain mirror-type maps with integer Taylor coefficients.

It is interesting to note that the Taylor coefficients of A2,1(z) and A2,2(z) form the
sequences appearing in Apéry’s proof of the irrationality of ζ(2) and ζ(3), respectively.
Beukers [4] showed that A2,1(z) and A2,2(z) are strongly related to modular forms, a fact
which also explains the integrality properties of the associated mirror-type maps. (For
p-adic properties of A2,1(z), we refer the reader to [5].)

(4) Equating variables in Theorem 2 can explain the integrality properties of many of the
mirror-type maps in [1], many of which have been incorporated in the table [2] of “Calabi–
Yau differential equations”. This table contains a list of more than 300 Fuchsian differential
equations of order 4 with certain analytic properties, amongst which are maximal unipotent
monodromy at the origin and conjectural integrality of the instanton-type numbers. Only
the first 29 items are currently known to have a geometric origin, meaning that they have
an interpretation in mirror symmetry; for example, the instanton-type numbers in these
cases are really instanton numbers. In particular, the table contains the mirror-type maps
of geometric origin considered in Sections 8.1, 8.2, 8.3 and 8.4 of [3], which all come from
equating variables in series covered by Theorem 2.

Although this is not mentioned explicitly in [2], it is plausible that the mirror-type maps
associated to each example of the table have integer Taylor coefficients. In this direction,
we have checked that the functions whose Taylor coefficients are given in items 15 to 23,
25, 34, 39, 45, 58, 60, 72, 76, 78, 79, 81, 91, 93, 96, 97, 127, 130, 188, 190 and 191, are
specialisations of multi-variable series that can be treated with Theorem 2. Hence the
mirror-type maps associated to these items have integer Taylor coefficients. Incidentally,
items 1 to 14 are all covered by the results in [14, 18, 22] and therefore, amongst the
“geometric” items 1 to 29, there remains to understand only items 24, 26, 27, 28, 29.

We could use many other ways of specialisation in conjunction with Theorem 2, for
example “weighted” equating such as z1 = MzN

2 for some integer parameters M 6= 0 and
N ≥ 1.

2. Outline of the proof of Theorem 2

In this section, we present a decomposition of the proof of Theorem 2 into various
assertions, which form our multi-variate theory of formal congruences described in Subsec-
tion 1.1. The individual assertions will be proved in the later sections.

The starting point (listed as (D1) in Subsection 1.1) is the observation that, given a
power series S(z) = S(z1, z2, . . . , zd) in Q[[z]], the series S(z) is an element of Z[[z]] if and
only if, for all primes p, it is an element of Zp[[z]].
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Next, we want to get rid of the exponential function in the definition of the mirror-type
map qL,N(z). To achieve this, we use a generalisation of a lemma attributed to Dieudonné
and Dwork in [17, Ch. 14, p. 76] to several variables, the latter being the univariate case
of the following lemma (corresponding to (D2) in Subsection 1.1).

Lemma 1. For S(z) ∈ 1 +
∑d

i=1 ziQp[[z]], we have

S(z) ∈ 1 +
d∑

i=1

ziZp[[z]] if and only if
S(zp)

S(z)p
∈ 1 + p

d∑
i=1

ziZp[[z]].

This lemma enables us to prove the following reduction of our problem.

Lemma 2. Given two formal series F (z) ∈ 1 +
∑d

i=1 ziZ[[z]] and G(z) ∈ ∑d
i=1 ziQ[[z]],

let q(z) := exp(G(z)/F (z)). Then we have q(z) ∈ 1 +
∑d

i=1 ziZp[[z]] if and only if

F (z)G(zp)− pF (zp)G(z) ∈ p

d∑
i=1

ziZp[[z]].

These two lemmas are proved in Sections 3 and 4, respectively.
We write BN(m) =

∏k
j=1 B(N(j),m), where

B(P,m) =

(∑d
i=1 Pimi

)
!

∏d
i=1 mi!Pi

(2.1)

for all vectors P,m ∈ Zd with P ≥ 0 and m ≥ 0, while we define B(P,m) = 0 for vectors
m for which mi < 0 for some i. (If we interpret factorials n! as Γ(n + 1), where Γ stands
for the gamma function, then this convention is in accordance with the behaviour of the
gamma function.) Note that, using this notation, we have FN(z) =

∑
m≥0 zmBN(m) and

GL,N(z) =
∑

m≥0 zmHL·mBN(m).

As already mentioned, we have FN(z) ∈ 1 +
∑d

i=1 ziZ[[z]] and thus we can use Lemma 2
with F (z) = FN(z) and G(z) = GL,N(z). The coefficient of za+pK (with 0 ≤ ai < p for
all i) in the Taylor expansion of the formal power series FN(z)GL,N(zp)− pFN(zp)GL,N(z)
can be written in the form

C(a + pK) =
∑

0≤k≤K

BN(a + pk)BN(K− k)
(
HL·(K−k) − pH(L·a+pL·k)

)
.

Lemma 2 tells us that we have to show that C(a + pK) is in pZp.
To prove this, we will proceed step by step. First, because of the congruence (3)

pH(L·a+pL·k) ≡ Hb 1
p
L·ac+L·k mod pZp,

3This is an immediate consequence of the identity HJ =
bJ/pc∑

j=1

1
pj

+
J∑

j=1,p-j

1
j
.
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we obtain

C(a + pK) ≡
∑

0≤k≤K

BN(a + pk)BN(K− k)
(
HL·(K−k) −Hb 1

p
L·ac+L·k

)
mod pZp.

