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Abstract

Using Dwork's theory, we prove a broad generalization of his famous p-adic formal
congruences theorem. This enables us to prove certain p-adic congruences for the general-
ized hypergeometric series with rational parameters; in particular, they hold for any prime
number p and not only for almost all primes. Furthermore, using Christol's functions, we
provide an explicit formula for the �Eisenstein constant� of any hypergeometric series with
rational parameters.

As an application of these results, we obtain an arithmetic statement �on average� of a
new type concerning the integrality of Taylor coe�cients of the associated mirror maps. It
contains all the similar univariate integrality results in the literature, with the exception
of certain re�nements that hold only in very particular cases.
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1. Introduction

Mirror maps are power series which occur in Mirror Symmetry as the inverse for com-
position of power series of the form q(z) = exp(ω2(z)/ω1(z)), called canonical coordinates,
where ω1(z) and ω2(z) are particular solutions of the Picard-Fuchs equation associated
with certain one-parameter families of Calabi-Yau varieties. They can be viewed as higher
dimensional generalizations of the classical modular forms, and in several cases, it has been
observed that such mirror maps and canonical coordinates have integral Taylor coe�cients
at the origin.

The arithmetical study of mirror maps began with the famous example of a family of
mirror manifolds for quintic threefolds in P4 given by Candelas et al. [6] and associated
with the Picard-Fuchs equation

θ4ω − 5z(5θ + 1)(5θ + 2)(5θ + 3)(5θ + 4)ω = 0, θ = z
d

dz
.

This equation is (a rescaling of) a generalized hypergeometric di�erential equation with
two linearly independent local solutions at z = 0 given by

ω1(z) =
∞∑
n=0

(5n)!

(n!)5
zn and ω2(z) = G(z) + log(z)ω1(z),

where

G(z) =
∞∑
n=1

(5n)!

(n!)5

(
5H5n − 5Hn

)
zn and Hn :=

n∑
k=1

1

k
.

The corresponding canonical coordinate exp
(
ω2(z)/ω1(z)

)
occurs in enumerative geometry

and in the Mirror Conjecture associated with quintic threefolds in P4 (see [25]). The
integrality of its Taylor coe�cients at the origin has been proved by Lian and Yau in [26].

In a more general context, Batyrev and van Straten conjectured the integrality of the
Taylor coe�cients at the origin of a large class of canonical coordinates [2, Conjecture 6.3.4]
built on A-hypergeometric series (see [33] for an introduction to these series, which gen-
eralize the classical hypergeometric series to the multivariate case). Furthermore, they
provided a lot of examples of univariate canonical coordinates whose Taylor coe�cients
were subsequently proved to be integers in many cases by Zudilin [34] and Krattenthaler
and Rivoal [18].

In the sequel of this article, we say that a power series f(z) ∈ C[[z]] is N -integral if
there exists c ∈ Q such that f(cz) ∈ Z[[z]]. The constant c might be called the Eisenstein
constant of f , in reference to Eisenstein's theorem that such a constant c exists when f is
a holomorphic algebraic function over Q(z).

Motivated by the search for di�erential operators L associated with particular families
of Calabi-Yau varieties, Almkvist et al. [1] and Bogner and Reiter [5] introduced the
notion of �Calabi-Yau operators�. Even if both notions slightly di�er, both require that an
irreducible di�erential operator L ∈ Q(z)[d/dz] of Calabi-Yau type satis�es

(P1) L has a solution ω1(z) ∈ 1 + zC[[z]] at z = 0 which is N -integral.

1



(P2) L has a linearly independent solution ω2(z) = G(z) + log(z)ω1(z) at z = 0 with
G(z) ∈ zC[[z]] and exp

(
ω2(z)/ω1(z)

)
is N -integral.

The present paper is mainly concerned with arithmetic properties of mirror maps as-
sociated with generalized hypergeometric equations, that we shall now de�ne.

We let α := (α1, . . . , αr) and β := (β1, . . . , βs) be tuples of parameters in Q \ Z≤0.
We introduce the generalized hypergeometric series

Fα,β(z) :=
∞∑
n=0

(α1)n · · · (αr)n
(β1)n · · · (βs)n

zn, (1.1)

where (x)n denotes the Pochhammer symbol (x)n = x(x + 1) · · · (x + n − 1) if n ≥ 1 and
(x)0 = 1 otherwise. If βs = 1, then our de�nition (1.1) agrees with the classical notation

Fα,β(z) = rFs−1

[
α1, . . . , αr
β1, . . . , βs−1

; z

]
:=

∞∑
n=0

(α1)n · · · (αr)n
(β1)n · · · (βs−1)n

zn

n!
.

We also consider the series

Gα,β(z) :=
∞∑
n=1

(α1)n · · · (αr)n
(β1)n · · · (βs)n

(
r∑
i=1

Hαi(n)−
s∑
j=1

Hβj(n)

)
,

where, for all n ∈ N and all x ∈ Q \ Z≤0, Hx(n) :=
∑n−1

k=0
1

x+k
.

We de�ne the canonical coordinate associated with (α,β) by

qα,β(z) := z exp

(
Gα,β(z)

Fα,β(z)

)
∈ zQ[[z]]. (1.2)

The mirror map zα,β(q) ∈ qQ[[q]] associated with (α,β) is, by de�nition, the compositional
inverse of qα,β(z).

This de�nition of qα,β(z) is motivated by the fact that, if βs−1 = βs = 1, then qα,β(z)
is the canonical coordinate associated to the generalized hypergeometric operator given by

Lα,β :=
s∏
i=1

(θ + βi − 1)− z
r∏
i=1

(θ + αi), θ = z
d

dz
.

Indeed, in this case, Fα,β(z) and Gα,β(z) + log(z)Fα,β(z) are formal solutions of Lα,β and
we have

qα,β(z) = exp

(
Gα,β(z) + log(z)Fα,β(z)

Fα,β(z)

)
.

We shall now give a brief overview of the content of the present paper, refering to
Section 2 for the detailed statements of our main results.

We start with a study of the N -integrality properties of Fα,β(z). Whether or not
Fα,β(z) is N -integral can be decided by using a criterion due to Christol. The �rst task
undertaken in this paper is to study the minimal constant Cα,β in Q+ \ {0} such that

Fα,β(Cα,βz) ∈ Z[[z]].
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In particular, we give an explicit formula for Cα,β when r = s, α ∈ (0, 1]r and β ∈ (0, 1]s.
We refer to Section 2.1 for details.

We shall now introduce some notations. For all x ∈ Q, we denote by 〈x〉 the unique
element in (0, 1] such that x − 〈x〉 ∈ Z, and, for all x = (x1, ..., xm) ∈ Qm, we set
〈x〉 = (〈x1〉, ..., 〈xm〉). Hence 〈x〉 is the fractional part of x if x /∈ Z, and 〈x〉 = 1 otherwise.
We denote by dα,β the least common multiple of the exact denominators (1) of the elements
of α and β.

In the rest of this section, we assume that, for all (i, j) ∈ {1, ..., r}× {1, ..., s}, we have
αi − βj 6∈ Z (2), and that Fα,β(z) is N -integral.

We now come to the N -integrality of qα,β(z). The N -integrality of qα,β(z) is the
exception, not the rule. This is illustrated in [8] where the N -integral mirror maps are
classi�ed when the parameters α and β are R-partitioned (3) and in [31, 32] where such
a classi�cation is obtained when β1 = · · · = βs = 1. One of our main contribution is
to exhibit an explicit condition, denoted by Hα,β, on α and β such that the following
properties are equivalent:

(1) qα,β(z) is N -integral;
(2) assertion Hα,β holds, we have r = s and, for all a ∈ {1, . . . , dα,β} coprime to dα,β,

we have qα,β(z) = q〈aα〉,〈aβ〉(z).

Remark 1. For all C ∈ Q, we have zα,β(Cq) ∈ Z[[q]] if and only if qα,β(Cz) ∈ Z[[z]].
In particular, qα,β is N-integral if and only if zα,β is N-integral.

Moreover, if one of the above equivalent properties holds true, then we prove that

(C ′α,βz)−1qα,β(C ′α,βz) ∈ Z[[z]],

where C ′α,β = 2C〈α〉,〈β〉 or C〈α〉,〈β〉. We refer to Theorem 8 for details. Actually, we are

even able to improve this integrality result by considering roots of (C ′α,βz)−1qα,β(C ′α,βz);
see Theorem 10 and Corollary 14.

Instead of considering qα,β(z) itself, which is not N -integral in general, we also study

q̃α,β(z) = z

dα,β∏
a=1

gcd(a,dα,β)=1

z−1q〈aα〉,〈aβ〉(z).

We prove that, if Hα,β holds true and r = s, then q̃α,β(z) is N -integral, and that

(C ′α,βz)−1q̃α,β(C ′α,βz) ∈ Z[[z]].

1Consider x ∈ Q. There exists a unique (a, b) ∈ Z×Z≥1 such that x = a/b and gcd(a, b) = 1. We will
call b the exact denominator of x.

2This is equivalent to the irreducibility of Lα,β on C(z).
3Throughout this article, we say that x ∈ Qn is R-partitioned if, up to permutation of its coordinates,

α is the concatenation of tuples of the form (b/m)b∈{1,...,m},gcd(b,m)=1 for m ∈ Z≥1.
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Actually, we improve thisN -integrality result by considering roots of (C ′α,βz)−1q̃α,β(C ′α,βz):
if hypothesis Hα,β holds true and r = s, then we exhibit some integer nα,β such that

(
(C ′α,βz)−1q̃α,β(C ′α,βz)

) 1
nα,β ∈ Z[[z]]. (1.3)

We refer to Theorem 12 for details.

We shall now say a few words about the proof of (1.3); this will lead us to the main
technical ingredient of this paper (some generalizations of Dwork's congruences detailed in
Section 2.2). The starting point is the following classical result (see [34, Lemma 5], [17,
Chap. IV, Sec. 2, Lemma 3], [30, p. 409, Theorem]).

Proposition 2 (Dieudonné-Dwork's lemma). Given a prime p and f(z) ∈ zQ[[z]], we
have exp

(
f(z)

)
∈ 1 + zZp[[z]] if and only if f(zp)− pf(z) ∈ pzZp[[z]], where Zp is the ring

of p-adic integers.

Since

(
(C ′α,βz)−1q̃α,β(C ′α,βz)

) 1
nα,β = exp

 1

nα,β

dα,β∑
a=1

gcd(a,dα,β)=1

G〈aα〉,〈aβ〉(C
′
α,βz)

F〈aα〉,〈aβ〉(C ′α,βz)

 ,

Proposition 2 ensures that the integrality property (1.3) holds true if and only if, for all
primes p, we have

dα,β∑
a=1

gcd(a,dα,β)=1

G〈aα〉,〈aβ〉(C
′
α,βz

p)

F〈aα〉,〈aβ〉(C ′α,βz
p)
− p

dα,β∑
a=1

gcd(a,dα,β)=1

G〈aα〉,〈aβ〉(C
′
α,βz)

F〈aα〉,〈aβ〉(C ′α,βz)
∈ nα,βpzZp[[z]]. (1.4)

The very basic strategy for proving such a congruence (for a �xed prime p) is to construct
a permutation a 7→ a′ of {a ∈ {1, . . . , dα,β} : gcd(a, dα,β) = 1} such that

G〈a′α〉,〈a′β〉(C
′
α,βz

p)

F〈a′α〉,〈a′β〉(C ′α,βz
p)
− p

G〈aα〉,〈aβ〉(C
′
α,βz)

F〈aα〉,〈aβ〉(C ′α,βz)
(1.5)

satis�es �nice congruences�. The meaning of �nice congruences� and the explicit construc-
tion of a′ are too technical for this introduction and we refer to Section 2.2, and especially
Theorem 6, for details. We shall just mention the fact that congruences for (1.5) were �rst
derived by Dwork when α ∈ Zrp, β ∈ (Z×p )s and nα,β = 1. In this paper, it is fundamental
to get rid of these hypotheses, and to study how the congruence (1.5) depends on a.
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With these �nice congruences� in hands, the proof of the congruence (1.4) is (with
simpli�cations) a consequence of the equality

dα,β∑
a=1

gcd(a,dα,β)=1

G〈aα〉,〈aβ〉(Cz
p)

F〈aα〉,〈aβ〉(Czp)
− p

dα,β∑
a=1

gcd(a,dα,β)=1

G〈aα〉,〈aβ〉(Cz)

F〈aα〉,〈aβ〉(Cz)

=

dα,β∑
a=1

gcd(a,dα,β)=1

(
G〈aα〉,〈aβ〉(Cz

p)

F〈aα〉,〈aβ〉(Czp)
− p

G〈a′α〉,〈a′β〉(Cz)

F〈a′α〉,〈a′β〉(Cz)

)
. (1.6)

It is now clear that the study of congruences for (1.5) is central in this paper: they are
the main ingredient of the proofs of our N -integrality results for qα,β(z) and q̃α,β(z).

2. Statements of the main results.

In this section, we consider tuples α = (α1, . . . , αr) and β = (β1, . . . , βs) of parameters
in Q \Z≤0. We write dα,β for the least common multiple of the exact denominators of the
elements of α and β.

2.1. N-integrality of Fα,β. We �rst state a criterion for Fα,β to be N -integral, which
is due to Chritsol. We will use the following notations:

• for all x ∈ Q, we write 〈x〉 for the unique element in (0, 1] such that x− 〈x〉 ∈ Z.
In other words, we have 〈x〉 = 1−{1−x} = x+b1−xc, where {·} is the fractional
part function and where b·c is the �oor function;
• we write � for the total order on R de�ned by

x � y ⇐⇒
(
〈x〉 < 〈y〉 or

(
〈x〉 = 〈y〉 and x ≥ y

))
;

• for all a ∈ {1, . . . , dα,β} coprime to dα,β and all x ∈ R, we set

ξα,β(a, x) := #{1 ≤ i ≤ r : aαi � x} −#{1 ≤ j ≤ s : aβj � x}.

Theorem 3 (Christol, [7]). The following assertions are equivalent:

(i) Fα,β is N-integral.
(ii) For all a ∈ {1, . . . , dα,β} coprime to dα,β and all x ∈ R, we have ξα,β(a, x) ≥ 0.

If Fα,β is N -integral, then we denote by Cα,β the minimal constant in Q+ \ {0} such
that

Fα,β(Cα,βz) ∈ Z[[z]].

(Actually, it is easily seen that the set of all C ∈ Q satisfying Fα,β(Cz) ∈ Z[[z]] is equal to
Cα,βZ.) Our �rst result, Theorem 4 below, gives some arithmetical properties of Cα,β and
even a formula for Cα,β when r = s, α ∈ (0, 1]r and β ∈ (0, 1]s. We will use the following
notations:
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• for all primes p, we de�ne

λp = λp(α,β) := #{1 ≤ i ≤ r : αi ∈ Zp} −#{1 ≤ j ≤ s : βj ∈ Zp},
where Zp is the ring of p-adic integers;
• we write Pα,β for the set of all primes p such that p divides dα,β or p ≤ r− s+ 1;
• for all a ∈ Q \ {0}, we write d(a) for the exact denominator of a.

Theorem 4. Assume that Fα,β is N-integral. Then, there exists C ∈ N\{0} such that

Cα,β = C

∏r
i=1 d(αi)∏s
j=1 d(βj)

∏
p∈Pα,β

p
−
⌊
λp
p−1

⌋
. (2.1)

Furthermore, if r = s, α ∈ (0, 1]r and β ∈ (0, 1]s, then we have C = 1.

2.2. Generalizations of Dwork's congruence. As explained at the end of the in-
troduction, Theorem 6 below is the cornerstone of this paper, on which the proofs of the
N -integrality results stated in Sections 2.3 and 2.4 below rely. The reader interested in
our N -integrality statements for canonical coordinates, but not in the proofs, can skip this
section. We will use the following notations:

• For all primes p and all positive integers n, we write Ap,n, respectively A∗p,n, for
the Zp-algebra of the functions f : (Z×p )n → Zp such that, for all positive integers
m, all x ∈ (Z×p )n and all a ∈ Znp , we have

f(x + apm) ≡ f(x) mod pmZp,
respectively

f(x + apm) ≡ f(x) mod pm−1Zp.
• If D is a positive integer coprime to p, then, for all ν ∈ N, and all b ∈ {1, . . . , D}
coprime to D, we write Ωb(p

ν , D) for the set of all t ∈ {1, . . . , pνD} coprime to
pνD satisfying t ≡ b mod D.
• We write Ab(pν , D), respectively Ab(pν , D)∗, for the Zp-algebra of the functions
f : Ωb(p

ν , D)→ Zp such that, for all positive integers m and all t1, t2 ∈ Ωb(p
ν , D),

we have
t1 ≡ t2 mod pm ⇒ f(t1) ≡ f(t2) mod pmZp,

respectively

t1 ≡ t2 mod pm ⇒ f(t1) ≡ f(t2) mod pm−1Zp.

• For all t ∈ Ωb(p
ν , D) and all r ∈ N, we write t(r) for the unique element of

{1, . . . , pνD} satisfying

t(r) ≡ t mod pν and prt(r) ≡ t mod D.

• If β /∈ Zs, then we write mα,β for the number of elements of α and β with exact
denominator divisible by 4.
• We write d∗α,β for the integer obtained by dividing dα,β by the product of its prime
divisors.
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• We set C ′α,β = 2C〈α〉,〈β〉 and d
′
α,β = 2d∗α,β if β /∈ Zs and if mα,β is odd, and we set

C ′α,β = C〈α〉,〈β〉 and d
′
α,β = d∗α,β otherwise.

• Throughout this article, when x = (x1, . . . , xm) and f is a map de�ned on
{x1, . . . , xm}, we write f(x) for

(
f(x1), . . . , f(xm)

)
. For instance, 〈α〉 = (〈α1〉, ..., 〈αr〉).

According to Theorem 3, the N -integrality of Fα,β depends on the graphs of Christol's
functions ξα,β(a, ·). The N -integrality of qα,β also strongly depends on them. The following
de�nition involving Christol's functions will play a central role.

Definition 5 (Hypothesis Hα,β). Let minα,β(a) denote the smallest element in the
ordered set

(
{aα1, . . . , aαr, aβ1, . . . , aβs},�

)
. We denote by Hα,β the following assertion:

Hα,β: �For all a ∈ {1, . . . , dα,β} coprime to dα,β and all x ∈ R satisfying
minα,β(a) � x ≺ a, we have ξα,β(a, x) ≥ 1.�

We are now in a position to state our generalization of Dwork's congruences.

Theorem 6. Assume that r = s, that 〈α〉 and 〈β〉 are disjoint and that Hα,β holds.
Let p be a �xed prime and write dα,β = pνD with ν,D ∈ N and D coprime to p. Let

b ∈ {1, . . . , D} be coprime to D. Then, there exists a sequence (Rk,b)k≥0 of elements in
Ab(pν , D)∗ such that, for all t ∈ Ωb(p

ν , D), we have

G〈t(1)α〉,〈t(1)β〉
F〈t(1)α〉,〈t(1)β〉

(C ′α,βz
p)− p

G〈tα〉,〈tβ〉
F〈tα〉,〈tβ〉

(C ′α,βz) = p
∞∑
k=0

Rk,b(t)z
k.

Furthermore, if p is a prime divisor of dα,β, then, for all k ∈ N,
• if β ∈ Zr, then we have Rk,b ∈ p−1−bλp/(p−1)cAb(pν , D);
• if β /∈ Zr and p− 1 - λp, then we have Rk,b ∈ Ab(pν , D);
• if β /∈ Zr, mα,β is odd and p = 2, then we have Rk,b ∈ Ab(pν , D).

Remark 7. Let us make some remarks on the previous result.

• The tuples 〈α〉 and 〈β〉 are disjoint if, and only if, for all (i, j) ∈ {1, . . . , r} ×
{1, . . . , s}, we have αi − βj /∈ Z.
• If the hypotheses of Theorem 6 are satis�ed, then Fα,β is N-integral (direct con-
sequence of Theorem 3). Indeed, if x ≺ minα,β(a) then, by de�nition, we have
ξα,β(a, x) = 0. Furthermore, if α ∈ Q \ Z≤0, then aα � a. Hence, for all x ∈ R
satisfying a ≺ x, we have ξα,β(a, x) = r − s = 0.
• Assume that β ∈ Zr, and that p is a prime divisor of dα,β. Then, we have
λp ≤ −1 and −1−bλp/(p−1)c ≥ 0 so that p−1−bλp/(p−1)cAb(pν , D) ⊂ Ab(pν , D) ⊂
Ab(pν , D)∗.

2.3. N-Integrality of qα,β. Our �rst main result concerning the N -integrality of
qα,β(z) can be stated as follows (the constant C ′α,β involved below was de�ned in Sec-
tion 2.2).

Theorem 8. Assume that 〈α〉 and 〈β〉 are disjoint and that Fα,β is N-integral. Then,
the following assertions are equivalent:

7



(i) qα,β(z) is N-integral;
(ii) (C ′α,βz)−1qα,β(C ′α,βz) ∈ Z[[z]];

(iii) assertion Hα,β holds, we have r = s and, for all a ∈ {1, . . . , dα,β} coprime to dα,β,
we have qα,β(z) = q〈aα〉,〈aβ〉(z).

Moreover, if one of the above equivalent properties holds, then we have either α = (1/2)
and β = (1), or s ≥ 2 and there are at least two 1's in 〈β〉.

Once we know that qα,β(z) is N -integral, it is natural to ask for the signs of its Taylor
coe�cients.

Theorem 9. Under the assumptions of Theorem 8, if qα,β(z) is N-integral, then all
the Taylor coe�cients at z = 0 of (C ′α,βz)−1qα,β(C ′α,βz) are positive integers.

The following result improves the implication (i)⇒ (ii) of Theorem 8 when β ∈ Zs.

Theorem 10. Assume that 〈α〉 and 〈β〉 are disjoint and that Fα,β and qα,β are N-
integral. Assume moreover that β is a tuple of positive integers. Then, we have(

(C ′α,βz)−1qα,β(C ′α,βz)
) 1

n′
α,β ∈ Z[[z]],

where

n′α,β =
∏
p|dα,β

p−1−b λp
p−1
c.

Remark 11. Let us note the following facts.

• Assume that β ∈ Zr, and that p is a prime divisor of dα,β. Then, we have λp ≤ −1
and −1− bλp/(p− 1)c ≥ 0. It follows that n′α,β is a nonnegative integer.
• According to [14, Lemma 5], if f(z) ∈ Z[[z]] and if V is the greatest positive integer
satisfying f(z)1/V ∈ Z[[z]], then the positive integers U satisfying f(z)1/U ∈ Z[[z]]
are exactely the positive divisors of V . Furthermore, by [24, Introduction], for all

positive integers v and all C ∈ Q, we have
(
(Cq)−1zα,β(Cq)

)1/v ∈ Z[[q]] if and

only if
(
(Cz)−1qα,β(Cz)

)1/v ∈ Z[[z]]. So, what precedes can be rephrased in terms
of N-integrality properties of mirror maps.

2.4. N-Integrality of q̃α,β. Instead of considering qα,β(z), which is not N -integral in
general, we now focus our attention on

q̃α,β(z) = z

dα,β∏
a=1

gcd(a,dα,β)=1

z−1q〈aα〉,〈aβ〉(z).

Note that

q̃α,β(z) = z exp
(
Sα,β(z)

)
with Sα,β(z) :=

dα,β∑
a=1

gcd(a,dα,β)=1

G〈aα〉,〈aβ〉(z)

F〈aα〉,〈aβ〉(z)
.
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Theorem 12. Assume that r = s, that 〈α〉 and 〈β〉 are disjoint and that Hα,β holds.
Then, q̃α,β(z) is N-integral and we have(

(C ′α,βz)−1q̃α,β(C ′α,βz)
) 1

nα,β ∈ Z[[z]], (2.2)

where nα,β is the integer de�ned by

nα,β := dα,β
∏
p|dα,β

p
−2−

⌊
λp
p−1

⌋
if β ∈ Zs, and nα,β := d′α,β

∏
p|d′α,β
p−1|λp

p−1 otherwise.

Remark 13. It is tempting to try to improve (2.2) by replacing nα,β by ϕ(dα,β), which
is the number of terms in the product de�ning q̃α,β. But this is not possible in general.
Indeed, a counterexample is given by α = (1/7, 1/4, 3/7, 6/7) and β = (1, 1, 1, 1), where we
have dα,β = 28, C ′α,β = Cα,β = 2372, ϕ(28) = 12, nα,β = 2,(

(C ′α,βz)−1q̃α,β(C ′α,βz)
) 1
ϕ(dα,β) ∈ 1 + 4802z +

81541341

2
z2 +

1328534273395

3
z3 + z4Q[[z]].

This example also shows that one cannot replace nα,β by dα,β, since(
(C ′α,βz)−1q̃α,β(C ′α,βz)

) 1
dα,β ∈ 1 + 2058z +

29299137

2
z2 + z3Q[[z]].

As a consequence of Theorem 12, we obtain the following result.

Corollary 14. Assume that 〈α〉 and 〈β〉 are disjoint and that Fα,β and qα,β are
N-integral. Then, we have(

(C ′α,βz)−1qα,β(C ′α,βz)
)ϕ(dα,β)/nα,β ∈ Z[[z]], (2.3)

where ϕ denotes Euler's totient function.

Remark 15. If β ∈ Zr, then Theorem 10 is stronger than Corollary 14 because
nα,β/n

′
α,β = d∗α,β divides ϕ(dα,β).

3. Structure of the paper

In Section 4, we make comments on our main results (those stated in Section 2) and we
compare these results with previous ones on the N -integrality of mirror maps associated
with generalized hypergeometric functions. Then, we formulate some open questions and
we give a corrected version of a lemma of Lang on Mojita's p-adic Gamma function (4).

Section 5 contains a detailed study of the p-adic valuation of the Pochhammer symbols.
In particular, we de�ne and study step functions ∆α,β associated with tuplesα and β which
play a central role in the rest of the paper.

4Indeed, while working on this article, we found an error in a lemma in Lang's book [23, Lemma 1.1,
Section 1, Chapter 14] about the arithmetic properties of Mojita's p-adic Gamma function. This lemma
has been used in several articles on the integrality of the Taylor coe�cients of mirror maps including papers
of the authors. Even if we do not use this lemma in this article, we give in Section 4.4 a corrected version
and we explain why the initial error does not change the validity of our previous results.
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Section 6 is devoted to the proof of Theorem 4.
Section 7 is devoted to the statement and the proof of Theorem 30, which is a vast

generalization of Dwork's theorem [12, Theorem 1.1] on formal congruences. We also
compare Theorem 30 with previous generalizations of Dwork's formal congruences.

Section 8 is devoted to the proof of Theorem 6. This proof relies on Theorem 30 and
constitute (by far) the longest and the most technical part of this article.

Sections 9, 10, 11, 12 and 13 are dedicated to the proofs of Theorem 9, Theorem 12,
Theorem 8, Theorem 10 and Corollary 14 respectively. These proofs rely on Theorem 6,
via Dieudonné-Dwork's lemma.

We warmly thank the referee for his very careful reading of the paper and for this
comments that helped to improve the presentation.

4. Comments on the main results, comparison with previous results and open

questions

This section contains a detailed study of certain consequences of our main results (stated
in Section 2). We also compare our theorems with previous results on the N -integrality of
generalized hypergeometric series and of their associated mirror maps. This section also
contains some results that we use throughout this article.

4.1. Comments on Theorem 3, Theorem 4 and on the hypothesis Hα,β.

4.1.1. An example of application of Theorem 4. We illustrate Theorem 3 and Theorem
4 with an example. Let α := (1/6, 1/2, 2/3) and β := (1/3, 1, 1) so that we have dα,β = 6.
According to Theorem 3, Fα,β is N -integral if and only if, for all a ∈ {1, 5} and all x ∈ R,
we have ξα,β(a, x) ≥ 0.

We have 1/6 ≺ 1/3 ≺ 1/2 ≺ 2/3 ≺ 1 thus, for all x ∈ R, we get ξα,β(1, x) ≥ 0.
Furthermore, we have 1/3 + 3 = 10/3 ≺ 5/2 ≺ 5/3 ≺ 5/6 ≺ 5 and thus, for all x ∈ R, we
get ξα,β(5, x) ≥ 0. This shows that Fα,β is N -integral.

Moreover, we have r = s, all elements of α and β lie in (0, 1], λ2(α,β) = 1 − 3 = −2
and λ3(α,β) = 1− 2 = −1 thus, according to Theorem 4, we get

Cα,β =
6 · 2 · 3

3
2−b−2c3−b−1/2c = 2432.

4.1.2. N-integrality of F〈α〉,〈β〉. We show that if Fα,β is N -integral then F〈α〉,〈β〉 is
also N -integral. The converse is false in general, a counterexample being given by α =
(1/2, 1/2) and β = (3/2, 1) since we have 3/2 ≺ 1/2 ≺ 1 and 〈α〉 = (1/2, 1/2), 〈β〉 =
(1/2, 1). But, if 〈α〉 and 〈β〉 are disjoint, then, for all a ∈ {1, . . . , dα,β} coprime to dα,β,
〈aα〉 and 〈aβ〉 are disjoint. Hence, applying Theorem 3, we obtain that (F〈α〉,〈β〉 is N -
integral)⇒(Fα,β is N -integral). More precisely, we shall prove the following proposition
that we use several times in this article.

In Proposition 16 and throughout this article, if f is a function de�ned on D ⊂ R and
x ∈ D, then we adopt the notations

f(x+) := lim
y→x

y∈D,y>x

f(y) and f(x−) := lim
y→x

y∈D,y<x

f(y).

10



Proposition 16. Let α and β be tuples of parameters in Q\Z≤0 and a ∈ {1, . . . , dα,β}
coprime to dα,β. Then we have d〈aα〉,〈aβ〉 = dα,β. Let c ∈ {1, . . . , dα,β} coprime to dα,β and
x ∈ R be �xed and let b ∈ {1, . . . , dα,β} be such that b ≡ ca mod dα,β. Then we have

ξ〈aα〉,〈aβ〉(c, x) =


ξα,β(b, 〈x〉−) if x > c;

r − s if x ≤ c and x ∈ Z;

ξα,β(b, 〈x〉−) or ξα,β(b, 〈x〉+) otherwise,

.

where r, respectively s, is the number of elements of α, respectively of β.

Remark 17. For all a ∈ {1, . . . , dα,β} coprime to dα,β, r − s is the limit of ξα,β(a, n)
when n ∈ Z tends to −∞.

Proof. For all elements α and β of α or β, we have
〈
c〈aα〉

〉
= 〈caα〉 = 〈bα〉 and

〈bα〉 = 〈bβ〉 if and only if 〈α〉 = 〈β〉. If 〈bα〉 = 〈x〉, then we have c〈aα〉 � x⇔ c〈aα〉 ≥ x.
It follows that if x > c, then we have

ξ〈aα〉,〈aβ〉(c, x) = #
{

1 ≤ i ≤ r : 〈bαi〉 < 〈x〉
}
−#

{
1 ≤ j ≤ s : 〈bβj〉 < 〈x〉

}
= ξα,β(b, 〈x〉−).

If x ∈ Z and x ≤ c, then we have 〈x〉 = 1 and ξ〈aα〉,〈aβ〉(c, x) = r − s. Now we assume
that x ≤ c and x /∈ Z. If α and β are elements of α or β satisfying 〈x〉 = 〈bα〉 = 〈bβ〉,
then 〈α〉 = 〈β〉 so 〈aα〉 = 〈aβ〉 and we obtain that c〈aα〉 � x⇔ c〈aβ〉 � x. Thus we have

ξ〈aα〉,〈aβ〉(c, x) =


#
{

1 ≤ i ≤ r : 〈bαi〉 < 〈x〉
}
−#

{
1 ≤ j ≤ s : 〈bβj〉 < 〈x〉

}
or

#
{

1 ≤ i ≤ r : 〈bαi〉 ≤ 〈x〉
}
−#

{
1 ≤ j ≤ s : 〈bβj〉 ≤ 〈x〉

}
=


ξα,β(b, 〈x〉−)

or

ξα,β(b, 〈x〉+)

because 〈x〉 < 1. �

By Proposition 16 with a = 1 together with Theorem 3, we obtain that, if Fα,β is
N -integral, then F〈α〉,〈β〉 is also N -integral. Similarly, if Hα,β holds then H〈α〉,〈β〉 also
holds. More precisely, we have the following result, used several times in the proofs of our
N -integrality results.

Lemma 18. Let α and β be two disjoint tuples of parameters in Q \Z≤0 with the same
number of elements and such that Hα,β holds. Then, for all a ∈ {1, . . . , dα,β} coprime to
dα,β, Assertion H〈aα〉,〈aβ〉 holds.

Proof. Let c ∈ {1, . . . , dα,β} be coprime to dα,β and x ∈ R be such that min〈aα〉,〈aβ〉(c) �
x ≺ c. We shall prove that ξ〈aα〉,〈aβ〉(c, x) ≥ 1 by applying Proposition 16.

Let b ∈ {1, . . . , dα,β} be such that b ≡ ac mod dα,β. First, note that there exists an
element α of α or β such that c〈aα〉 � x, that is 〈x〉 > 〈bα〉 or

(
〈x〉 = 〈bα〉 and c〈aα〉 ≥ x

)
.

We distinguish three cases.
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• If x > c then we have 〈x〉 > 〈bα〉 and ξ〈aα〉,〈aβ〉(c, x) = ξα,β(b, 〈x〉−). Thus there
exists y ∈ R, minα,β(b) � y ≺ b such that ξ〈aα〉,〈aβ〉(c, x) = ξα,β(b, y) ≥ 1.