Then, the following lemma (corresponding to (D3) in Subsection 1.1) is proved in Sec-
tion 5.

Lemma 3. For any prime p, vectors a,k,L,N(1) ∈ Zd with k ≥ 0, 0 ≤ L ≤ N(1), and
0 ≤ ai < p for i = 1, 2, . . . , d, we have

B(N(1), a + pk)
(
Hb 1

p
L·ac+L·k −HL·k

)
∈ pZp, (2.2)

where B(N(1), a + pk) is defined in (2.1).

Since B(N(1), a + pk) is a factor of BN(a + pk), it follows that

C(a + pK) ≡
∑

0≤k≤K

BN(a + pk)BN(K− k)
(
HL·(K−k) −HL·k

)
mod pZp.

For the right-hand side, we obviously have

∑

0≤k≤K

BN(a + pk)BN(K− k)
(
HL·(K−k) −HL·k

)

= −
∑

0≤k≤K

HL·k
(
BN(a + pk)BN(K− k)−BN(a + p(K− k))BN(k)

)
. (2.3)

We now use the multi-variable extension of the combinatorial lemma of Dwork (corre-
sponding to (D4) in Subsection 1.1; stated here as Lemma 5 in Section 6, with proof in
the same section) in order to decompose the sum over k. Namely, if in Lemma 5 we let
Z(k) = HL·k,

W (k) = BN(a + pk)BN(K− k)−BN(a + p(K− k))BN(k),

and choose an integer r that satisfies pr−1 > max{K1, K2, . . . , Kd}, then

C(a + pK) ≡ −
r−1∑
s=0

∑

0≤m≤(pr−s−1)1

(
H∑d

i=1 Limips −H∑d
i=1 Libmi

p cps+1

)

·
∑

psm≤k≤ps(m+1)−1

(
BN(a + pk)BN(K− k)−BN(a + p(K− k))BN(k)

)

mod pZp. (2.4)

(Since for the first term appearing on the right-hand side of (6.1) we have Z(0)W r(0) =
H0W r(0) = 0, the right-hand sides of (2.3) and (2.4) are in fact equal.)

To deal with the sum over k in (2.4), we invoke Theorem 1 (corresponding to (D5) in
Subsection 1.1). (Its proof is given in Section 7). We show in Section 8 that Theorem 1
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can be applied with A = g = BN. Using this, we obtain
∑

psm≤k≤ps(m+1)−1

(
BN(a+pk)BN(K−k)−BN(a+p(K−k))BN(k)

) ∈ ps+1BN(m)Zp. (2.5)

We now have to deal with the harmonic sums

H∑d
i=1 Limips −H∑d

i=1 Libmi
p cps+1

occurring on the right-hand side of (2.4). In this regard, we prove the following lemma in
Section 9. (As we show there, it can be reduced to Lemma 3.)

Lemma 4. For all primes p, vectors m,L,N(1),N(2), . . . ,N(d) ∈ Zd with m,L,N(1),N(2),
. . . ,N(d) ≥ 0, we have

BN(m)
(
H∑d

i=1 Limips −H∑d
i=1 Libmi

p cps+1

) ∈ 1

ps
Zp. (2.6)

Consequently, putting the congruences (2.5) and (2.6) together, it follows from (2.4) that
C(a + pk) is congruent mod pZp to a multiple sum (over s and m) whose terms are all in
pZp. Hence, we have established that

C(a + pk) ∈ pZp.

This concludes our outline of the proof Theorem 2.

3. Proof of Lemma 1

Proof of the “only if” part. We have to show that if S(z) ∈ 1 +
∑d

i=1 ziZp[[z]],
then

S(zp)

S(z)p
∈ 1 + p

d∑
i=1

ziZp[[z]].

To do this, we set S(z) =
∑

i≥0 aiz
i. The congruence (u + v)p ≡ up + vp mod pZp and

Fermat’s Little Theorem imply that

S(z)p =

( ∑

i≥0

aiz
i

)p

≡
∑

i≥0

ap
i z

pi mod p

d∑
i=1

ziZp[[z]]

≡
∑

i≥0

aiz
pi mod p

d∑
i=1

ziZp[[z]].

This means that S(z)p = S(zp) + pH(z) with H(z) ∈ ∑d
i=1 ziZp[[z]]. Hence,

S(zp)

S(z)p
= 1− p

H(z)

S(z)p
∈ 1 + p

d∑
i=1

ziZp[[z]],

because the formal series S(z) ∈ 1 +
∑d

i=1 ziZp[[z]] is invertible in Zp[[z]].
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Proof of the “if” part. Suppose that S(zp) = S(z)pR(z) with R(z) = 1 +

p
∑

|i|≥1 biz
i ∈ 1 + p

∑d
i=1 ziZp[[z]] and S(0) = 1. Set S(z) =

∑
i≥0 aiz

i. We have a0 = 1,

and we proceed by induction on |i| to show that ai ∈ Zp.
So, let us assume that ai ∈ Zp for all vectors i ∈ Zd with |i| ≤ r − 1. Let n ∈ Zd be a

vector with |n| = r. The Taylor coefficient Cn of zn in S(zp) is
{

a 1
p
n if p | n1, p | n2, . . . , p | nd ;

0 otherwise.