• If x ≤ c and x /∈ Z, then we have 〈x〉 < 1 and ξ〈aα〉,〈aβ〉(c, x) = ξα,β(b, 〈x〉−)
or ξα,β(b, 〈x〉+). Since 〈x〉 ≥ 〈bα〉, there exists y ∈ R, minα,β(b) � y ≺ b such that
ξα,β(b, 〈x〉+) = ξα,β(b, y) ≥ 1. Furthermore, if 〈x〉 > 〈bα〉 then we have ξα,β(b, 〈x〉−) ≥ 1
as in the case x > c. Now we assume that, for all elements β of α or β, we have 〈x〉 ≤ 〈bβ〉.
Hence we have 〈x〉 = 〈bα〉 and, as explained in the proof of Proposition 16, we have

ξ〈aα〉,〈aβ〉(c, x) = #
{

1 ≤ i ≤ r : 〈bαi〉 ≤ 〈x〉
}
−#

{
1 ≤ j ≤ s : 〈bβj〉 ≤ 〈x〉

}
= ξα,β(b, 〈x〉+) ≥ 1.

• It remains to consider the case x ≤ c and x ∈ Z. But in this case we do not have
x ≺ c thus H〈aα〉,〈aβ〉 is proved. �

4.1.3. Numerators of the elements of α and β. Letα = (α1, . . . , αr) and β = (β1, . . . , βr)
be tuples of parameters in Q\Z≤0. Then, Theorem 4 gives a necessary condition on the nu-
merators of elements of α and β for Fα,β to be N -integral. Indeed, let us assume that Fα,β

is N -integral. Then, according to Section 4.1.2, F〈α〉,〈β〉 is also N -integral. We write ni,
respectively n′j, for the exact numerator of 〈αi〉, respectively of 〈βj〉. Then, by Theorem 4,

the �rst-order Taylor coe�cient at the origin of F〈α〉,〈β〉
(
C〈α〉,〈β〉z

)
is (5)∏r

i=1 ni∏r
j=1 n

′
j

∏
p|dα,β

p
−
⌊
λp(α,β)

p−1

⌋
∈ Z,

so that, for all primes p, we have

vp

(∏r
i=1 ni∏r
j=1 n

′
j

)
≥
⌊
λp(α,β)

p− 1

⌋
.

For instance, the last inequality is not satis�ed with p = 2, α = (1/5, 1/3, 3/5) and
β = (1/2, 1, 1), or with p = 3, α = (1/7, 2/7, 4/7, 5/7) and β = (3/4, 1, 1, 1). Thus in both
cases the associated generalized hypergeometric series Fα,β is not N -integral.

4.1.4. The Eisenstein constant of algebraic generalized hypergeometric series. Let α =
(α1, . . . , αr) and β = (β1, . . . , βr) be tuples of parameters in Q\Z≤0. If Fα,β(z) is algebraic
over Q(z) then Fα,β is N -integral (Eisenstein's theorem) and one can apply Theorem 4 to
get arithmetical properties of the Eisenstein constant of Fα,β. For the sake of completeness,
let us remind the reader of a result of Beukers and Heckman [3, Theorem 1.5] proved in
[4] on algebraic hypergeometric functions:

�Assume that βr = 1 and that Lα,β is irreducible. Then the set of solutions
of the hypergeometric equation associated with Lα,β consists of algebraic
functions (over C(z)) if and only if the sets {aαi : 1 ≤ 1 ≤ r} and

5Note that, for all primes p, we have λp(α,β) = λp(〈α〉, 〈β〉).
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{aβi : 1 ≤ i ≤ r} interlace modulo 1 for every integer a with 1 ≤ a ≤ dα,β
and gcd(a, dα,β) = 1.�

The sets {αi : 1 ≤ i ≤ r} and {βi : 1 ≤ i ≤ r} interlace modulo 1 if the points of the sets
{e2πiαj : 1 ≤ j ≤ r} and {e2πiβj : 1 ≤ j ≤ r} occur alternatively when running along the
unit circle.

The Beukers-Heckman criterion can be reformulated in terms of Christol's functions as
follows.

�Assume that βr = 1 and that Lα,β is irreducible. Then the solution set
of the hypergeometric equation associated with Lα,β consists of algebraic
functions (over C(z)) if and only if, for every integer a with 1 ≤ a ≤ dα,β
and gcd(a, dα,β) = 1, we have ξα,β(a,R) = {0, 1}.�

4.2. Comparison with previous results.

4.2.1. Theorem 6 and previous results. The �rst result on p-adic integrality of qα,β is
due to Dwork [12, Theorem 4.1]. This result enables us to prove that, for particular tuples
α and β, we have qα,β(z) ∈ Zp[[z]] for almost all primes p. It follows without much
trouble that qα,β is N -integral. Thus we know that there exists C ∈ N, C ≥ 1, such that
(Cz)−1qα,β(Cz) ∈ Z[[z]] but the only information on C given by Dwork's result is that we
can choose C with prime divisors in an explicit �nite set associated with (α,β). Hence,
improvements of Dwork's method consist in �nding explicit formulas for C and we discuss
such previous improvements in the next section. But Theorem 6 is more general and, in
order to compare this theorem with Dwork's result [12, Theorem 4.1], we introduce some
notations that we use throughout this article. Until the end of this section, we restrict
ourself to the case where α and β have the same numbers of elements.

• For all primes p and all p-adic integers α in Q, we write Dp(α) for the unique p-
adic integer in Q satisfying pDp(α)−α ∈ {0, . . . , p−1}. The operator α 7→ Dp(α)
has been used by Dwork in [12] and denoted by α 7→ α′ (6).
• For all primes p, all x ∈ Q ∩ Zp and all a ∈ [0, p) we de�ne

ρp(a, x) :=

{
0 if a ≤ pDp(x)− x;
1 if a > pDp(x)− x.

.

• We write α = (α1, . . . , αr) and β = (β1, . . . , βr). Let r
′ be the number of elements

βi of β such that βi 6= 1. We rearrange the subscripts so that βi 6= 1 for i ≤ r′.
For all a ∈ [0, p) and all k ∈ N, we set

Nk
p,α(a) =

r∑
i=1

ρp
(
a,Dk

p(αi)
)

and Nk
p,β(a) =

r′∑
i=1

ρp
(
a,Dk

p(βi)
)
.

• For a given prime p not dividing dα,β, we de�ne two assertions:
(v)p for all i ∈ {1, . . . , r′} and all k ∈ N, we have Dk

p(βi) ∈ Z×p ;

6See Section 5 for a detailed study of Dwork's map Dp.
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(vi)p for all a ∈ [0, p) and all k ∈ N, we have either Nk
p,α(a) = Nk

p,β(a+) = 0 or

Nk
p,α(a)−Nk

p,β(a+) ≥ 1.

Dwork's result [12, Theorem 4.1] restricted to the case where α and β have the same
number of elements is the following.

Theorem 19 (Dwork). Let α and β be two tuples of parameters in Q \ Z≤0 with the
same number of elements. Let p be a prime not dividing dα,β such that α and β satisfy
(v)p and (vi)p. Then we have

GDp(α),Dp(β)

FDp(α),Dp(β)

(zp)− pGα,β(z)

Fα,β

(z) ∈ pzZp[[z]].

Now let us assume that α and β are disjoint with elements in (0, 1] and that Hα,β

holds. For all primes p not dividing dα,β, we have Dp(α) = 〈ωα〉 and Dp(β) = 〈ωβ〉 where
ω ∈ Z satis�es ωp ≡ 1 mod dα,β (see Section 5.2 below). Then, by Theorem 6 for a �xed
prime p and b = t = 1, we obtain that

GDp(α),Dp(β)

FDp(α),Dp(β)

(C ′α,βz
p)− pGα,β

Fα,β

(C ′α,βz) ∈ pzZp[[z]]. (4.1)

Thus, contrary to Theorem 19, there is no restriction on the primes p because of the
constant C ′α,β. Furthermore, in the proof of Lemma 48 in Section 11.1.3, we show that
if Hα,β holds then α and β satisfy Assertions (v)p and (vi)p for almost all primes p. By
Theorem 8, the converse holds when 〈α〉 and 〈β〉 are disjoint, Fα,β(z) is N -integral and,
for all a ∈ {1, . . . , dα,β} coprime to dα,β, we have

G〈aα〉,〈aβ〉
F〈aα〉,〈aβ〉

(z) =
Gα,β

Fα,β

(z).

Indeed, in this case, Theorem 19 in combination with Proposition 2 implies that, for almost
all primes p, we have qα,β(z) ∈ Zp[[z]]. Then it is a simple exercise to show that qα,β(z) is
N -integral and, by Theorem 8, we obtain that Hα,β holds.

The main improvement in Theorem 6 is the use of algebras of Zp-valued functions
instead of Zp. This is precisely this generalization which enables us to prove the integrality
of the Taylor coe�cients of certain roots of (C ′α,βz)−1q̃α,β(C ′α,βz).

4.2.2. Theorem 8 and previous results. The constants C ∈ Q× such that an N -integral
canonical coordinate qα,β satis�es qα,β(Cz) ∈ Z[[z]] was �rst studied when there exist some
disjoint tuples of positive integers e = (e1, . . . , eu), f = (f1, . . . , fv) and a constant C0 ∈ Q×
such that

Fα,β(C0z) =
∞∑
n=0

(e1n)! · · · (eun)!

(f1n)! · · · (fvn)!
zn (4.2)

and
Fα,β(C0z) ∈ Z[[z]]. (4.3)

We now assume that such a constant C0 exists. According to [8, Proposition 2], the con-
dition (4.2) ensures that α and β are R-partitioned, i. e. α = (α1, . . . , αr), respectively
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β = (β1, . . . , βs), is the concatenation of tuples (b/Ni)b∈{1,...,Ni},gcd(b,Ni)=1, 1 ≤ i ≤ r′, respec-
tively of tuples (b/N ′j)b∈{1,...,N ′j},gcd(b,N ′j)=1, 1 ≤ j ≤ s′. Furthermore, by [8, Proposition 2],

if α and β are R-partioned, then one can take

C0 =

∏r′

i=1N
ϕ(Ni)
i

∏
p|Ni p

ϕ(Ni)

p−1∏s′

j=1 N
′ϕ(N ′j)

j

∏
p|N ′j

p
ϕ(N′

j
)

p−1

and
u∑
i=1

ei −
v∑
j=1

fj = r − s. (4.4)

Moreover, Landau's criterion [22] asserts that the condition (4.3) is equivalent to the
nonnegativity on [0, 1] of the function of Landau

∆e,f (x) :=
u∑
i=1

beixc −
v∑
j=1

bfjxc,

which can be checked easily because, by [8, Proposition 3], for all x ∈ [0, 1], we have

∆e,f (x) = #{i : x ≥ αi} −#{j : x ≥ βj}. (4.5)

The results obtained by Lian and Yau [26], Zudilin [34], Krattenthaler and Rivoal [18]
and Delaygue [8] led to an e�ective criterion [8, Theorem 1] for the N -integrality of qα,β(z).

By combining and reformulating this criterion and [8, Theorem 3], we obtain the fol-
lowing result.

Theorem 20 (Delaygue). If (4.2) and (4.3) hold, then the following assertions are
equivalent:

(1) qα,β(z) is N-integral;
(2) (C0z)−1qα,β(C0z) ∈ Z[[z]];
(3) we have

∑u
i=1 ei =

∑v
j=1 fj and, for all x ∈ [1/Me,f , 1[, we have ∆e,f (x) ≥ 1,

where Me,f is the largest element of e and f .

Let us show that Theorem 8 implies Theorem 20. Let α and β be disjoint tuples of
parameters in Q\Z≤0 such that (4.2) and (4.3) hold. Then α and β are R-partitioned and
their elements lie in (0, 1] so that 〈α〉 and 〈β〉 are disjoint and Fα,β is N -integral. First
we prove that if r = s, then we have C ′α,β = Cα,β = C0. We write λp for λp(α,β). Since
α and β are R-partitioned, the number of elements of α and β with exact denominator
divisible by 4 is a sum of multiples of integers of the form ϕ(2k) with k ∈ N, k ≥ 2, so this
number is even. Thus, we have C ′α,β = Cα,β. Furthermore, for all primes p, we have

λp = r −
r′∑
i=1
p|Ni

ϕ(Ni)− s+
s′∑
j=1

p|N ′j

ϕ(N ′j) = −
r′∑
i=1
p|Ni

ϕ(Ni) +
s′∑
j=1

p|N ′j

ϕ(N ′j).

If p dividesNi then p−1 divides ϕ(Ni) so that−
⌊
λp/(p−1)

⌋
= −λp/(p−1) and Cα,β = C0 as

expected. Now we assume that (4.2) and Theorem 8 hold and we prove that Assertions (1),
(2) and (3) of Theorem 20 are equivalent.
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• (1)⇒ (2): If qα,β(z) is N -integral, then we obtain that (C ′α,βz)−1qα,β(C ′α,βz) ∈ Z[[z]]
and r = s so that C ′α,β = C0 and Assertion (2) of Theorem 20 holds.

• (2) ⇒ (3): If (C0z)−1qα,β(C0z) ∈ Z[[z]] then qα,β(z) is N -integral and, according to
Theorem 8, we have r = s and Hα,β is true. We deduce that we have

∑u
i=1 ei =

∑v
j=1 fj.

Now, since α and β are disjoint tuples with elements in (0, 1], Equation (4.5) ensures that
the assertions �for all x ∈ [1/Me,f , 1[, we have ∆e,f (x) ≥ 1� and �for all x ∈ R, minα,β(1) �
x ≺ 1, we have ξα,β(1, x) ≥ 1� are equivalent. Thus Assertion (3) of Theorem 20 holds.

• (3) ⇒ (1): We assume that
∑u

i=1 ei =
∑v

j=1 fj, that is r = s, and that, for all x ∈
[1/Me,f , 1[, we have ∆e,f (x) ≥ 1. Since α and β are R-partitioned, for all a ∈ {1, . . . , dα,β}
coprime to dα,β we have 〈aα〉 = α and 〈aβ〉 = β, and these tuples are disjoint. We
deduce that, for all a ∈ {1, . . . , dα,β} coprime to dα,β and all x ∈ R, minα,β(a) � x ≺ a,
Equation (4.5) gives us that ξα,β(a, x) ≥ 1, so that Hα,β holds. Thus Assertion (iii)
of Theorem 8 holds and qα,β(z) is N -integral as expected. This �nishes the proof that
Theorem 8 implies Theorem 20.

Furthermore, when (4.2) holds, Delaygue [11, Theorem 8] generalized some of the
results of Krattenthaler and Rivoal [21] and proved that all Taylor coe�cients at the origin
of qα,β(C0z) are positive but its constant term, which is 0. Proposition 42 generalizes this
result since it does not use the assumption that α and β are R-partitioned.

Later, Roques studied (see [31] and [32]) the integrality of the Taylor coe�cients of
canonical coordinates qα,β without assuming that (4.2) holds, in the case α and β have the
same number of elements r ≥ 2, all the elements of β are equal to 1 and all the elements of
α lie in (0, 1] ∩Q. In this case, we have r = s and it is easy to prove that Hα,β holds but
α is not necessarily R-partitioned. Roques proved that qα,β(z) is N -integral if and only
if, for all a ∈ {1, . . . , dα,β} coprime to dα,β, we have q〈aα〉,〈aβ〉(z) = qα,β(z) in accordance
with Theorem 8. Furthermore, when r = 2, he found the exact �nite set (7) of tuples α
such that qα,β(z) is N -integral (see [31, Theorem 3]) and, when r ≥ 3, he proved (see
[32]) that qα,β(z) is N -integral if and only if α is R-partitioned (the �if part� is proved by
Krattenthaler and Rivoal in [18]). Note that if β = (1, . . . , 1), then it is easy to prove that
Fα,β(z) is N -integral.

The integrality of Taylor coe�cients of roots of a rescaling of z−1qα,β(z) has been
studied in case (4.2) holds by Lian and Yau [24], Krattenthaler and Rivoal [19], and by
Delaygue [9]. For a detailed survey of these results, we refer the reader to [9, Section 1.2].
• In [24], Lian and Yau studied the case e = (p) and f = (1, . . . , 1) with p 1's in f and

where p is a prime. In this case, we have β = (1, . . . , 1) and n′α,β = 1, thus we do not
obtain a root with Theorem 10.
• In [19], Krattenthaler and Rivoal studied the case e = (N, . . . , N) with k N 's in e

and f = (1, . . . , 1) with kN 1's in f . In this case, we also have β = (1, . . . , 1). For all prime
divisors p of N , we write N = pηpNp with ηp, Np ∈ N and Np not divisible by p. A simple

7This set contains 28 elements amongst which 4 are R-partitioned.
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computation of the associated tuples α and β shows that dα,β = N and λp = k(Np −N).
Thus, for all prime divisors p of N , p− 1 divides λp and we have

n′α,β =
∏
p|N

p−1+k
N−Np
p−1 .

It seems that the integrality properties of roots of mirror maps found by Krattenthaler and
Rivoal are always stronger in these cases.
• However, in a lot of cases, our root n′α,β improves the one found by Delaygue in [9].

For example, if e = (4, 2) and f = (1, 1, 1, 1, 1, 1), then [9, Corollary 1.1] gives us the root
4 while β = (1, . . . , 1) and n′α,β = 32.