The Taylor coefficient Cn is at the same time also equal to the coefficient of zn in the
expansion of the series ( ∑

i≥0

aiz
i

)p(
1 + p

∑

i≥0, |i|≥1

biz
i

)
.

The coefficient of zn in this series is thus Cn = Bn + pDn, where

Bn =
∑

i(1)+···+i(p)=n

ai(1) · · · ai(p) (3.1)

and

Dn =
∑

i(1)+···+i(p+1)=n

|i(p+1)|>0

ai(1) · · · ai(p)bi(p+1) ∈ Zp. (3.2)

Case 1. If p | n1, . . . , p | nd, in the multiple sum Bn a term
∏m

`=1 ae`
i`

with ai`1
6= ai`2

occurs
(e1 + · · ·+ em)!

e1! · · · em!
=

p!

e1! · · · em!
(3.3)

times. The multinomial coefficient (3.3) is an integer divisible by p, except if m = 1
and e1 = p; that is, if we are looking at the term ap

1
p
n
, which occurs with coefficient 1 in

Bn. The term an appears in the form panap−1
0 = pan in the expression (3.1) for Bn. For

all other terms in the sum on the right-hand side of (3.1), we have
∣∣i(`)

∣∣ < |n| for ` =
1, 2, . . . , p. Hence, the induction hypothesis applies to all the factors in the corresponding
terms ai(1) · · · ai(p) , whence Bn = pan + ap

1
p
n

mod pZp.

In the multiple sum (3.2) for Dn, the condition
∣∣i(p+1)

∣∣ > 0 guarantees that
∣∣i(`)

∣∣ < |n|
for ` = 1, . . . , p, and therefore we can apply the induction hypothesis to each factor ai(`) .
This shows that Dn ∈ Zp.

We therefore have

a 1
p
n = Cn ≡ pan + ap

1
p
n

mod pZp,

whence,

pan ≡ a 1
p
n − ap

1
p
n

mod pZp.

This shows that an ∈ Zp since a 1
p
n − ap

1
p
n
∈ pZp by Fermat’s Little Theorem.
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Case 2. If p - ni for some i between 1 and d, the only change compared to the preceding
case is that the term ap

1
p
n

does not occur. Therefore, in this case we have

0 = Cn ≡ pan mod pZp.

Hence,

pan ≡ 0 mod pZp,

which shows again that an ∈ Zp.
This completes the proof of the lemma. ¤

4. Proof of Lemma 2

We begin by showing that, if S(z) ∈ ∑d
i=1 ziQp[[z]], then

exp(S(z)) ∈ 1 +
d∑

i=1

ziZp[[z]] if and only if S(zp)− pS(z) ∈ p

d∑
i=1

ziZp[[z]].

The formal power series exp(X) and log(1 + X) are defined by their usual expansions.

Proof of the “if” part. By Lemma 1 with S(z) replaced by exp(S(z)), we have

exp
(
S(zp)− pS(z)

) ∈ 1 + p

d∑
i=1

ziZp[[z]].

Therefore, we have S(zp)−pS(z) = log(1+pH(z)) with H(z) ∈ ∑d
i=1 ziZp[[z]]. This yields

S(zp)− pS(z) = −
∞∑

n=1

pn

n
(−H(z))n ∈ p

d∑
i=1

ziZp[[z]]

since vp(p
n/n) ≥ 1 for all integers n ≥ 1.

Proof of the “only if” part. We have S(zp) − pS(z) = pJ(z) with J(z) ∈∑d
i=1 ziZp[[z]]. Therefore, we have

exp
(
S(zp)− pS(z)

)
= 1 +

∞∑
n=1

pn

n!
J(z)n ∈ 1 + p

d∑
i=1

ziZp[[z]],

since

vp

(
pn

n!

)
= n−

∞∑

k=1

⌊
n

pk

⌋
> n−

∞∑

k=1

n

pk
=

p− 2

p− 1
n ≥ 0.

By Lemma 1 with S(z) replaced by exp
(
S(z)

)
, it follows that

exp
(
S(z)

) ∈ 1 +
d∑

i=1

ziZp[[z]].
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In order to finish the proof of the lemma, we observe that for S = G/F with F (z) ∈
1 +

∑d
i=1 ziZp[[z]], we have the equivalence

S(zp)− pS(z) ∈ p

d∑
i=1

ziZp[[z]] if and only if F (z)G(zp)− pF (zp)G(z) ∈ p

d∑
i=1

ziZp[[z]],

since F (z) is invertible in Zp[[z]]. ¤

5. Proof of Lemma 3

The following proof was kindly provided by an anonymous referee. It differs from the
proof in Section 6 of [14] even in the case d = 1, and thus provides an alternative argument.

For convenience, we shall drop the upper index in N
(1)
i in this section, that is, we write

B(N(1),m) =
(N(1) ·m)!

∏d
i=1 mi!N

(1)
i

=
(N ·m)!∏d
i=1 mi!Ni

.

We claim that one may restrict oneself to the case L = N. Indeed, we have the factori-
sation

(N ·m)!∏d
i=1 mi!Ni

=
(L ·m)!∏d
i=1 mi!Li

× (N ·m)!

(L ·m)!
∏d

i=1 mi!Ni−Li

,

where the second factor is obviously an integer. If this is inserted in (2.2), with mi = ai+pki

for all i, then the claim becomes evident.
We continue to use the notation mi = ai + pki for all i, so that we have to prove

(N ·m)!∏d
i=1 mi!Ni

(
Hb 1

p
N·mc −HN·b 1

p
mc

)
∈ pZp, (5.1)

where
⌊

1
p
m

⌋
= (

⌊
1
p
m1

⌋
,
⌊

1
p
m2

⌋
, . . . ,

⌊
1
p
md

⌋
). If

⌊
1
p
N ·m⌋

= N · ⌊1
p
m

⌋
, then the difference

of harmonic numbers in (5.1) is zero, whence Lemma 3 is trivially true in this case. On the
other hand, if

⌊
1
p
N ·m⌋

> N · ⌊1
p
m

⌋
, then we claim that the first factor in the expression

in (5.1) is divisible by

p
(
N · ⌊1

p
m

⌋
+ 1

)(
N · ⌊1

p
m

⌋
+ 2

) · · · (⌊N · 1
p
m

⌋)
.

Clearly, this would immediately imply Lemma 3 in this case also.
In order to establish the claim, we observe that

vp(n!) = bn/pc+ vp(bn/pc!),
and hence

vp

(
(N ·m)!∏d
i=1 mi!Ni

)
=

⌊
1
p
N ·m⌋−N · ⌊1

p
m

⌋
+ vp

( ⌊
1
p
N ·m⌋

!
∏d

i=1

⌊
1
p
mi

⌋
!Ni

)
. (5.2)

We have the factorisation⌊
1
p
N ·m⌋

!
∏d

i=1

⌊
1
p
mi

⌋
!Ni

=
(⌊

N · 1
p
m

⌋) · · · (N · ⌊1
p
m

⌋
+ 2

)(
N · ⌊1

p
m

⌋
+ 1

)
(
N · ⌊1

p
m

⌋)
!

∏d
i=1

⌊
1
p
mi

⌋
!Ni

,
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where the last factor on the right-hand side is an integer. If this is inserted in (5.2), then
together with our assumption that

⌊
1
p
N ·m⌋

> N · ⌊1
p
m

⌋
and the fact that (5.2) holds for

all primes p, the claim follows. This finishes the proof of the lemma. ¤

6. A combinatorial lemma

In this section, we generalise a combinatorial lemma due to Dwork (see [11, Lemma 4.2])
to several variables.

Lemma 5. Let r be a non-negative integer, let Z and W be maps from Zd to a ring R,
and let

W r(m) =
∑

prm≤k≤pr(m+1)−1

W (k).

Then
∑

0≤k≤(pr−1)1

Z(k)W (k) = Z(0)W r(0)

+
r−1∑
s=0

( ∑

0≤m≤(pr−s−1)1

(
Z(m1p

s, . . . , mdp
s)− Z

(⌊
m1

p

⌋
ps+1, . . . ,

⌊
md

p

⌋
ps+1

))
W s(m)

)
.

(6.1)

We give two proofs, both of which have their merits. The first one shows that behind
the formula there is a combinatorial decomposition of the summation range, see (6.2). The
second one, which was kindly supplied to us by an anonymous referee, provides a recursive
“construction” of the summation formula.

First proof of Lemma 5. Let

Xs =
∑

0≤m≤(pr−s−1)1

Z(m1p
s, . . . , mdp

s)W s(m)

and

Ys =
∑

0≤m≤(pr−s−1)1

Z
(⌊

m1

p

⌋
ps+1, . . . ,

⌊
md

p

⌋
ps+1

)
W s(m).

By definition, we have

Xs =
∑

0≤m≤(pr−s−1)1

( ∑

psm≤k≤ps(m+1)−1

Z(m1p
s, . . . ,mdp

s)W (k1, . . . , kd)

)
.

For kj ∈
{
mjp

s, . . . , (mj + 1)ps− 1
}
, we have mj = bkj/p

sc, j = 1, . . . , d, and furthermore
we have the partition

{
0, . . . , pr − 1

}d
=

⋃

0≤m≤(pr−s−1)1

d∏
j=1

{
mjp

s, . . . , (mj + 1)ps − 1
}
. (6.2)
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Hence, it follows that

Xs =
∑

0≤k≤(pr−1)1

Z

(⌊
k1

ps

⌋
ps, . . . ,

⌊
kd

ps

⌋
ps

)
W (k1, . . . , kd).

Similarly, we have

Ys =
∑

0≤k≤(pr−1)1

Z

(⌊
k1

ps+1

⌋
ps+1, . . . ,

⌊
kd

ps+1

⌋
ps+1

)
W (k1, . . . , kd),

where we used that
⌊

1
p

⌊
k
ps

⌋⌋
=

⌊
k

ps+1

⌋
. We therefore have

r−1∑
s=0

(Xs − Ys) =
∑

0≤k≤(pr−1)1

W (k1, . . . , kd)

×
r−1∑
s=0

(
Z

(⌊
k1

ps

⌋
ps, . . . ,

⌊
kd

ps

⌋
ps

)
− Z

(⌊
k1

ps+1

⌋
ps+1, . . . ,

⌊
kd

ps+1

⌋
ps+1

))

=
∑

0≤k≤(pr−1)1

W (k)
(
Z(k)− Z(0)

)
,

because the sum over s is a telescoping sum. Since
∑

0≤k≤(pr−1)1

W (k) = W r(0),

this completes the proof of the lemma. ¤

Second proof of Lemma 5. We observe that

∑

0≤k≤(pr−1)1

Z(k)W (k) =
∑

0≤k≤(pr−1)1

(
Z(k)− Z

(⌊
k1

p

⌋
p, . . . ,

⌊
kd

p

⌋
p
))

W (k)

+
∑

0≤k′≤(pr−1−1)1

Z(pk′)W 1(k
′),

where k′ =
(⌊

k1

p

⌋
,
⌊

k2

p

⌋
, . . . ,

⌊
kd

p

⌋)
. This construction is now iterated. ¤

7. Proof of Theorem 1

We adapt Dwork’s proof [11, Theorem 1.1] of the special case d = 1, that is, the case in
which there is just one variable.