4.3. Open questions. We formulate some open questions directly related to our main
results.
• Does the equivalence of Theorem 8 still hold if we do not assume that Fα,β(z) is

N -integral?
• Theorem 9 leads to a natural question: do the coe�cients of (C ′α,βz)−1qα,β(C ′α,βz)

count any object?
• One of the conditions for qα,β(z) to be N -integral is that, for all a ∈ {1, . . . , dα,β}

coprime to dα,β, we have qα,β(z) = q〈aα〉,〈aβ〉(z). According to [31] and [32], we know that,
when β = (1, . . . , 1) and all elements of α belong to (0, 1], this condition implies a stronger
characterization related to the exact forms of α and β. Is it possible to deduce a similar
characterization in the general case?

4.4. A corrected version of a lemma of Lang. While working on this article, we
noticed an error in a lemma stated by Lang [23, Lemma 1.1, Section 1, Chapter 14] about
arithmetic properties of Mojita's p-adic Gamma function. This lemma has been used in
several articles on the integrality of the Taylor coe�cients of mirror maps including papers
of the authors. First we give a corrected version of Lang's lemma, then we explain why
this error does not change the validity of our previous results.

Let p be a �xed prime. For all n ∈ N, we de�ne the p-adic Gamma function Γp by

Γp(n) := (−1)n
n−1∏
k=1

gcd(k,p)=1

k.

In particular, Γp(0) = 1, Γp(1) = −1 and Γp can be extended to Zp.

Proposition 21. For all k,m, s ∈ N, we have

Γp(k +mps) ≡

{
Γp(k) mod ps if ps 6= 4;

(−1)mΓp(k) mod ps if ps = 4.
.

The case ps 6= 4 in Proposition 21 is proved by Morita in [28]. We provide a complete
proof of the proposition.
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Proof. If s = 0 or if m = 0 this is trivial. We assume in the sequel that s ≥ 1 and
m ≥ 1. Then

Γp(k +mps)

Γp(k)
= (−1)mp

s

k+mps−1∏
i=k

gcd(i,p)=1

i = (−1)mp
s

ps−1∏
i=0

gcd(k+i,p)=1

m−1∏
j=0

(k + i+ jps)

≡ (−1)mp
s

ps−1∏
i=0

gcd(k+i,p)=1

(k + i)m mod ps

≡ (−1)mp
s

ps−1∏
j=0

gcd(j,p)=1

jm mod ps, (4.6)

because, for all j ∈ {0, . . . , ps − 1}, there exists a unique i ∈ {0, . . . , ps − 1} such that
k + i ≡ j mod ps.

We �rst assume that p ≥ 3. In this case, the group (Z/psZ)× is cyclic and contains just
one element of order 2. Collecting each element of (Z/psZ)× of order ≥ 3 with its inverse,
we obtain

ps−1∏
j=0

gcd(j,p)=1

j ≡ −1 mod ps.

Together, with (4.6), we get

Γp(k +mps)

Γp(k)
≡ 1 mod ps,

because p is odd.

Let us now assume that p = 2. If s = 1, then

ps−1∏
j=0

gcd(j,p)=1

j = 1

and by (4.6) this yields Γp(k +mps) ≡ Γp(k) mod ps. If s = 2, then

ps−1∏
j=0

gcd(j,p)=1

j = 3 ≡ −1 mod ps,
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and by (4.6), this yields Γp(k + mps) ≡ (−1)mΓp(k) mod ps. It remains to deal with the
case s ≥ 3. The group (Z/2sZ)× is isomorphic to Z/2s−2Z× Z/2Z. Moreover,

2s−2−1∑
k=0

1∑
j=0

(k, j) =

(
2

2s−2−1∑
k=0

k, 2s−2

)
=
(
2s−2(2s−2 − 1), 2s−2

)
∈ 2s−2Z× 2Z,

because s ≥ 3. Hence,
ps−1∏
j=0

gcd(j,p)=1

j ≡ 1 mod ps

and by (4.6), this yields
Γp(k +mps)

Γp(k)
≡ 1 mod ps,

which completes the proof of the proposition. �

The error in Lang's version is that he wrote Γp(k + mps) ≡ Γp(k) mod ps if ps = 4,
forgetting the factor (−1)m. He gives the proof only for p ≥ 3 and he claims that the proof
goes through similarly when p = 2, overlooking the subtility. Delaygue and Krattenthaler
and Rivoal used Lang's version in [8, Lemma 11], [10, Lemma 8] and [18]. Fortunately,
the resulting mistakes in these papers are purely local and can be �xed. Indeed, the factor
(−1)` (that should have been added when ps = 4) would have occurred for an even value
of ` and thus would have immediately disappeared without changing the rest of the proof.

5. The p-adic valuation of Pochhammer symbols

We introduce certain step functions, de�ned over R, that enable us to compute the
p-adic valuation of Pochhammer symbols. We will then provide a connection between
the values of these functions and the functions ξα,β(a, ·). This construction is inspired by
various articles of Christol [7], Dwork [12] and Katz [16].

5.1. Christol's criterion for the N-integrality of Fα,β. We shall �rst state and
prove the following preliminary result.

Proposition 22. Let α and β be tuples of parameters in Q \ Z≤0. Then, Fα,β is
N-integral if and only if, for almost all primes p, we have Fα,β(z) ∈ Zp[[z]].

Proof. Let α and β be two sequences taking their values in Q \ Z≤0. If there exists
C ∈ Q∗ such that Fα,β(Cz) ∈ Z[[z]], then for all primes p such that vp(C) ≤ 0, we
have Fα,β(z) ∈ Zp[[z]]. Hence, there exists only a �nite number of primes p such that
Fα,β(z) /∈ Zp[[z]].

Conversely, let us assume there exists only a �nite number of primes p such that
Fα,β(z) /∈ Zp[[z]]. To prove Proposition 22, it is enough to prove that, for all primes
p, there exists m ∈ Z≤0 such that, for all n ∈ N, we have

vp

(
(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
≥ mn. (5.1)
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Let x ∈ Q, x = a/b with a, b ∈ Z, b ≥ 1, and a and b coprime. If b is not divisible by
p, then for all n ∈ N, we have vp

(
(x)n

)
≥ 0. On the other hand, if p divides b, then

vp
(
(x)n

)
= vp(x)n.

Let us now assume that x /∈ Z≤0. Then, for all n ∈ N, n ≥ 1,

vp

(
1

(x)n

)
= vp

(
bn

a(a+ b) · · ·
(
a+ b(n− 1)

)) ≥ vp

(
bn

|a|!(|a|+ bn)!

)
≥
(
vp(b)−

b

p− 1

)
n− 2

|a|
p− 1

,

because

vp
(
(|a|+ bn)!

)
=
∞∑
`=1

⌊
|a|+ bn

p`

⌋
<

∞∑
`=1

|a|+ bn

p`
=
|a|
p− 1

+
b

p− 1
n.

Hence, (5.1) holds and Proposition 22 is proved. �

We shall now come to Theorem 3 stated in Section 2.1.

Theorem 3. The following assertions are equivalent:

(i) Fα,β is N-integral.
(ii) For all a ∈ {1, . . . , dα,β} coprime to dα,β and all x ∈ R, we have ξα,β(a, x) ≥ 0.

Proof. According to Proposition 22, Fα,β is N -integral if and only if, for almost all
(8) primes p, we have Fα,β(z) ∈ Zp[[z]]. Then, the proof is a consequence of Christol's
Proposition 1 in [7]. Note that Christol assumes that r = s, that there is j ∈ {1, . . . , s}
such that βj ∈ N and that all elements α ∈ N of α and β satis�es α ≥ βj. But, his proof
does not use these assumptions. �

5.2. Dwork's map Dp. Given a prime p and some α ∈ Zp ∩Q, we recall that Dp(α)
denotes the unique element in Zp ∩Q such that

pDp(α)− α ∈ {0, . . . , p− 1}.
The map α 7→ Dp(α) was used by Dwork in [12] (denoted there as α 7→ α′). We observe
that the unique element k ∈ {0, . . . , p− 1} such that k+α ∈ pZp is k = pDp(α)−α. More
precisely, the p-adic expansion of −α in Zp is

−α =
∞∑
`=0

(
pD`+1

p (α)−D`
p(α)

)
p`,

where D`
p is the `-th iteration of Dp. In particular, for all ` ∈ N, ` ≥ 1, D`

p(α) is the unique

element in Zp ∩Q such that p`D`
p(α)− α ∈ {0, . . . , p` − 1}.

For all primes p, we have Dp(1) = 1. Let us now assume that α is in Zp ∩ Q ∩ (0, 1).
Set N ∈ N, N ≥ 2 and r ∈ {1, . . . , N − 1}, gcd(r,N) = 1, such that α = r/N . Let sN

8�For almost all� means �for all but �nitely many�.
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be the unique right inverse of the canonical morphism πN : Z → Z/NZ with values in
{0, . . . , N − 1}. Then (see [31] for details)

Dp(α) =
sN
(
πN(p)−1πN(r)

)
N

.

Hence, for all ` ∈ N, ` ≥ 1, we obtain

D`
p(α) =

sN
(
πN(p)−`πN(r)

)
N

. (5.2)

In particular, if α ∈ (0, 1), then Dp(α) depends only on the congruence class of p modulo
N . If a ∈ Z satis�es ap ≡ 1 mod N , then D`

p(α) = {a`α} = 〈a`α〉 because a is coprime to

N , hence a`α /∈ Z. This formula is still valid when α = 1 and a is any integer.

Lemma 23. Let α ∈ Q \ Z≤0. Then for any prime p such that α ∈ Zp and all ` ∈ N,
` ≥ 1, such that p` ≥ d(α)

(
|b1 − αc| + 〈α〉

)
, we have D`

p(α) = D`
p(〈α〉) = 〈ωα〉, where

ω ∈ Z satis�es ωp` ≡ 1 mod d(α).

Proof. Let α ∈ Q \ Z≤0 and p be such that α ∈ Zp and ` ∈ N, ` ≥ 1 be such that
p` ≥ d(α)(|b1− αc|+ 〈α〉). By de�nition, D`

p(α) is the unique rational number in Zp such
that p`D`

p(α)−α ∈ {0, . . . , p`−1}. We set α = 〈α〉+k, k ∈ Z and r := D`
p(〈α〉)+bk/p`c+a,

with a = 0 if k − p`bk/p`c ≤ p`D`
p(〈α〉)− 〈α〉 and a = 1 otherwise. We obtain

p`r − α = p`D`
p(〈α〉)− 〈α〉+ p`

⌊
k

p`

⌋
− k + p`a ∈ {0, . . . , p` − 1},

because p`D`
p(〈α〉) − 〈α〉 and k − p`bk/p`c are in {0, . . . , p` − 1}. Since r ∈ Zp, we get

D`
p(α) = r. We have d(α)(|k|+ 〈α〉) > |k| thus bk/p`c ∈ {−1, 0}.

If bk/p`c = 0, then, since D`
p(〈α〉) ≥ 1/d(α), we get p`D`

p(〈α〉) − 〈α〉 ≥ |k| and thus

a = 0. In this case, we have D`
p(α) = D`

p(〈α〉).

Let us now assume that bk/p`c = −1, i. e. k ≤ −1. We have 〈α〉 < 1 because α /∈ Z≤0,
hence d(α) ≥ 2. We have

p`D`
p(〈α〉)− 〈α〉 − (k + p`) ≤ p`

(
d(α)− 1

d(α)
− 1

)
− 〈α〉 − k ≤ − p`

d(α)
− 〈α〉 − k

≤ −|k| − 2〈α〉 − k ≤ −2〈α〉 < 0,

thus a = 1 and D`
p(α) = D`

p(〈α〉). �

5.3. Analogues of Landau functions. We now de�ne the step functions that will
enable us to compute the p-adic valuation of the Taylor coe�cients at z = 0 of Fα,β(z).
For all primes p, all α ∈ Q ∩ Zp and all ` ∈ N, ` ≥ 1, we denote by δp,`(α, ·) the step
function de�ned, for all x ∈ R, by(

δp,`(α, x) = k ⇐⇒ x−D`
p(α)− b1− αc

p`
∈ [k − 1, k)

)
, k ∈ Z.
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In particular, if α ∈ (0, 1], then for all k ∈ Z, we have

δp,`(α, x) = k ⇐⇒ x−D`
p(α) ∈ [k − 1, k).

Let α := (α1, . . . , αr) and β := (β1, . . . , βs) be two sequences taking their values in

Q \ Z≤0. For any p that does not divide dα,β, and all ` ∈ N, ` ≥ 1, we denote by ∆p,`
α,β the

step function de�ned, for all x ∈ R, by

∆p,`
α,β(x) :=

r∑
i=1

δp,`(αi, x)−
s∑
j=1

δp,`(βj, x).

The motivation behind the functions ∆p,`
α,β is given by the following result.

Proposition 24. Let α := (α1, . . . , αr) and β := (β1, . . . , βs) be two sequences taking
their values in Q\Z≤0. Let p be a prime such that α and β are in Zp. Then, for all n ∈ N,
we have

vp

(
(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
=
∞∑
`=1

∆p,`
α,β

(
n

p`

)
=
∞∑
`=1

∆p,`
α,β

({
n

p`

})
+ (r − s)vp(n!).

Remark 25. This proposition is a reformulation of results in Section III of [7], proved
by Christol in order to compute the p-adic valuation of the Pochhammer symbol (x)n for
x ∈ Zp.

Proof. For any p, any n :=
∑∞

k=0 nkp
k ∈ Zp with nk ∈ {0, . . . , p− 1}, and any ` ∈ N,

` ≥ 1, we set Tp(n, `) :=
∑`−1

k=0 nkp
k. For all ` ∈ N, ` ≥ 1, we have

Tp(−α, `) = p`D`
p(α)− α.

We �x a p-adic integer α ∈ Q \ Z≤0. For all k ∈ Z and all ` ∈ N, ` ≥ 1, we have

δp,`

(
α,

n

p`

)
= k ⇐⇒ D`

p(α) +
b1− αc
p`

+ k − 1 ≤ n

p`
< D`

p(α) +
b1− αc
p`

+ k

⇐⇒ p`D`
p(α) + b1− αc+ (k − 1)p` ≤ n < p`D`

p(α) + b1− αc+ kp`

⇐⇒ p`D`
p(α)− α + (k − 1)p` < n ≤ p`D`

p(α)− α + kp` (5.3)

⇐⇒
⌈
n− Tp(−α, `)

p`

⌉
= k,

where, for all x ∈ R, dxe is the smallest integer larger than x. We have used in (5.3) the
fact that −α = −〈α〉+ b1− αc, −1 ≤ −〈α〉 < 0 and p`D`

p(α)− α ∈ N. We then obtain

δp,`

(
α,

n

p`

)
=

⌈
n− Tp(−α, `)

p`

⌉
. (5.4)
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Christol proved in [7] that, for all α ∈ Zp \ Z≤0 and all n ∈ N, we have

vp
(
(α)n

)
=
∞∑
`=1

⌊
n+ p` − 1− Tp(−α, `)

p`

⌋
. (5.5)

For all ` ∈ N, ` ≥ 1, we have

n+ p` − 1− Tp(−α, `)
p`

∈ 1

p`
Z,

so that if k ∈ Z is such that

k ≤ n+ p` − 1− Tp(−α, `)
p`

< k + 1,

then

k − 1 <
n− Tp(−α, `)

p`
≤ k.

Hence, we get ⌊
n+ p` − 1− Tp(−α, `)

p`

⌋
=

⌈
n− Tp(−α, `)

p`

⌉
.

By (5.4) and (5.5), it follows that

vp
(
(α)n

)
=
∞∑
`=1

δp,`

(
α,

n

p`

)
=
∞∑
`=1

δp,`

(
α,

{
n

p`

})
+ vp(n!),

because δp,`(α, n/p
`) = δp,`(α, {n/p`}) + bn/p`c and vp(n!) =

∑∞
`=1bn/p`c. �

The following lemma provides an upper bound for the abscissae of the jumps of the
functions ∆p,`

α,β.

Lemma 26. Let α ∈ Q \ Z≤0. There exists a constant M(α) > 0 such that, for all p
such that α ∈ Zp, and all ` ∈ N, ` ≥ 1, we have

1

M(α)
≤ D`

p(α) +
b1− αc
p`

≤ 1.

Remark 27. In particular, if α and β are two sequences taking their values in Q\Z≤0,
there exists a constant M(α,β) > 0 such that for all p that do not divide dα,β, all ` ∈ N,
` ≥ 1, and all x ∈ [0, 1/M(α,β)), we have ∆p,`

α,β(x) = 0.

Proof. Set a := p`D`
p(α)− α ∈ {0, . . . , p` − 1}. We have

D`
p(α) +

b1− αc
p`

=
a

p`
+
〈α〉
p`
∈ (0, 1],
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because 0 < 〈α〉 ≤ 1. By Lemma 23, if p` ≥ d(α)
(
|b1−αc|+〈α〉

)
, then D`

p(α) = D`
p(〈α〉) ≥

1/d(〈α〉) and hence

D`
p(α) +

b1− αc
p`

≥ 1

d(α)
− |b1− αc|

p`

≥ 1

d(α)

(
〈α〉

|b1− αc|+ 〈α〉

)
.