For integer vectors k,K,v ∈ Z with k ≥ 0 and 0 ≤ vi < p for i = 1, 2, . . . , d, set

U(k,K) = A(v + p(K− k))A(k)− A(v + pk)A(K− k),
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being 0 if ki > Ki for some i, which is the case in particular if Ki < 0 for some i.
Furthermore, for a vector m ∈ Zd with m ≥ 0, set

H(m,K; s) =
∑

psm≤k≤ps(m+1)−1

U(k,K), (7.1)

being 0 if Ki < 0 for some i. (The reader should recall that, by definition, 1 is the all 1
vector.) We omit to indicate the dependence on p and v in order to not overload notation.

Lemma 6. Let k,K,v ∈ Z with k ≥ 0 and 0 ≤ vi < p for i = 1, 2, . . . , d. Then there hold
the following three facts:

(i) We have U(K− k,K) = −U(k,K).
(ii) For all integer vectors M with ps+1(M + 1) > K, we have

∑
0≤m≤M

H(m,K; s) = 0.

(iii) We have

H(k,K; s + 1) =
∑

0≤i≤(p−1)1

H(i + pk,K; s).

Proof. The assertion (i) is obvious.

(ii) We have

∑
0≤m≤M

H(m,K; s) =
∑

0≤m≤M

( ∑

psm≤k≤ps(m+1)−1

U(k,K)

)

=
∑

0≤k≤ps(M+1)−1

U(k,K)

=
∑

0≤k≤K

U(k,K)

= 0.

Here, in order to pass from the second to the third line, we used the fact that U(k,K) = 0
if ki > Ki for some i between 1 and d. To obtain the last line, we used the functional
equation given in (i).

(iii) We have

∑

0≤i≤(p−1)1

H(i + pk,K; s) =
∑

0≤i≤(p−1)1

( ∑

ps(i+pm)≤k≤ps(i+pm+1)−1

U(k,K)

)
,

and it is rather straightforward to see that this sum simply equals H(m,K; s + 1). ¤
Proof of Theorem 1. We define two assertions, denoted by αs and βt,s, in the following
way: for all s ≥ 0, αs is the assertion that the congruence

H(m,K; s) ≡ 0 mod ps+1g(m)Zp
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holds for all vectors m,K ∈ Zd with m ≥ 0.
For all integers s and t with 0 ≤ t ≤ s, βt,s is the assertion that the congruence

H(m,K + psm; s) ≡
∑

0≤k≤(ps−t−1)1

A(k + ps−tm)

A(k)
H(k,K; t) mod ps+1g(m)Zp (7.2)

holds for all vectors m,K ∈ Zd with m ≥ 0.
Moreover, we define three further assertions A1, A2, A3:
A1: for all vectors k,K ∈ Zd with k ≥ 0, we have U(k,K) ∈ pg(k)Zp.

A2: for all vectors m,k,K ∈ Zd and integers s ≥ 0 with m ≥ 0 and 0 ≤ ki < ps for
i = 1, 2, . . . , d, we have

U(k + psm,K + psm) ≡ A(k + psm)

A(k)
U(k,K) mod ps+1g(m)Zp.

A3: for all integers s and t with 0 ≤ t < s, we have

“αs−1 and βt,s together imply βt+1,s.”

In the following, we shall first show that Assertions A1, A2, A3 altogether imply The-
orem 1, see the “first step” below. Subsequently, in the “second step,” we show that
Assertions A1, A2, A3 hold indeed.

First step. We claim that Theorem 1 follows from A1, A2 and A3. So, from now on
we shall assume that A1, A2 and A3 are true. Our goal is to show that αs holds for all
s ≥ 0. We shall accomplish this by induction on s ≥ 0.

We begin by establishing α0. To do so, we observe that

H(m,K; 0) = U(m,K), (7.3)

that is, that Assertion α0 is equivalent to A1. Hence, Assertion α0 is true.
We now suppose that αs−1 is true. We shall show by induction on t ≥ 0 that βt,s is true

for all t ≤ s. Because of A3, it suffices to prove that β0,s is true. To do so, we see that

∑

0≤k≤(ps−1)1

A(k + psm)

A(k)
H(k,K; 0)

=
∑

0≤k≤(ps−1)1

A(k + psm)

A(k)
U(k,K)

≡
∑

0≤k≤(ps−1)1

U(k + psm,K + psm) mod ps+1g(m)Zp

≡ H(m,K + psm; s) mod ps+1g(m)Zp. (7.4)

Here, the first equality results from (7.3), the subsequent congruence results from A2,
and the last line is obtained by remembering the definition (7.1) of H (there holds in fact
equality between the last two lines). The congruence (7.4) is nothing else but Assertion β0,s,
which is therefore proved under our assumptions.
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The above argument shows in particular that Assertion βs,s is true, which means that
we have the congruence

H(m,K + psm; s) ≡ A(m)

A(0)
H(0,K; s) mod ps+1g(m)Zp. (7.5)

Let us now consider the property γK defined by

γK: H(0,K; s) ≡ 0 mod ps+1Zp.