This completes the proof of Lemma 26 because there exists only a �nite number of pairs
(p, `) such that p` < d(α)

(
|b1− αc|+ 〈α〉

)
. �

Finally, our next lemma enables us to connect the functions ∆p,`
α,β to the values of the

functions ξα,β(a, ·). This is useful to decide if Fα,β is N -integral.

Lemma 28. Let α and β be two sequences taking their values in Q \Z≤0. There exists
a constant Nα,β such that, for all elements α and β of the sequence α or β, for all p that
do not divide dα,β and all ` ∈ N, ` ≥ 1 such that p` ≥ Nα,β, we have

aα � aβ ⇐⇒ D`
p(α) +

b1− αc
p`

≤ D`
p(β) +

b1− βc
p`

,

where a ∈ {1, . . . , dα,β} satis�es p`a ≡ 1 mod dα,β. Moreover, if the sequences α and β
take their values in (0, 1], then we can take Nα,β = 1.

Proof. Let p be such that the sequences α and β take their values in Zp. By Lemma
23, there exists a constant N1 such that, for all ` ∈ N, ` ≥ 1 such that p` ≥ N1, and all
elements α of α or β, we have D`

p(α) = D`
p(〈α〉). Moreover, if α and β take their values

in (0, 1], we can take N1 = 1 because α = 〈α〉. We set

N2 := max
{
dα,β|b1− αc − b1− βc| : α, β in α or β

}
+ 1

and Nα,β := max(N1,N2). In particular, if α and β take their values in (0, 1], then
Nα,β = 1. Let ` ∈ N, ` ≥ 1 be such that p` ≥ Nα,β and a ∈ {1, . . . , dα,β} coprime to dα,β
such that p`a ≡ 1 mod dα,β.

Let α and β be elements of α or β. We set k1 := b1− αc and k2 := b1− βc. By (5.2),
we have a〈α〉 −D`

p(〈α〉) ∈ Z. Hence,

aα = a〈α〉 − ak1 = D`
p(〈α〉) + a〈α〉 −D`

p(〈α〉)− ak1,
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with D`
p(〈α〉) ∈ (0, 1] and a〈α〉−D`

p(〈α〉)−ak1 ∈ Z. Moreover, if D`
p(〈α〉) = D`

p(〈β〉), then
still by (5.2), we have 〈α〉 = 〈β〉. By de�nition of the total order ≺, we obtain

aα � aβ ⇐⇒ D`
p(〈α〉) < D`

p(〈β〉) or
(
D`
p(〈α〉) = D`

p(〈β〉) and aα ≥ aβ
)

⇐⇒ D`
p(〈α〉) < D`

p(〈β〉) or
(
D`
p(〈α〉) = D`

p(〈β〉) and k2 ≥ k1

)
⇐⇒ D`

p(〈α〉)−D`
p(〈β〉) ≤

k2 − k1

p`
(5.6)

⇐⇒ D`
p(〈α〉) +

k1

p`
≤ D`

p(〈β〉) +
k2

p`

⇐⇒ D`
p(α) +

k1

p`
≤ D`

p(β) +
k2

p`
, (5.7)

where in (5.6) we have used the fact that if D`
p(〈α〉) 6= D`

p(〈β〉), then |D`
p(〈α〉)−D`

p(〈β〉)| ≥
1/dα,β. The equivalence (5.7) �nishes the proof of Lemma 28. �

Proposition 24 shows that the functions ∆p,`
α,β allow to compute the p-adic valuation of

(α)n/(β)n (
9) when p does not divide dα,β. If α and β have the same number of parameters

and if these parameters are in (0, 1], the constant Cα,β enables us to get a very convenient
formula for the computation of the p-adic valuation of Cn

α,β(α)n/(β)n when p divides dα,β.
This formula, stated in the next proposition, is the key to the proof of Theorem 4 and is
also used many times in the proof of Theorem 6.

Proposition 29. Let α and β be two tuples of r parameters in Q ∩ (0, 1] such that
Fα,β is N-integral. Let p be a prime divisor of dα,β. We set dα,β = pfD, f ≥ 1, with
D ∈ N, D not divisible by p. For all a ∈ {1, . . . , pf} not divisible by p, and all ` ∈ N,
` ≥ 1, we choose a prime pa,` such that

pa,` ≡ p` mod D and pa,` ≡ a mod pf . (5.8)

Then, for all n ∈ N, we have

vp

(
Cn

0

(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
=

1

ϕ
(
pf
) pf∑

a=1
gcd(a,p)=1

∞∑
`=1

∆
pa,`,1

α,β

({
n

p`

})
+ n

{
λp(α,β)

p− 1

}
, (5.9)

where

C0 =

∏r
i=1 d(αi)∏r
j=1 d(βj)

∏
p|dα,β

p
−
⌊
λp(α,β)

p−1

⌋
.

Proof. We denote by α̃, respectively β̃, the (possibly empty) sequence of elements of
α, respectively of β, whose denominator is not divisible by p. We also set λp := λp(α,β).

9For all x = (x1, . . . , xr) ∈ Rr and all n ∈ N, we set (x)n := (x1)n · · · (xr)n.
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For all n ∈ N, we have

vp

(
Cn

0

(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
=
∞∑
`=1

∆p,`

α̃,β̃

({
n

p`

})
+ λpvp(n!)− n

⌊
λp
p− 1

⌋
. (5.10)

Let α be an element of α or β. Let N be the denominator of α. If p does not divide
N , then N divides D and, for all a ∈ {1, . . . , pf}, gcd(a, p) = 1, and all ` ∈ N, ` ≥ 1, we
have pa,` ≡ p` mod N . Hence, D`

p(α) = Dpa,`(α) because α ∈ (0, 1].
On the other hand, if p divides N , then for all n, ` ∈ N, ` ≥ 1, we de�ne ω`(α, n) as

the number of elements a ∈ {1, . . . , pf}, gcd(a, p) = 1, such that {n/p`} ≥ Dpa,`(α). Thus
for all n, ` ∈ N, ` ≥ 1, we get

pf∑
a=1

gcd(a,p)=1

∆
pa,`,1

α,β

({
n

p`

})
= ϕ

(
pf
)
∆p,`

α̃,β̃

({
n

p`

})
+

r∑
i=1
αi /∈Zp

ω`(αi, n)−
r∑
j=1

βj /∈Zp

ω`(βj, n). (5.11)

Let α be an element of α or β such that p divides d(α). We now compute
∑∞

`=1 ω`(α, n).
Let α = r/(peN) where 1 ≤ e ≤ f , N divides D, 1 ≤ r ≤ peN and r is coprime to
peN . Given ` ∈ N, ` ≥ 1, there exists ra,` ∈ {1, . . . , peN} coprime to peN such that
Dpa,`(α) = ra,`/(p

eN) and pa,`ra,` − r ≡ 0 mod peN . In particular, by (5.8), we have

p`ra,` − r ≡ 0 mod N and ara,` − r ≡ 0 mod pe,

i. e.

ra,` ≡ sN

(
πN(r)

πN(p`+e)

)
pe + spe

(
πpe(r)

πpe(aN)

)
N mod peN.

In the rest of the proof, if a/b is a rational number written in reduced form and the integer
c ≥ 1 is coprime to b, we set

$c

(a
b

)
:= sc

(
πc(a)

πc(b)

)
.

Then,

ra,`
peN

≡ $N(r/p`+e)

N
+
$pe
(
r/(aN)

)
pe

mod 1. (5.12)

For all ` ∈ N, we have p`+1$N(r/p`+1) − p`$N(r/p`) ≡ 0 mod N , hence, since p and
N are coprime, we obtain p$N(r/p`+1)−$N(r/p`) ≡ 0 mod N , i. e.

Dp

(
$N(r/p`)

N

)
=
$N(r/p`+1)

N
,

yielding

$N(r/p`+1)

N
= D`+1

p

( r
N

)
.
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Let −r/N =
∑∞

k=0 akp
k be the p-adic expansion of −r/N . For all ` ∈ N, we have

p`+1D`+1
p

( r
N

)
− r

N
=
∑̀
k=0

akp
k

and thus

$N(r/p`+e)

N
=

r

p`+eN
+

∑`+e−1
k=0 akp

k

p`+e
=

r

p`+eN
+

∑`−1
k=0 akp

k

p`+e
+

∑e−1
k=0 a`+kp

k

pe
. (5.13)

Moreover, p$N(r/p) ≡ r mod N but p$N(r/p) 6= r because r is not divisible by p. Hence,
p$N(r/p)− r ≥ N and a0 ≥ 1.

The elements of the multiset (10){{
$pe

( r

aN

)
: 1 ≤ a ≤ pf , gcd(a, p) = 1

}}
are those b ∈ {1, . . . , pe} not divisible by p, where each b is repeated exactly pf−e times.
We �x ` ∈ N, ` ≥ 1. We have

0 <
r

p`+eN
+

∑`−1
k=0 akp

k

p`+e
≤ 1

p`+e
+
p` − 1

p`+e
≤ 1

pe
and

ra,`
peN

∈ (0, 1].

By (5.12) et (5.13), the multiset

Φ`(α) :=

{{
ra,`
peN

: 1 ≤ a ≤ pf , gcd(a, p) = 1

}}
has the elements

η`,b :=
r

p`+eN
+

∑`−1
k=0 akp

k

p`+e
+

b

pe
,

where b =
∑e−1

k=0 bkp
k, bk ∈ {0, . . . , p − 1}, b0 6= a`, and each η`,b is repeated exactly pf−e

times. In the sequel, we �x n =
∑∞

k=0 nkp
k with nk ∈ {0, . . . , p − 1} and, for all k ≥ K,

nk = 0, where K ∈ N. For all ` ∈ N, we let Λ`(α, n) = 1 if

`−e−1∑
k=0

nkp
k >

`−1∑
k=e

akp
k−e,

and Λ`(α, n) = 0 otherwise. Let us compute the number ω`(α, n) of elements in Φ`(α)
which are ≤ {n/p`}.

10A multiset is a set where the repetition of elements is permitted. We use {{· · · }} to denote multisets.
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If ` ≤ e− 1, then{
n

p`

}
≥ η`,b ⇐⇒

∑`−1
k=0 nkp

k

p`
≥ r

p`+eN
+

∑`−1
k=0 akp

k

p`+e
+

∑e−1
k=0 bkp

k

pe

⇐⇒
`−1∑
k=0

nkp
k ≥ r

peN
+

∑`−1
k=0 akp

k

pe
+

∑e−1
k=0 bkp

k+`

pe

⇐⇒
`−1∑
k=0

nkp
k >

`−1∑
k=0

be−`+kp
k,

because

0 <
r

peN
+

∑`−1
k=0 akp

k

pe
+

∑e−`−1
k=0 bkp

k+`

pe
≤ 1

pe
+
p` − 1

pe
+
p`(pe−` − 1)

pe
≤ 1.

Thus

ω`(α, n) =

(
(p− 1)pe−`−1

`−1∑
k=0

nkp
k

)
pf−e.

If ` ≥ e, then{
n

p`

}
≥ η`,b ⇐⇒

∑`−1
k=0 nkp

k

p`
≥ r

p`+eN
+

∑`−1
k=0 akp

k

p`+e
+

∑e−1
k=0 bkp

k

pe

⇐⇒
`−1∑
k=0

nkp
k ≥ r

peN
+

∑`−1
k=0 akp

k

pe
+

e−1∑
k=0

bkp
k+`−e

⇐⇒
`−1∑
k=0

nkp
k >

`−1∑
k=e

akp
k−e +

e−1∑
k=0

bkp
k+`−e, (5.14)

because

0 <
r

peN
+

∑e−1
k=0 akp

k

pe
≤ 1

pe
+
pe − 1

pe
≤ 1.

If we have
`−1∑

k=`−e+1

nkp
k >

e−1∑
k=1

bkp
k+`−e,

then (5.14) holds and we obtain

(p− 1)

∑`−1
k=`−e+1 nkp

k

p`−e+1

numbers b satisfying the above inequality. Let us now assume that

`−1∑
k=`−e+1

nkp
k =

e−1∑
k=1

bkp
k+`−e.
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Then (5.14) is the same thing as

`−e∑
k=0

nkp
k >

`−1∑
k=e

akp
k−e + b0p

`−e. (5.15)

If n`−e ≥ a` + 1, then there are n`−e − 1 elements b0 ∈ {0, . . . , p − 1} \ {a`} such that
n`−e > b0, and, for b0 = n`−e, we have (5.15) if and only if Λ`(α, n) = 1. Moreover, when
n`−e ≥ a` + 1, we have Λ`+1(α, n) = 1. Hence, if n`−e ≥ a` + 1, we have n`−e + Λ`(α, n)−
Λ`+1(α, n) numbers b0 such that (5.15) holds.

If n`−e = a`, then there are n`−e numbers b0 such that (5.15) holds. Furthermore,
we have Λ`(α, n) = Λ`+1(α, n) and in this case we also have n`−e + Λ`(α, n) − Λ`+1(α, n)
numbers b0 such that (5.15) holds.

If n`−e ≤ a`− 1, then there are n`−e numbers b0 such that b0 < n`−e, and for b0 = n`−e,
we have (5.15) if and only if Λ`(α, n) = 1. Moreover, if n`−e ≤ a` − 1, then Λ`+1(α, n) = 0
and again there are n`−e + Λ`(α, n)− Λ`+1(α, n) numbers b0 satisfying (5.15).

It follows that, if ` ≥ e, then,

ω`(α, n) =

(
n`−e + Λ`(α, n)− Λ`+1(α, n) + (p− 1)

`−1∑
k=`−e+1

nkp
k−`+e−1

)
pf−e.

Hence, for all m ∈ N, m ≥ K + e, we get

pe−f
m∑
`=1

ω`(α, n) = (p− 1)
e−1∑
`=1

pe−`−1

`−1∑
k=0

nkp
k

+
m∑
`=e

(
n`−e + Λ`(α, n)− Λ`+1(α, n)

)
+ (p− 1)

m∑
`=e

`−1∑
k=`−e+1

nkp
k−`+e−1. (5.16)

Let us compute the coe�cients hk of nk, 0 ≤ k ≤ K, on the right hand side of (5.16),
so that

pe−f
m∑
`=1

ω`(α, n) = Λe(α, n)− Λm+1(α, n) +
K∑
k=0

hknk. (5.17)

If e = 1, then for all k ∈ {0, . . . , K}, we have hk = 1 = pe−1. Let us assume that e ≥ 2.
We have

h0 = (p− 1)
e−1∑
`=1

pe−`−1 + 1 = pe−1.

If 1 ≤ k ≤ e− 2, then

hk = (p− 1)
e−1∑
`=k+1

pk−`+e−1 + 1 + (p− 1)
k+e−1∑
`=e

pk−`+e−1 = pe−1 − pk + 1 + pk − 1 = pe−1.
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Finally, if k ≥ e− 1, then

hk = 1 + (p− 1)
k+e−1∑
`=k+1

pk−`+e−1 = 1 + pe−1 − 1 = pe−1.

Hence, we obtain

pe−f
m∑
`=1

ω`(α, n) = Λe(α, n)− Λm+1(α, n) + pe−1sp(n),

where sp(n) :=
∑∞

k=0 nk =
∑K

k=0 nk.

Moreover, we have Λe(α, n) = 0 and there exists K ′ ≥ K + e such that, for all m ≥
K ′, we have Λm+1(α, n) = 0. Indeed,

∑∞
k=0 akp

k is the p-adic expansion of −r/N /∈ N.
Thus, there exists K ′ ≥ K + e such that aK′ 6= 0 and hence, for all m ≥ K ′, we have
Λm+1(α, n) = 0. Consequently, for all large enough `, we have ω`(α, n) = 0 and

∞∑
`=1

ω`(α, n) = ϕ
(
pf
)sp(n)

p− 1
. (5.18)

By (5.11) and (5.18), we obtain, for all n ∈ N,

∞∑
`=1

pf∑
a=1

gcd(a,p)=1

∆
pa,`,1

α,β

({
n

p`

})
= ϕ

(
pf
) ∞∑
`=1

∆p,`

α̃,β̃

({
n

p`

})
+ (r − s− λp)ϕ

(
pf
)sp(n)

p− 1
.

Together with (5.10), this implies that

vp

(
Cn

0

(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
=

1

ϕ
(
pf
) ∞∑
`=1

pf∑
a=1

gcd(a,p)=1

∆
pa,`,1

α,β

({
n

p`

})

+ λp

(
sp(n)

p− 1
+ vp(n!)

)
− n

⌊
λp
p− 1

⌋
. (5.19)

But for all n ∈ N, we have

vp(n!) =
n− sp(n)

p− 1
,

so that, for all n ∈ N,

λp

(
sp(n)

p− 1
+ vp(n!)

)
− n

⌊
λp
p− 1

⌋
= n

{
λp
p− 1

}
. (5.20)

Hence, using (5.20) in (5.19), we get equation (5.9), which completes the proof of Propo-
sition 29. �
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6. Proof of Theorem 4

Let α and β be two sequences taking their values in Q \Z≤0. Let us assume that Fα,β

is N -integral. We �rst prove (2.1).

We �x a prime p. We denote by α̃, respectively β̃, the (possibly empty) sequence

(α̃1, . . . , α̃u), respectively (β̃1, . . . , β̃v), made from the elements of α, respectively of β, and
whose denominator is not divisible by p. In particular, we have λp(α,β) = u − v. By
Proposition 24, for all n ∈ N, we thus have

vp

(
(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
= −nvp

(∏r
i=1 d(αi)∏s
j=1 d(βj)

)
+ vp

(
(α̃1)n · · · (α̃u)n
(β̃1)n · · · (β̃v)n

)

= −nvp

(∏r
i=1 d(αi)∏s
j=1 d(βj)

)
+
∞∑
`=1

∆p,`

α̃,β̃

({
n

p`

})
+ λp(α,β)vp(n!).

(6.1)

By Lemma 26, there exists a constant M > 0 such that, for any prime p that does not
divide dα̃,β̃, for any ` ∈ N, ` ≥ 1, and any x ∈ [0, 1/M), we have ∆p,`

α̃,β̃
(x) = 0. Hence, for

all n ∈ N, we have

−v
⌊

logp(nM)
⌋
≤

∞∑
`=1

∆p,`

α̃,β̃

({
n

p`

})
≤ u

⌊
logp(nM)

⌋
,

so that

1

n

∞∑
`=1

∆p,`

α̃,β̃

({
n

p`

})
−→
n→+∞

0. (6.2)

Moreover, for all n ∈ N, we have vp(n!) =
∑∞

`=1bn/p`c, hence
blogp(n)c∑
`=1

n

p`
−
⌊

logp(n)
⌋
≤ vp(n!) ≤

blogp(n)c∑
`=1

n

p`

and
1

n
vp(n!) −→

n→+∞

1

p− 1
. (6.3)

We now use (6.2) and (6.3) in (6.1), and we obtain

1

n
vp

(
(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
−→
n→+∞

−vp

(∏r
i=1 d(αi)∏s
j=1 d(βj)

)
+
λp(α,β)

p− 1
.

But for all n ∈ N,

Cn
α,β

(α1)n · · · (αr)n
(β1)n · · · (βs)n

∈ Zp.
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It follows that, for all n ∈ N, n ≥ 1,

vp
(
Cα,β

)
≥ − 1

n
vp

(
(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
−→
n→+∞

vp

(∏r
i=1 d(αi)∏s
j=1 d(βj)

)
− λp(α,β)

p− 1

and thus

vp
(
Cα,β

)
≥ vp

(∏r
i=1 d(αi)∏s
j=1 d(βj)

)
−
⌊
λp(α,β)

p− 1

⌋
,

because vp
(
Cα,β

)
∈ Z. Furthermore, if p does not divide dα,β and if p ≥ r − s + 2, then

λp(α,β) = r − s and bλp(α,β)/(p − 1)c = 0. This proves the existence of C ∈ N∗ such
that

Cα,β = C

∏r
i=1 d(αi)∏s
j=1 d(βj)

∏
p∈Pα,β

p
−
⌊
λp(α,β)

p−1

⌋
. (6.4)

We now de�ne

C0 :=

∏r
i=1 d(αi)∏s
j=1 d(βj)

∏
p|dα,β

p
−
⌊
λp(α,β)

p−1

⌋
.

In the sequel, we assume that both sequences α and β take their values in (0, 1] and
that r = s. We show that in this case C = 1 and for this it is enough to prove that
Fα,β(C0z) ∈ Z[[z]].

Consider a prime p that does not divide dα,β, so that λp(α,β) = r − s = 0. Together
with (6.1), this yields

vp

(
Cn

0

(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
=
∞∑
`=1

∆p,`
α,β

({
n

p`

})
.

By Lemma 28 and Theorem 3, for all ` ∈ N, ` ≥ 1, we have

∆p,`
α,β([0, 1]) = ξα,β(a,R) ⊂ N,

where a ∈ {1, . . . , dα,β} satis�es p`a ≡ 1 mod dα,β. Hence, we obtain that Fα,β(C0z) ∈
Zp[[z]]. It remains to show that for any prime p that divides dα,β, we also have that
Fα,β(C0z) ∈ Zp[[z]].

Consider a prime p that divides dα,β. With the notations of Proposition 29, for all
n ∈ N, we have

vp

(
Cn

0

(α1)n · · · (αr)n
(β1)n · · · (βs)n

)
=

1

ϕ
(
pf
) pf∑

a=1
gcd(a,p)=1

∞∑
`=1

∆
pa,`,1

α,β

({
n

p`

})
+ n

{
λp(α,β)

p− 1

}
.

Since none of the primes pa,` divides dα,β, we have ∆
pa,`,1

α,β ([0, 1]) ⊂ N so that Fα,β(C0z) ∈
Zp[[z]]. This completes the proof of Theorem 4. �
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7. Formal congruences

To prove Theorem 6, we need a �formal congruences� result, stated in Theorem 30
below that we prove in this section.

We �x a prime p and denote by Ω the completion of the algebraic closure of Qp, and
by O the ring of integers of Ω.

To state the main result of this section, we introduce some notations. If N := (Nr)r≥0

is a sequence of subsets of
⋃
t≥1

(
{0, . . . , pt − 1} × {t}

)
, then for all r ∈ Z, r ≥ −1 and

all s ∈ N, we denote by ΨN (r, s) the set of the u ∈ {0, . . . , ps − 1} such that, for all
(n, t) ∈ Nr+s−t+1, with t ≤ s, and all j ∈ {0, . . . , ps−t − 1}, we have u 6= j + ps−tn. In
particular, for all r ≥ −1, we have ΨN (r, 0) = {0}.

For completeness, let us recall some basic notions. Let A be a commutative algebra
(with a unit) over a commutative ring (with a unit) Z. An element a ∈ A is regular if, for
all b ∈ A, we have (ab = 0⇒ b = 0). We de�ne S as the set of the regular elements of A.
Hence S is a multiplicative set of A and the ring S−1A with the map

Z × S−1A −→ S−1A
(λ , a/s) 7→ (λ · a)/s

is a Z-algebra. Moreover, the algebra homomorphism a ∈ A 7→ a/1 ∈ S−1A is injective
and enables us to identify A with a sub-algebra of S−1A. This is what we do in the
statement of Theorem 30.

Theorem 30. Let Z denote a sub-ring of O and A a Z-algebra (commutative with a
unit) such that 2 is a regular element of A. We consider a sequence of maps (Ar)r≥0 from
N into S, and a sequence of maps (gr)r≥0 from N into Z \ {0}. We assume there exists a
sequence N := (Nr)r≥0 of subsets of

⋃
t≥1

(
{0, . . . , pt − 1} × {t}

)
such that, for all r ≥ 0,

we have the following properties:

(i) Ar(0) is invertible in A;
(ii) for all m ∈ N, we have Ar(m) ∈ gr(m)A;

(iii) for all s,m ∈ N, we have:
(a) for all u ∈ ΨN (r, s) and all v ∈ {0, . . . , p− 1}, we have

Ar(v + up+mps+1)

Ar(v + up)
− Ar+1(u+mps)

Ar+1(u)
∈ ps+1 gr+s+1(m)

Ar(v + up)
A;

(a1) moreover, if v + up ∈ ΨN (r − 1, s+ 1), then

gr(v + up)

(
Ar(v + up+mps+1)

Ar(v + up)
− Ar+1(u+mps)

Ar+1(u)

)
∈ ps+1gr+s+1(m)A;

(a2) however, if v + up /∈ ΨN (r − 1, s+ 1), then

gr(v + up)
Ar+1(u+mps)

Ar+1(u)
∈ ps+1gr+s+1(m)A;

(b) for all (n, t) ∈ Nr, we have gr(n+mpt) ∈ ptgr+t(m)Z.
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Then, for all a ∈ {0, . . . , p− 1} and all m, s, r,K ∈ N, we have

Sr(a,K, s, p,m) :=

(m+1)ps−1∑
j=mps

(
Ar

(
a+ (K − j)p

)
Ar+1(j)−Ar+1(K − j)Ar(a+ jp)

)
∈ ps+1gr+s+1(m)A,

(7.1)

where Ar(n) = 0 if n < 0.

Theorem 30 is a generalization of a result due to Dwork [12, Theorem 1.1], �rst used
(in a weaker version [13]) to obtain the analytic continuation of certain p-adic functions.
Dwork then developed in [12] a method to prove the p-adic integrality of the Taylor coe�-
cients of canonical coordinates. This method is the basis of the proofs of the N -integrality
of qα,β(z). In the literature, one �nds many generalizations of Dwork's formal congruences
used to prove the integrality of Taylor coe�cients of canonical coordinates with increasing
generality (see [20], [8] and [10]).

If we consider only the univariate case, then Theorem 30 encompasses all the analogous
results in [20] and [10]. Its interest is due to the two following improvements.
• Theorem 30 can be applied to Zp-algebras more �abstract� than O. We use this

possibility in this paper, where we consider algebras of functions taking values in Zp. This
improvement enables us to consider the integer nα,β in Theorem 12.
• Beside this di�erence, Theorem 30 is a univariate version of Theorem 4 in [10] that

allows to consider a set N that depends on r. This property is crucial when we deal with
the case of non R-partitioned tuples α and β.

There also exist in the literature other types of generalizations of Dwork's formal con-
gruences, such as the truncated version of Ota [29] and the recent version of Mellit and
Vlasenko [27] (applied to constant terms of powers of Laurent polynomials).

7.1. Proof of Theorem 30. For all s ∈ N, s ≥ 1, we denote by αs the following
assertion: �For all a ∈ {0, . . . , p − 1}, all u ∈ {0, . . . , s − 1}, all m, r ∈ N and all K ∈ Z,
we have

Sr(a,K, u, p,m) ∈ pu+1gr+u+1(m)A.′′

For all s ∈ N, s ≥ 1, and all t ∈ {0, . . . , s}, we denote by βt,s the following assertion:
�For all a ∈ {0, . . . , p− 1}, all m, r ∈ N and all K ∈ Z, we have

Sr(a,K +mps, s, p,m) ≡∑
j∈ΨN (r+t,s−t)

Ar+t+1(j +mps−t)

Ar+t+1(j)
Sr(a,K, t, p, j) mod ps+1gr+s+1(m)A.′′

For all a ∈ {0, . . . , p− 1}, all K ∈ Z and all r, j ∈ N, we de�ne

Ur(a,K, p, j) := Ar

(
a+ (K − j)p

)
Ar+1(j)−Ar+1(K − j)Ar(a+ jp).
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Then, we have

Sr(a,K, s, p,m) =

ps−1∑
j=0

Ur(a,K, p, j +mps).

We now state four lemmas that will be needed to prove (7.1).

Lemma 31. Assertion α1 holds.

Lemma 32. For all s, r,m ∈ N, all a ∈ {0, . . . , p− 1}, all j ∈ ΨN (r, s) and all K ∈ Z,
we have

Ur(a,K +mps, p, j +mps) ≡ Ar+1(j +mps)

Ar+1(j)
Ur(a,K, p, j) mod ps+1gr+s+1(m)A.

Lemma 33. For all s ∈ N, s ≥ 1, if αs holds, then, for all a ∈ {0, . . . , p−1}, all K ∈ Z
and all r,m ∈ N, we have

Sr(a,K, s, p,m) ≡
∑

j∈ΨN (r,s)

Ur(a,K, p, j +mps) mod ps+1gr+s+1(m)A;

Lemma 34. For all s ∈ N, s ≥ 1, all t ∈ {0, . . . , s − 1}, Assertions αs and βt,s imply
Assertion βt+1,s.

Before we prove these lemmas, let us check that they imply (7.1). We show that αs
holds for all s ≥ 1 by induction on s, which gives the conclusion of Theorem 30. By Lemma
31, α1 holds. Let us assume that αs holds for some s ≥ 1. We observe that β0,s is the
assertion

β0,s : Sr(a,K +mps, s, p,m) ≡∑
j∈ΨN (r,s)

Ar+1(j +mps)

Ar+1(j)
Sr(a,K, 0, p, j) mod ps+1gr+s+1(m)A.

Since Sr(a,K, 0, p, j) = Ur(a,K, p, j), we have∑
j∈ΨN (r,s)

Ar+1(j +mps)

Ar+1(j)
Sr(a,K, 0, p, j) =

∑
j∈ΨN (r,s)

Ar+1(j +mps)

Ar+1(j)
Ur(a,K, p, j)

and, by Lemma 32, we obtain, modulo ps+1gr+s+1(m)A, that∑
j∈ΨN (r,s)

Ar+1(j +mps)

Ar+1(j)
Ur(a,K, p, j) ≡

∑
j∈ΨN (r,s)

Ur(a,K +mps, p, j +mps)

≡ Sr(a,K +mps, s, p,m), (7.2)

where (7.2) is obtained via Lemma 33.

Consequently, Assertion β0,s holds. We then obtain the validity of β1,s by means of
Lemma 34. Iterating Lemma 34, we �nally obtain βs,s which, modulo ps+1gr+s+1(m)A,
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can be written

Sr(a,K +mps, s, p,m) ≡
∑

j∈ΨN (r+s,0)

Ar+s+1(j +m)

Ar+s+1(j)
Sr(a,K, s, p, j)

≡ Ar+s+1(m)

Ar+s+1(0)
Sr(a,K, s, p, 0), (7.3)

where we have used in (7.3) the fact that ΨN (r + s, 0) = {0}.

Let us now prove that, for all a ∈ {0, . . . , p − 1}, all r ∈ N and all K ∈ Z, we
have Sr(a,K, s, p, 0) ∈ ps+1A. For all N ∈ Z, we denote by PN the assertion: �For all
a ∈ {0, . . . , p− 1} and all r ∈ N, we have Sr(a,N, s, p, 0) ∈ ps+1A�.

If N < 0, then for all j ∈ {0, . . . , ps− 1}, we have Ar

(
a+ (N − j)p

)
= 0 and Ar+1(N −

j) = 0, so that Sr(a,N, s, p, 0) = 0 ∈ ps+1A. To �nd a contradiction, let us assume the
existence of a minimal element N ∈ N such that PN does not hold. Consider m ∈ N,
m ≥ 1, and set N ′ := N −mps. Using (7.3) with N ′ instead of K, we obtain

Sr(a,N, s, p,m) ≡ Ar+s+1(m)

Ar+s+1(0)
Sr(a,N

′, s, p, 0) mod ps+1gr+s+1(m)A.

Since m ≥ 1, we have N ′ < N , which, by de�nition of N , yields that Sr(a,N
′, s, p, 0) ∈

ps+1A. By Condition (i), Ar+s+1(0) is an invertible element of A and thus

Sr(a,N, s, p,m) ∈ ps+1A.

Hence, for all m ∈ N, m ≥ 1, we have Sr(a,N, s, p,m) ∈ ps+1A. Consider T ∈ N such that
(T + 1)ps > N . Then,

T∑
m=0

Sr(a,N, s, p,m)

=
T∑

m=0

(m+1)ps−1∑
j=mps

(
Ar

(
a+ (N − j)p

)
Ar+1(j)−Ar+1(N − j)Ar(a+ jp)

)

=
N∑
j=0

(
Ar

(
a+ (N − j)p

)
Ar+1(j)−Ar+1(N − j)Ar(a+ jp)

)
(7.4)

= 0, (7.5)

where we have used in (7.4) the fact that Ar(n) = 0 if n < 0. Equation (7.5) holds because
2 is a regular element of A and the sign of the term of the sum (7.4) changes when we
change the index j to N − j. It follows that we have

Sr(a,N, s, p, 0) = −
T∑

m=1

Sr(a,N, s, p,m) ∈ ps+1A.

This contradicts the de�nition of N . Hence, for all N ∈ Z, PN holds.
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Moreover, Conditions (i) and (ii) respectively imply that Ar+s+1(0) is an invertible
element of A and that Ar+s+1(m) ∈ gr+s+1(m)A. By (7.3), we deduce that

Sr(a,K +mps, s, p,m) ∈ ps+1gr+s+1(m)A.

The latter congruence holds for all a ∈ {0, . . . , p − 1}, all K ∈ Z and all m, r ∈ N, which
proves that Assertion αs+1 holds, and �nishes the induction on s. It remains to prove
Lemmas 31, 32, 33 and 34.

7.1.1. Proof of Lemma 31. Let a ∈ {0, . . . , p− 1}, K ∈ Z and m, r ∈ N. We have

Sr(a,K, 0, p,m) = Ar

(
a+ (K −m)p

)
Ar+1(m)−Ar+1(K −m)Ar(a+mp). (7.6)

If K−m /∈ N, then Ar

(
a+(K−m)p

)
= 0 and Ar+1(K−m) = 0 so that Sr(a,K, 0, p,m) =

0 ∈ pgr+1(m)A, as stated. We may thus assume that K−m ∈ N. We write (7.6) as follows:

Sr(a,K, 0, p,m) = Ar(a)

(
Ar+1(m)

(
Ar

(
a+ (K −m)p

)
Ar(a)

− Ar+1(K −m)

Ar+1(0)

)

−Ar+1(K −m)

(
Ar(a+mp)

Ar(a)
− Ar+1(m)

Ar+1(0)

))
. (7.7)

Since ΨN (r, 0) = {0}, we can use Hypothesis (a) of Theorem 30 with 0 instead of u, and
a instead of v. In this way, we get

Ar

(
a+ (K −m)p

)
Ar(a)

− Ar+1(K −m)

Ar+1(0)
∈ pgr+1(K −m)

Ar(a)
A

and
Ar(a+mp)

Ar(a)
− Ar+1(m)

Ar+1(0)
∈ pgr+1(m)

Ar(a)
A.