This property holds certainly if Ki < 0 for some i because in that case each term of the
multiple sum that defines H vanishes. We want to show that the assertion also holds when
K ≥ 0. Let K′ be one of the vectors of non-negative integers (if there is at all) such that
|K′| = K ′

1 +K ′
2 + · · ·+K ′

d is minimal and γK′ does not hold. Let m ∈ Zd be a vector with
m ≥ 0 and |m| > 0, and set K = K′ − psm. Since |K| < |K|′, we have

H(0,K; s) ≡ 0 mod ps+1Zp

because γK holds by minimality of K′. Since A(m)/A(0) ∈ Zp by Properties (i) and (ii)
in the statement of Theorem 1, it follows from (7.5) that

H(m,K′; s) ≡ 0 mod ps+1Zp (7.6)

provided m ≥ 0 et |m| > 0.
However, by Lemma 6, (ii), we know that

∑
0≤m≤M

H(m,K′; s) = 0

if one chooses M sufficiently large. Isolating the term H(0,K′; s), this equation can be
rewritten as

H(0,K′; s) = −
∑

0≤m≤M

|m|>0

H(m,K′; s).

The sum on the right-hand side is congruent to 0 mod ps+1 by (7.6), whence

H(0,K′; s) ≡ 0 mod ps+1.

This means that γK′ is true, which is absurd. Assertion γK is therefore true for all K ∈ Zd.
Let us now return to Assertion βs,s, which is displayed explicitly in (7.5). We have just

shown that H(0,K; s) ≡ 0 mod ps+1, while A(m)/A(0) ∈ g(m)Zp by Properties (i) and
(ii) in the statement of Theorem 1. Hence, we have also

H(m,K + psm; s) ≡ 0 mod ps+1g(m)Zp.

By replacing K by K− psm (which is possible because K can be chosen freely from Zd),
we see that this is nothing else but Assertion αs. Thus, Theorem 1 follows indeed from the
truth of A1, A2 and A3.

Second step. It remains to prove Assertions A1, A2 and A3 themselves, which we
shall do in this order.
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Proof of A1. The assertion holds if ki > Ki or if Ki < 0 for some i. If K ≥ k ≥ 0, we
have

U(k,K) = A(K− k)A(v)

(
A(v + pk)

A(v)
− A(k)

A(0)

)

+ A(k)A(v)

(
A(K− k)

A(0)
− A(v + p(K− k))

A(v)

)
.

Property (iii) in the statement of Theorem 1 with u = 0, n = k, s = 0 says that

A(v + pk)

A(v)
− A(k)

A(0)
∈ p

g(k)

g(v)
Zp

while its special case in which u = 0, n = K− k, s = 0 reads

A(K− k)

A(0)
− A(v + p(K− k))

A(v)
∈ p

g(K− k)

g(v)
Zp.

Hence,

A(K− k)A(v)

(
A(v + pk)

A(v)
− A(k)

A(0)

)
∈ p g(k)A(K− k)

A(v)

g(v)
Zp ⊆ pg(k)Zp

and

A(k)A(v)

(
A(K− k)

A(0)
− A(v + p(K− k))

A(v)

)
∈ pg(k)g(K− k)

A(k)

g(k)

A(v)

g(v)
Zp ⊆ pg(k)Zp,

where the inclusion relations result from Property (ii) in the statement of Theorem 1. It
therefore follows that

U(k,K) ∈ pg(k)Zp,

which proves Assertion A1.

Proof of A2. By a straightforward calculation, we have

U(k + psm,K + psm)− A(k + psm)

A(k)
U(k,K)

= −A(K− k)A(v + pk)

(
A(v + pk + ps+1m)

A(v + pk)
− A(k + psm)

A(k)

)
.

If Ki < 0 for some i, the right-hand side is zero since A(K− k) = 0, whence Assertion A2
is trivially true. If K ≥ 0, by Properties (iii) and (ii) in the statement of Theorem 1, the
right-hand side is an element of

A(K− k)A(v + pk)
g(m)

g(v + pk)
ps+1Zp ⊆ g(m)ps+1Zp,

which proves Assertion A2 in this case as well.

Proof of A3. Let 0 ≤ t < s, and assume that αs−1 and βt,s are true. Under these
assumptions, we must deduce the truth of Assertion βt+1,s.
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In the assertion βt,s, we replace the summation index k in the sum on the right-hand
side of (7.2) by i + pu, where 0 ≤ i` < p− 1 and 0 ≤ u` < ps−t−1 for ` = 1, 2, . . . , d. Thus,
we obtain that

H(m,K + psm; s) ≡
∑

0≤i≤(p−1)1

( ∑

0≤u≤(ps−t−1−1)1

A(i + pu + ps−tm)

A(i + pu)
H(i + pu,K; t)

)

mod ps+1g(m)Zp. (7.7)

Define

X := H(m,K + psm; s)−
∑

0≤u≤(ps−t−1−1)1

A(u + ps−t−1m)

A(u)

∑

0≤i≤(p−1)1

H(i + pu,K; t).

Since βt,s (in the form (7.7)) is true, we have

X ≡
∑

0≤i≤(p−1)1

( ∑

0≤u≤(ps−t−1−1)1

H(i + pu,K; t)

×
(

A(i + pu + ps−tm)

A(i + pu)
− A(u + ps−t−1m)

A(u)

) )
mod ps+1g(m)Zp.

Since ui < ps−t−1 for all i, Property (iii) in the statement of Theorem 1 implies that

A(i + pu + ps−tm)

A(i + pu)
− A(u + ps−t−1m)

A(u)
∈ ps+1 g(m)

g(i + pu)
Zp. (7.8)

Moreover, since t < s, Assertion αs−1 implies that

H(i + pu,K; t) ∈ pt+1g(i + pu)Zp. (7.9)

It now follows from (7.8) and (7.9) that X ≡ 0 mod ps+1g(m)Zp.
However, by Lemma 6, (iii), we know that

∑

0≤i≤(p−1)1

H(i + pu,K; t) = H(u,K; t + 1),

which can be used to simplify X to

X = H(m,K + psm; s)−
∑

0≤u≤(ps−t−1−1)1

A(u + ps−t−1m)

A(u)
H(u,K; t + 1).

Since X ≡ 0 mod ps+1g(m)Zp, the preceding identity shows that

H(m,K + psm; s) ≡
∑

0≤u≤(ps−t−1−1)1

A(u + ps−t−1m)

A(u)
H(u,K; t + 1) mod ps+1g(m)Zp.

This is nothing else but Assertion βt+1,s. Hence, Assertion A3 is established.

This completes the proof of Theorem 1. ¤
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8. Theorem 1 implies Theorem 2

We want to prove that Theorem 1 can be applied for A = g = BN. In order to see this,
we first establish some intermediary lemmas, extending corresponding auxiliary results in
Section 7 of [14] to higher dimensions.

Lemma 7. Under the assumptions of Theorem 1, we have

BN(v + pu + ps+1n)

BN(pu + ps+1n)
=

BN(v + pu)

BN(pu)
+O(

ps+1
)
,

where O(R) denotes an element of RZp.

Proof. Recalling the definition of B(N(j),m) in (2.1), we have

B(N(j),v + pu + ps+1n)

B(N(j), pu + ps+1n)

=

(∑d
i=1 N

(j)
i (pui + ps+1ni) +

∑d
i=1 N

(j)
i vi

)
· · ·

(∑d
i=1 N

(j)
i (pui + ps+1ni) + 1

)

d∏
i=1

(
(vi + pui + ps+1ni) · · · (1 + pui + ps+1ni)

)N
(j)
i

=

(∑d
i=1 N

(j)
i (pui) +

∑d
i=1 N

(j)
i vi

)
· · ·

(∑d
i=1 N

(j)
i (pui) + 1

)
+O(ps+1)

d∏
i=1

(
(vi + pui) · · · (1 + pui)

)N
(j)
i

+O(ps+1)

.

We claim that this implies

B(N(j),v + pu + ps+1n)

B(N(j), pu + ps+1n)

=

(∑d
i=1 N

(j)
i (pui) +

∑d
i=1 N

(j)
i vi

)
· · ·

(∑d
i=1 N

(j)
i (pui) + 1

)

d∏
i=1

(
(vi + pui) · · · (1 + pui)

)N
(j)
i

+O(ps+1)

=
B(N(j),v + pu)

B(N(j), pu)
+O(

ps+1
)
.

Indeed, if v = 0, then this holds trivially. If v > 0, then, together with the hypothesis
vi < p, we infer that (vi + pui)(vi + pui− 1) · · · (1+ pui) is not divisible by p, which implies
in particular that B(N(j),v + pu)/B(N(j), pu) ∈ Zp. This allows us to arrive at the above
conclusion in the same style as in Section 7.1 in [14].

By taking products, we deduce

k∏
j=1

B(N(j),v + pu + ps+1n)

B(N(j), pu + ps+1n)
=

k∏
j=1

(
B(N(j),v + pu)

B(N(j), pu)
+O(

ps+1
)
.

)
.
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By expanding the product on the right-hand side and using that
B(N(j),v + pu)

B(N(j), pu)
∈ Zp,

we obtain the assertion of the lemma. ¤
For the proof of Lemma 9 below, we will use the p-adic gamma function, which is defined

on integers n ≥ 1 by

Γp(n) = (−1)n

n−1∏
k=1

(k,p)=1

k.

In the following lemma, we collect some facts about Γp.

Lemma 8. (i) For all integers n ≥ 1, we have

(np)!

n!
= (−1)np+1pnΓp(1 + np).

(ii) For all integers k ≥ 1, n ≥ 1, s ≥ 0, we have

Γp(k + nps) ≡ Γp(k) mod ps.

The above two properties of the p-adic gamma function are now used in the proof of the
following result.

Lemma 9. We have

BN(pu + ps+1n)

BN(u + psn)
=

BN(pu)

BN(u)

(
1 +O(ps+1)

)
.