Therefore,

Ar(a)Ar+1(m)

(
Ar

(
a+ (K −m)p

)
Ar(a)

− Ar+1(K −m)

Ar+1(0)

)
∈ pgr+1(K −m)Ar+1(m)A

∈ pgr+1(m)A (7.8)

and

Ar(a)Ar+1(K −m)

(
Ar(a+mp)

Ar(a)
− Ar+1(m)

Ar+1(0)

)
∈ pgr+1(m)Ar+1(K −m)A

∈ pgr+1(m)A, (7.9)

where we have used, in (7.8), Condition (ii) that yields Ar+1(m) ∈ gr+1(m)A. Using (7.8)
and (7.9) in (7.7), we obtain Sr(a,K, 0, p,m) ∈ pgr+1(m)A, as expected.
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7.1.2. Proof of Lemma 32. We have

Ur(a,K +mps, p, j +mps)− Ar+1(j +mps)

Ar+1(j)
Ur(a,K, p, j)

= −Ar+1(K − j)Ar(a+ jp)

(
Ar(a+ jp+mps+1)

Ar(a+ jp)
− Ar+1(j +mps)

Ar+1(j)

)
. (7.10)

Since j ∈ ΨN (r, s), Hypothesis (a) implies that the right hand side of (7.10) is in

Ar+1(K − j)Ar(a+ jp)ps+1 gr+s+1(m)

Ar(a+ jp)
A.

These estimates show that the left hand side of (7.10) is in ps+1gr+s+1(m)A, which con-
cludes the proof of the lemma.

7.1.3. Proof of Lemma 33. We consider s ∈ N, s ≥ 1, such that αs holds. We �x
r ∈ N. If ΨN (r, s) = {0, . . . , ps − 1}, Lemma 33 is trivial. In the sequel, we assume that
ΨN (r, s) 6= {0, . . . , ps − 1}.

We have u ∈ {0, . . . , ps − 1} \ ΨN (r, s) if and only if there exist (n, t) ∈ Nr+s−t+1,
t ≤ s, and j ∈ {0, . . . , ps−t − 1} such that u = j + ps−tn. We denote byM the set of the
(n, t) ∈ Nr+s−t+1 with t ≤ s. We thus have

{0, . . . , ps − 1} \ΨN (r, s) =
⋃

(n,t)∈M

{
j + ps−tn : 0 ≤ j ≤ ps−t − 1

}
.

In particular, the setM is nonempty.
We will show that there exist k ∈ N, k ≥ 1, and (n1, t1), . . . , (nk, tk) ∈ M such that

the sets

J(ni, ti) :=
{
j + ps−tini : 0 ≤ j ≤ ps−ti − 1

}
form a partition of {0, . . . , ps − 1} \ΨN (r, s). We observe that

M⊂
s⋃
t=1

({
0, . . . , pt − 1

}
×
{
t
})

and thus M is �nite. Hence, it is enough to show that if (n, t), (n′, t′) ∈ M, j ∈
{0, . . . , ps−t − 1} and j′ ∈ {0, . . . , ps−t′ − 1} satisfy j + ps−tn = j′ + ps−t

′
n′, then we

have either J(n, t) ⊂ J(n′, t′) or J(n′, t′) ⊂ J(n, t).
Let us assume, for instance, that t ≤ t′. Then there exists j0 ∈ {0, . . . , pt

′−t − 1} such
that j = j′+ps−t

′
j0, so that p

s−t′n′ = ps−tn+ps−t
′
j0 and thus J(n′, t′) ⊂ J(n, t). Similarly,

if t ≥ t′, then J(n, t) ⊂ J(n′, t′). Hence, we obtain

Sr(a,K, s, p,m) =∑
j∈ΨN (r,s)

Ur(a,K, p, j +mps) +
∑

j∈{0,...,ps−1}\ΨN (r,s)

Ur(a,K, p, j +mps), (7.11)
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where ∑
j∈{0,...,ps−1}\ΨN (r,s)

Ur(a,K, p, j +mps) =
k∑
i=1

ps−ti−1∑
j=0

Ur(a,K, p, j + ps−tini +mps). (7.12)

We will now prove that, for all i ∈ {1, . . . , k}, we have
ps−ti−1∑
j=0

Ur(a,K, p, j + ps−tini +mps) ∈ ps+1gr+s+1(m)A. (7.13)

Let i ∈ {1, . . . , k}. By de�nition of Ur, we have

ps−ti−1∑
j=0

Ur(a,K, p, j + ps−tini +mps) = Sr(a,K, s− ti, p, ni +mpti).

Since ti ≥ 1, we get via αs that

Sr(a,K, s− ti, p, ni +mpti) ∈ ps−ti+1gr+s−ti+1(ni +mpti)A.

We have (ni, ti) ∈ Nr+s−ti+1 and thus we can apply Hypothesis (b) of Theorem 30 with
r + s− ti + 1 instead of r:

ps−ti+1gr+s−ti+1(ni +mpti) ∈ ps−ti+1ptigr+s+1(m)Z = ps+1gr+s+1(m)Z.

It follows that, for all i ∈ {1, . . . , k}, we have (7.13).

Congruence (7.13), together with (7.12) and (7.11), shows that

Sr(a,K, s, p,m) ≡
∑

j∈ΨN (r,s)

Ur(a,K, p, j +mps) mod ps+1gr+s+1(m)A,

which completes the proof of Lemma 33.
7.1.4. Proof of Lemma 34. In this proof, i is an element of {0, . . . , p − 1} and u is an

element of {0, . . . , ps−t−1 − 1}. For t < s, we write βt,s as

Sr(a,K +mps, s, p,m) ≡∑
i+up∈ΨN (r+t,s−t)

Ar+t+1(i+ up+mps−t)

Ar+t+1(i+ up)
Sr(a,K, t, p, i+ up) mod ps+1gr+s+1(m)A.

(7.14)

We want to prove the congruence βt+1,s, which can be written

Sr(a,K +mps, s, p,m) ≡∑
u∈ΨN (r+t+1,s−t−1)

Ar+t+2(u+mps−t−1)

Ar+t+2(u)
Sr(a,K, t+ 1, p, u) mod ps+1gr+s+1(m)A.
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We see that Sr(a,K, t+ 1, p, u) =
∑p−1

i=0 Sr(a,K, t, p, i+ up). Hence, with

X := Sr(a,K +mps, s, p,m)

−
p−1∑
i=0

∑
u∈ΨN (r+t+1,s−t−1)

Ar+t+2(u+mps−t−1)

Ar+t+2(u)
Sr(a,K, t, p, i+ up),

it remains to show that X ∈ ps+1gr+s+1(m)A. We have

i+ up ∈ ΨN (r + t, s− t)⇒ u ∈ ΨN (r + t+ 1, s− t− 1). (7.15)

Indeed if u /∈ ΨN (r+ t+ 1, s− t− 1), then there exist (n, k) ∈ Nr+s−k+1, k ≤ s− t− 1, and
j ∈ {0, . . . , ps−t−1−k − 1} such that u = j + ps−t−1−kn. Hence, i + up = i + jp + ps−t−kn,
so that i+ up /∈ ΨN (r + t, s− t). By βt,s in the form (7.14) and modulo ps+1gr+s+1(m)A,
we obtain

X ≡
∑

i+up∈ΨN (r+t,s−t)

Sr(a,K, t, p, i+up)

(
Ar+t+1(i+ up+mps−t)

Ar+t+1(i+ up)
− Ar+t+2(u+mps−t−1)

Ar+t+2(u)

)

−
∑

u∈ΨN (r+t+1,s−t−1)

i+up/∈ΨN (r+t,s−t)

Ar+t+2(u+mps−t−1)

Ar+t+2(u)
Sr(a,K, t, p, i+ up).

But, by Hypothesis (a1) of Theorem 30 applied with s− t− 1 for s and r+ t+ 1 for r, we
have

gr+t+1(i+ up)

(
Ar+t+1(i+ up+mps−t)

Ar+t+1(i+ up)
− Ar+t+2(u+mps−t−1)

Ar+t+2(u)

)
∈ ps−tgr+s+1(m)A.

Moreover, since t < s and αs holds, we have

Sr(a,K, t, p, i+ up) ∈ pt+1gr+t+1(i+ up)A (7.16)

and, modulo ps+1gr+s+1(m)A, we obtain

X ≡ −
∑

u∈ΨN (r+t+1,s−t−1)

i+up/∈ΨN (r+t,s−t)

Ar+t+2(u+mps−t−1)

Ar+t+2(u)
Sr(a,K, t, p, i+ up). (7.17)

Finally, when i + up /∈ ΨN (r + t, s − t), we can apply Condition (a2) of Theorem 30
with s− t− 1 for s, i for v and r + t+ 1 for r, so that

gr+t+1(i+ up)
Ar+t+2(u+mps−t−1)

Ar+t+2(u)
∈ ps−tgr+s+1(m)A. (7.18)

Using (7.16) and (7.18) in (7.17), we thus have X ∈ ps+1gr+s+1(m)A. This completes the
proof of Lemma 34 and consequently that of Theorem 30. �
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8. Proof of Theorem 6

The aim of this section if to prove Theorem 6. We will �rst prove some elementary
properties of the algebras of functions Ab and A∗b .

8.1. Algebras of functions taking values into Zp. In the following lemma, we
gather a few properties of the algebras Ap,n and A∗p,n.

Lemma 35. We �x a prime p and n ∈ N, n ≥ 1.

(1) An element f of Ap,n, respectively of A
∗
p,n, is invertible in Ap,n, respectively in A∗p,n,

if and only if f
(
(Z×p )n

)
⊂ Z×p ;

(2) the algebra Ap,n contains the rational functions

f : (Z×p )n → Zp
(x1, . . . , xn) 7→ P (x1,...,xn)

Q(x1,...,xn)
,

where P,Q ∈ Zp[X1, . . . , Xn] and, for all x1, . . . , xn ∈ Z×p , we have Q(x1, . . . , xn) ∈
Z×p ;

(3) if f ∈ A×p,n and if Es, s ≥ 1, is the function Euler quotient de�ned by

Es : Z×p → Zp
x 7→

(
xϕ(ps) − 1

)
/ps,

then we have Es ◦ f ∈ A∗p,n.

Proof. Let f ∈ Ap,n. For f to be invertible in Ap,n, we clearly need that f
(
(Z×p )n

)
⊂

Z×p and in this case, for all x ∈ (Z×p )n, all a ∈ Znp and all m ∈ N, m ≥ 1, we have

1

f(x + apm)
=

1

f(x) + ηpm
=

1

f(x)

1

1 + η
f(x)

pm
≡ 1

f(x)
mod pmZp,

because f(x) ∈ Z×p , η ∈ Zp, and (1 + pmZp,×) is a group. The case f ∈ A∗p,n being similar,
Assertion (1) is proved.

To prove Assertion (2), we apply Assertion (1) because any polynomial function f :
x ∈ (Z×p )n 7→ P (x), with P ∈ Zp[X1, . . . , Xn] is in Ap,n.

Let us now prove Assertion (3). For all s ∈ N, s ≥ 1, the cardinal of (Zp/psZp)× is
ϕ(ps) because Zp/psZp is isomorphic to Z/psZ. Hence, for all x ∈ Z×p , we have xϕ(ps) ≡ 1
mod psZp and the function Es is well de�ned.

We �x s ∈ N, s ≥ 1. To prove Assertion (3), it is enough to prove that, for all x ∈ Z×p ,
all a ∈ Zp and all m ∈ N, m ≥ 1, we have Es(x+ apm) ≡ Es(x) mod pm−1Zp. We have

(x+ apm)ϕ(ps) =

ϕ(ps)∑
k=0

(
ϕ(ps)

k

)
ak

xk
pkmxϕ(ps)

≡ xϕ(ps) +

ϕ(ps)∑
k=1

(
ϕ(ps)

k

)
ak

xk
pkm mod ps+mZp,
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because xϕ(ps) ≡ 1 mod psZp. By a result of Kummer, the p-adic valuation of
(
ϕ(ps)
k

)
is

the number of carries in the addition of k and ϕ(ps)− k in base p. Let us show that this
number is equal to s− 1− vp(k).

Indeed, if vp(k) = 0, then this number is s − 1 because ϕ(ps) = (p − 1)ps−1. If
vp(k) = α ≥ 1, then we write k = k′pα and ϕ(ps) − k = pα

(
(p − 1)ps−1−α − k′

)
with

vp(k
′) = 0, so that the number of carries of the addition of k and ϕ(ps)− k in base p is the

number of carries in the addition of k′ and ϕ(ps−α)− k′, i. e. s− 1− α = s− 1− vp(k).
In particular, we obtain that, for all k ≥ 1,

vp

((
ϕ(ps)

k

)
ak

xk
pkm
)
≥ s+m+ (k − 1)m− vp(k)− 1 ≥ s+m− 1,

hence (x+ apm)ϕ(ps) ≡ xϕ(ps) mod ps+m−1Zp. Consequently, we have Es(x+ apm) ≡ Es(x)
mod pm−1Zp, and the proof of Lemma 35 is complete. �

Lemma 36. Let ν,D ∈ N, D ≥ 1, and b ∈ {1, . . . , D}, gcd(b,D) = 1.

(1) We have Ab(pν , D) ⊂ Ab(pν , D)∗ and pAb(pν , D)∗ ⊂ Ab(pν , D);
(2) An element f of Ab(pν , D), respectively of Ab(pν , D)∗, is invertible in Ab(pν , D),

respectively in Ab(pν , D)∗, if and only if f
(
Ωb(p

ν , D)
)
⊂ Z×p ;

(3) Any constant function from Ωb(p
ν , D) into Zp is in Ab(pν , D) ;

(4) If r ∈ N and α ∈ Q satisfy d(α) = pµD′, with 1 ≤ µ ≤ ν and D′ | D, then the
map t ∈ Ωb(p

ν , D) 7→ d(α)〈t(r)α〉 is in Ab(pν , D)×;
(5) If α ∈ Q ∩ Zp and k ∈ N, then the map t ∈ Ωb(p

ν , D) 7→ $pk(tα) is in Ab(pν , D);
(6) If n ∈ N, n ≥ 1, f1, . . . , fn ∈ Ab(pν , D)×, g ∈ Ap,n and h ∈ A∗p,n, then g′ :=

g ◦ (f1, . . . , fn) ∈ Ab(pν , D) and h′ := h ◦ (f1, . . . , fn) ∈ Ab(pν , D)∗. Furthermore
if g is invertible in Ap,n, respectively h is invertible in A∗p,n, then g

′ is invertible in
Ab(pν , D), respectively h′ is invertible in Ab(pν , D)∗;

(7) If f ∈ Ab(pν , D) and g ∈ Ab(pν , D)∗, then∑
t∈Ωb(pν ,D)

f(t) ∈ pν−1Zp and
∑

t∈Ωb(pν ,D)

g(t) ∈ pν−2Zp.

Proof. Assertions (1) and (3) are obvious. The proof of Assertion (2) is similar to
that of Assertion (2) of Lemma 35.

Let us prove Assertion (4). For all t ∈ Ωb(p
ν , D), the number d(α)〈t(r)α〉 is the numer-

ator of 〈t(r)α〉 and thus it is in Z×p because p divides d(α).
Let α = κ/d(α), t1, t2 ∈ Ωb(p

ν , D) and m ∈ N, m ≥ 1 be such that t1 ≡ t2 mod pm.

Since t1 ≡ t2 ≡ b mod D, we get t
(r)
1 ≡ t

(r)
2 mod D.

If m ≥ µ, then t
(r)
1 ≡ t

(r)
2 mod pµ and the chinese remainder theorem gives t

(r)
1 ≡

t
(r)
2 mod pµD. Since D′ | D, we obtain t

(r)
1 κ ≡ t

(r)
2 κ mod d(α) and thus d(α)〈t(r)1 α〉 =

d(α)〈t(r)2 α〉, as expected.
On the other hand, if m < µ, then t

(r)
1 ≡ t

(r)
2 mod pm. Since D′ | D and d(α)〈t(r)i α〉 ≡

t
(r)
i κ mod d(α) for i ∈ {1, 2}, we obtain d(α)〈t(r)1 α〉 ≡ d(α)〈t(r)2 α〉 mod pm, which proves
Assertion (4).
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Assertion (5) is obvious and Assertion (6) is a direct consequence of the de�nitions and
of Assertion (2).

Let us prove Assertion (7) by induction on ν in the case f ∈ Ab(pν , D). We denote by
Aν the assertion ∑

t∈Ωb(pν ,D)

f(t) ∈ pν−1Zp.