Proof. We have

B(N(j), pu + ps+1n)

B(N(j),u + psn)
= (−1)1+|N(j)| Γp

(
1 + N(j) · (pu + ps+1n)

)
∏d

i=1 Γp

(
1 + pui + ps+1ni

)N
(j)
i

(8.1)

= (−1)1+|N(j)| Γp

(
1 + pN(j) · u)

+O(
ps+1

)
∏d

i=1 Γp

(
1 + pui

)N
(j)
i +O(

ps+1
) (8.2)

= (−1)1+|N(j)| Γp

(
1 + pN(j) · u)

∏d
i=1 Γp

(
1 + pui

)N
(j)
i

(
1 +O(ps+1)

)
(8.3)

=
B(N(j), pu)

B(N(j),u)

(
1 +O(ps+1)

)
. (8.4)

where (i) of Lemma 8 is used to see (8.1) and (8.4), and (ii) is used for (8.2). Equation (8.3)
holds because Γp(1 + pui) and Γp(1 + pN(j) · u) are both not divisible by p. Taking the
product over j = 1, 2, . . . , k, we obtain the assertion of the lemma. ¤

Before proceeding, we remark that vp

(
B(N(j), psu)/B(N(j),u)

)
= 0 for any integer

s ≥ 0, which can be proved in the same way as Lemma 13 in [14]. This property will be
used twice below.
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We now multiply both sides of the congruences obtained in Lemmas 7 and 9. Thus, we
obtain

BN(v + pu + nps+1)

BN(u + nps)
=

BN(v + pu)

BN(u)

(
1 +O(ps+1)

)
+

BN(pu)

BN(u)
O(

ps+1
)

=
BN(v + pu)

BN(u)

(
1 +O(ps+1)

)
+O(

ps+1
)

(since vp

(
BN(pu)/BN(u)

)
= 0 by the remark above), which, in its turn, can be rewritten

as

BN(v + pu + nps+1)

BN(v + pu)
=

BN(u + nps)

BN(u)
+

BN(u + nps)

BN(u)
O(

ps+1
)

+
BN(u + nps)

BN(v + pu)
O(

ps+1
)
.

It remains to show that

BN(u + nps)

BN(u)
∈ BN(n)

BN(v + pu)
Zp (8.5)

and
BN(u + nps)

BN(v + pu)
∈ BN(n)

BN(v + pu)
Zp. (8.6)

These two facts will follow from the next lemma.

Lemma 10. For all non-negative integers s, all integer vectors n ∈ Zd with n ≥ 0, and
all integer vectors u ∈ Zd with 0 ≤ ui < ps, i = 1, 2, . . . , d, we have

BN(u + nps)

BN(u)
∈ BN(n)Zp.

Proof. We have

B(N(j),u + nps)

B(N(j),u)
=

(∑d
i=1 N

(j)
i (ui+nip

s)

∑d
i=1 N

(j)
i ui

)

∏d
i=1

(
ui+nips

ui

)N
(j)
i

· B(N(j),nps)

B(N(j),n)
·B(N(j),n).

On the right-hand side, the term B(N(j),nps)/B(N(j),n) and the binomial coefficients(
ui+nip

s

ui

)
have vanishing p-adic valuation (this has already been observed in the paragraph

after the end of the proof of Lemma 9). Thus we have

B(N(j),u + nps)

B(N(j),u)
∈ B(N(j),n)Zp. (8.7)

The lemma follows by taking the product over j ∈ {1, . . . , k} of both sides of (8.7). ¤

The preceding lemma implies

BN(u + nps)

BN(u)
∈ BN(n)Zp ⊆ BN(n)

BN(v + pu)
Zp,
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which proves (8.5). Moreover, still due to Lemma 10, we have

BN(u + nps)

BN(v + pu)
=

BN(u + nps)

BN(u)
·BN(u) · 1

BN(v + pu)

∈ BN(u) · BN(n)

BN(v + pu)
Zp ⊆ BN(n)

BN(v + pu)
Zp,

which proves (8.6). Therefore,

BN(v + pu + nps+1)

BN(v + pu)
− BN(u + nps)

BN(u)
∈ ps+1 BN(n)

BN(v + pu)
Zp,

which shows that Property (iii) of Theorem 1 is satisfied. Since Properties (i) and (ii) are
trivially true, we can hence apply the latter theorem.

9. Proof of Lemma 4

The claim is trivially true if p divides mi for all i. We may therefore assume that p does
not divide mi for some i between 1 and d for the rest of the proof. Let us write m = a+pj,
with 0 ≤ ai < p for all i (but at least one ai is positive). We are apparently in a similar
situation as in Lemma 3. Indeed, we may derive Lemma 4 from Lemma 3. In order to see
this, we observe that

H∑d
i=1 Limips −H∑d

i=1 Libmi
p cps+1 =

psL·a∑
ε=1

1

ps+1L · j + ε

=

bL·a/pc∑
ε=1

1

ps+1L · j + ps+1ε
+

psL·a∑
ε=1

ps+1-ε

1

ps+1L · j + ε

=
1

ps+1
(HL·j+bL·a/pc −HL·j) +

psL·a∑
ε=1

ps+1-ε

1

ps+1L · j + ε
.

Because of vp(x + y) ≥ min{vp(x), vp(y)}, this implies

vp

(
H∑d

i=1 Limips −H∑d
i=1 Libmi

p cps+1

) ≥ min{−1− s + vp(HL·j+bL·a/pc −HL·j),−s}.

It follows that

vp

(
BN(m)

(
H∑d

i=1 Limips −H∑d
i=1 Libmi

p cps+1

))

≥ −1− s + min
{

vp

(
BN(a + pj)(HL·j+bL·a/pc −HL·j)

)
, 1 + vp

(
BN(a + pj)

)}
.

Use of Lemma 3 then completes the proof. ¤
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Astérisque 147-148, (1987), 271–283, 345.

[5] F. Beukers, On Dwork’s accessory parameter problem, Math. Z. 241 (2002), 425–444.
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BP 74, 38402 Saint-Martin d’Hères cedex, France.
WWW: http://www-fourier.ujf-grenoble.fr/~rivoal.