Assertion A1 trivially holds. Let ν ∈ N, ν ≥ 1 be such that Aν holds.
The set Ωb(p

ν+1, D) is the set of the t`,ν+1 ∈ {1, . . . , pν+1D} such that t`,ν+1 ≡ b
mod D and t`,ν+1 ≡ ` mod pν+1, with ` ∈ {1, . . . , pν+1}, gcd(`, p) = 1. Let ` := u + vpν

with u ∈ {1, . . . , pν}, gcd(u, p) = 1 and v ∈ {0, . . . , p − 1}. Then, we have t`,ν+1 ≡ u
mod pν and by the chinese remainder theorem, we obtain t`,ν+1 ≡ tu,ν mod pνD, so that∑

t∈Ωb(pν+1,D)

f(t) =

pν+1∑
`=1

gcd(`,p)=1

f(t`,ν+1) =

pν∑
u=1

gcd(u,p)=1

p−1∑
v=0

f(tu+vpν ,ν+1)

≡ p

pν∑
u=1

gcd(u,p)=1

f(tu,ν) mod pνZp

≡ p
∑

t∈Ωb(pν ,D)

f(t) mod pνZp

≡ 0 mod pνZp,

by Assertion Aν . Hence, Assertion Aν+1 holds, which completes the proof of Asssertion (7)
when f ∈ Ab(pν , D). The case f ∈ Ab(pν , D)∗ is similar. �

8.2. Proof of Theorem 6. In this section, we �x two r-tuples α and β of elements
of Q \ Z≤0. We assume that 〈α〉 and 〈β〉 are disjoint and that Hα,β holds.

We set C = C〈α〉,〈β〉, C
′ = C ′α,β, n = nα,β, m = mα,β and λp = λp(α,β). We write

dα,β = pνD with ν ≥ 0 and gcd(D, p) = 1. For all t ∈ {1, . . . , dα,β} coprime to dα,β and
all r ∈ N, we recall that t(r) is the unique element in {1, . . . , dα,β} coprime to dα,β such
that t(r) ≡ t mod pν and prt(r) ≡ t mod D.

We �x b ∈ {1, . . . , D} coprime to D and set Ωb := Ωb(p
ν , D), Ab := Ab(pν , D), A∗b :=

Ab(pν , D)∗. We recall that, if ν = 0, then Ωb = {b} and that Ab = A∗b is the algebra of
functions from {b} into Zp.

For all t ∈ Ωb and all r, n ∈ N, we set

Qr,t(n) := (C ′)n
(〈t(r)α〉)n
(〈t(r)β〉)n

and Qr,·(n) :=
(
t ∈ Ωb 7→ Qr,t(n)

)
.

For all c ∈ {1, . . . , pν} not divisible by p and all ` ∈ N, we �x a prime pc,` such that pc,` ≡ p`

mod D and pc,` ≡ c mod pν . For all t ∈ Ωb and all r ∈ N, we set

∆c,`
r,t := ∆

pc,`,1

〈t(r)α〉,〈t(r)β〉.
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Let α̃, respectively β̃, be the sequence of elements of 〈t(r)α〉, respectively of 〈t(r)β〉, whose
denominator is not divisible by p. We set ∆̃p,`

r,t := ∆p,`

α̃,β̃
. We gather in the following lemma

a few properties of the sequences Qr,·. We set ι = 1 if m is odd and if β /∈ Zr, and ι = 0
otherwise.

Lemma 37. For all n, r ∈ N, there exists Λb,r(n) ∈ Zp such that Qr,·(n) ∈ 2ιnΛb,r(n)A×b ,
where

vp
(
Λb,r(n)

)
=
∞∑
`=1

∆̃p,`
r,t

({
n

p`

})
− λp

sp(n)

p− 1
+ n

{
λp
p− 1

}

=
1

ϕ(pν)

∞∑
`=1

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
n

p`

})
+ n

{
λp
p− 1

}
.

If p divides dα,β, then for all n, r ∈ N, n ≥ 1, we have vp
(
Λb,r(n)

)
≥ 1 and if β ∈ Zr then

vp
(
Λb,r(n)

)
≥ −

⌊
λp
p− 1

⌋
.

Proof. For all t ∈ Ωb, we have Qr,t(n) = 2ιnΛb,r(n)Rr(n, t) with

Λb,r(n) :=

(
C

∏
βi /∈Zp d(βi)∏
αi /∈Zp d(αi)

)n ∏
αi∈Zp(〈t

(r)αi〉)n∏
βi∈Zp(〈t(r)βi〉)n

and

Rr(n, t) :=

∏
αi /∈Zp d(αi)

n(〈t(r)αi〉)n∏
βi /∈Zp d(βi)n(〈t(r)βi〉)n

=

∏
αi /∈Zp

∏n−1
k=0

(
d(αi)〈t(r)αi〉+ kd(αi)

)∏
βi /∈Zp

∏n−1
k=0

(
d(βi)〈t(r)βi〉+ kd(βi)

) .
By Assertions (2) and (4) of Lemma 36, we have Rr(n, ·) ∈ A×b . Moreover, if α is

a term of the sequences α or β whose denominator is not divisible by p, then 〈t(r)α〉
depends only of the class of t(r) in Z/DZ which is that of $D(p−rb) when t ∈ Ωb. Indeed,
if 〈α〉 = 1, then 〈t(r)α〉 = 1 and if 〈α〉 = k/N 6= 1, where N is a divisor of D, then
N〈t(r)α〉 = N{t(r)〈α〉} = $N(t(r)k). For all t ∈ Ωb and all r ∈ N, we have prt(r) ≡ b
mod D, so that $N(t(r)k) = $N(bp−rk). It follows that Λb,r(n) depends only on b, r and
n. By Proposition 29 and Equation 5.10, we have

vp
(
Λb,r(n)

)
= vp

(
Cn (〈t(r)α〉)n

(〈t(r)β〉)n

)
=
∞∑
`=1

∆̃p,`
r,t

({
n

p`

})
− λp

sp(n)

p− 1
+ n

{
λp
p− 1

}

=
1

ϕ(pν)

∞∑
`=1

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
n

p`

})
+ n

{
λp
p− 1

}
.

In the sequel, we assume that p divides dα,β. Let us now show that, if n ≥ 1, then
vp
(
Λb,r(n)

)
≥ 1. Let α be a term of the sequences 〈t(r)α〉 or 〈t(r)β〉 whose denominator
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is divisible by p. By (5.18), the number of elements Dpc,`(α), ` ≥ 1, c ∈ {1, . . . , pν},
gcd(c, p) = 1, that satisfy {n/p`} ≥ Dpc,`(α) is equal to ϕ(pν)sp(n)/(p− 1). In particular,
if n ≥ 1, then there exist at least one ` ≥ 1 and one c ∈ {1, . . . , pν}, gcd(c, p) = 1, such
that {n/p`} ≥ Dpc,`(α). Thus, there exists one term α′ ∈ (0, 1) of the sequence 〈t(r)α〉 or
〈t(r)β〉 such that ∆c,`

r,t

(
{n/p`}

)
= ∆c,`

r,t

(
Dpc,`(α

′)
)
.

By Lemma 28, we obtain ∆c,`
r,t

(
{n/p`}

)
= ξ〈t(r)α〉,〈t(r)β〉(a, aα

′), where a ∈ {1, . . . , dα,β}
satis�es pc,`a ≡ 1 mod dα,β. Since α′ /∈ Z, we have min〈t(r)α〉,〈t(r)β〉(a) � aα′ ≺ a and by

Lemma 18, AssertionH〈t(r)α〉,〈t(r)β〉 holds, so that ∆c,`
r,t

(
{n/p`}

)
≥ 1. Hence, vp

(
Λb,r(n)

)
≥ 1.

Moreover, if β ∈ Zr, then λp ≤ −1 and the functions ∆̃p,`
r,t are nonnegative on [0, 1). It

follows that

vp
(
Λb,r(n)

)
≥ −λp

sp(n)

p− 1
+ n

{
λp
p− 1

}
≥ − λp

p− 1
+

{
λp
p− 1

}
≥ −

⌊
λp
p− 1

⌋
.

This completes the proof of Lemma 37. �

In the sequel, we set Kb := A∗b if p does not divide dα,β. If p divides dα,β, we set

Kb :=


p−1−bλp/(p−1)cAb if β ∈ Zr;
Ab if β /∈ Zr, m is odd and p = 2;

Ab if β /∈ Zr and p− 1 - λp;
A∗b otherwise.

By Lemma 37, for all r ∈ N,(
t ∈ Ωb 7→ F〈t(r)α〉,〈t(r)β〉(C

′z)
)
∈ 1 + zKb[[z]]

is an invertible formal power series in Kb[[z]]. Hence, to prove Theorem 6, it is enough to
prove that the function

t ∈ Ωb 7→ G〈t(1)α〉,〈t(1)β〉(C
′zp)F〈tα〉,〈tβ〉(C

′z)− pG〈tα〉,〈tβ〉(C ′z)F〈t(1)α〉,〈t(1)β〉(C
′zp) (8.1)

is in pKb[[z]].

For all a ∈ {0, . . . , p−1} and all K ∈ N, the (a+Kp)-th coe�cient of the formal power
series (8.1) is

t ∈ Ωb 7→ Φt(a+Kp) :=
r∑
i=1

(
Φαi,t(a+Kp)− Φβi,t(a+Kp)

)
,

where

Φα,t(a+Kp) :=
K∑
j=0

Q0,t(a+ jp)Q1,t(K − j)(H〈t(1)α〉(K − j)− pH〈tα〉(a+ jp)
)
.

It is su�cient to show that, for all terms α of the sequencesα and β, for all a ∈ {0, . . . , p−1}
and all K ∈ N, we have

Φα,·(a+Kp) ∈ pKb. (8.2)
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If a + Kp = 0, then Φα,·(0) is obviously the null map. In the sequel, we assume that
a+Kp 6= 0, so that, for all j ∈ {0, . . . , K}, we have a+ jp ≥ 1 or K − j ≥ 1.

If p divides dα,β and if α is a term of the sequences α or β whose denominator is
divisible by p, then for all n, r ∈ N and all t ∈ Ωb, we have

H〈t(r)α〉(n) =
n−1∑
k=0

d(α)

d(α)(〈t(r)α〉+ k)
,

yielding
(
t ∈ Ωb 7→ H〈t(r)α〉(n)

)
∈ pAb. By Lemma 37, for all n, r ∈ N, n ≥ 1, we have

Qr,·(n) ∈ Λb,r(n)Ab with

Λb,r(n) ∈

{
p−bλp/(p−1)cZp if β ∈ Zr;
pZp otherwise.

Hence, we have
(
t ∈ Ωb 7→ Φα,t(a+Kp)

)
∈ p2Kb ⊂ pKb, as expected.

It remains to deal with the case when the denominator of α is not divisible by p. We
�x an element α ∈ Zp of the sequences α or β in the proof of (8.2). We recall that 〈tα〉
is independent of t ∈ Ωb because α ∈ Zp. By [12, Lemma 4.1], for all j ∈ {0, . . . , K}, we
have

pH〈tα〉(a+ jp) ≡ pH〈tα〉(jp) +
ρ(a, 〈tα〉)

Dp(〈tα〉) + j
mod pZp,

where we recall that, for all x ∈ Q ∩ Zp, we have

ρ(a, x) =

{
0 if a ≤ pDp(x)− x;
1 if a > pDp(x)− x.

.

Moreover,

H〈tα〉(jp) =

jp−1∑
k=0

1

〈tα〉+ k
=

1

p

j−1∑
k=0

1

Dp(〈tα〉) + k
+

p−1∑
i=0

i 6=pDp(〈tα〉)−〈tα〉

j−1∑
k=0

1

〈tα〉+ i+ kp
,

so that pH〈tα〉(jp) ≡ HDp(〈tα〉)(j) mod pZp. Writing 〈α〉 = k/N as an irreducible fraction,
we obtain

Dp(〈tα〉) =
$N(Np−1〈tα〉)

N
=
$N

(
p−1$N(bk)

)
N

=
$N(p−1bk)

N
= 〈t(1)α〉. (8.3)

Hence,

pH〈tα〉(a+ jp) ≡ H〈t(1)α〉(j) +
ρ(a, 〈tα〉)

Dp(〈tα〉) + j
mod pZp. (8.4)

We now use the following fact, to be proved in Section 8.2.1: for all j ∈ {0, . . . , K}, we
have (

t ∈ Ωb 7→
ρ(a, 〈tα〉)

Dp(〈tα〉) + j
Q0,t(a+ jp)Q1,t(K − j)

)
∈ pKb. (8.5)
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For any f : t ∈ Ωb 7→ f(t) ∈ Qp, any g : t ∈ Ωb 7→ g(t) ∈ Qp and any ideal I of Ab, the
notation f(t) ≡ g(t) mod I means that f − g belongs to I. Using (8.4) and (8.5) in the
de�nition of Φα,·(a+Kp), we obtain

Φα,t(a+Kp) ≡
K∑
j=0

Q0,t(a+ jp)Q1,t(K − j)
(
H〈t(1)α〉(K − j)−H〈t(1)α〉(j)

)
≡ −

K∑
j=0

H〈t(1)α〉(j)
(
Q0,t(a+ jp)Q1,t(K − j)−Q0,t

(
a+ (K − j)p

)
Q1,t(j)

)
,

modulo pKb.
8.2.1. Proof of Equation (8.5). For this, we prove several results that will be used again

in the proof of Theorem 6.

Lemma 38. Let a ∈ {0, . . . , p− 1}, m ∈ N and x ∈ Zp ∩Q∩ (0, 1]. If ρ(a, x) = 1, then
for all ` ∈

{
1, . . . , 1 + vp

(
Dp(x) +m

)}
, we have

{
(a+mp)/p`

}
≥ D`

p(x).

Proof. We write m =
∑∞

j=0 mjp
j with mj ∈ {0, . . . , p − 1} and we �x some ` in{

1, . . . , 1 + vp
(
Dp(x) +m

)}
. Then,{

a+mp

p`

}
=
a+ p

∑`−2
j=0mjp

j

p`
.

We have Dp(x) +m ∈ p`−1Zp and thus

Dp(x) +m−
∞∑

j=`−1

mjp
j ∈ p`−1Zp,

so that

pDp(x) + p
`−2∑
j=0

mjp
j − p`D`

p(x) ∈ p`Z,

because pDp(x)− p`D`
p(x) ∈ Z. We obtain

pDp(x) + p
∑`−2

j=0 mjp
j

p`
−D`

p(x) ∈ Z.

Moreover D`
p(x) ∈ (0, 1] and

0 <
pDp(x) + p

∑`−2
j=0mjp

j

p`
≤ p+ p(p`−1 − 1)

p`
≤ 1,

so that

pDp(x) + p
∑`−2

j=0mjp
j

p`
−D`

p(x) = 0.
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We have ρ(a, x) = 1 hence a > pDp(x) − x i. e. a ≥ pDp(x) − x + 1 and a ≥ pDp(x). It
follows that

a+ p
∑`−2

j=0 mjp
j

p`
≥ D`

p(x).

�

For all c ∈ {1, . . . , pν} not divisible by p and all `, r ∈ N, we de�ne τ(r, `) as the smallest
of the numbers Dpc,`

(
〈t(r)α〉

)
, where α runs through the elements of the sequences α and

β whose denominator is not divisible by p. Since 〈t(r)α〉 ∈ Zp, the number Dpc,`(〈t(r)α〉)
does not depend on c and thus τ(r, `) neither. Moreover, since α ∈ Zp, the rational
number 〈t(r)α〉 does not depend on t ∈ Ωb and thus τ(r, `) neither. We de�ne 1r,` as the
characteristic function of the interval

[
τ(r, `), 1

)
. For all m, r ∈ N, we set

µr(m) :=
∞∑
`=1

1r,`

({
m

p`

})
∈ N and gr(m) := pµr(m).

Similarly, the function gr does not depend on t ∈ Ωb.

Lemma 39. Let r, `, n ∈ N, ` ≥ 1, be such that {n/p`} ≥ τ(r, `). Then for all t ∈ Ωb

and all c ∈ {1, . . . , pν} not divisible by p, we have ∆c,`
r,t

(
{n/p`}

)
≥ 1. In particular for all

n ∈ N, we have

vp
(
Λb,r(n)

)
≥ vp

(
gr(n)

)
+ n

{
λp
p− 1

}
.

If β ∈ Zr, then for all n ∈ N, n ≥ 1, we have

vp
(
Λb,r(n)

)
≥ vp

(
gr(n)

)
−
⌊

λp
p− 1

⌋
.

Proof. Let r, `, n ∈ N, ` ≥ 1, such that {n/p`} ≥ τ(r, `). Let c ∈ {1, . . . , pν} not

divisible by p. There exists an element αc of the sequences α or β such that ∆c,`
r,t

(
{n/p`}

)
=

∆c,`
r,t

(
Dpc,`(〈t(r)αc〉)

)
with Dpc,`(〈t(r)αc〉) ≤ {n/p`} < 1. Hence 〈t(r)αc〉 < 1. By Lemma 28,

we obtain

∆c,`
r,t

({
n

p`

})
= ξ〈t(r)α〉,〈t(r)β〉

(
a, a〈t(r)αc〉

)
,

where a ∈ {1, . . . , dα,β} satis�es pc,`a ≡ 1 mod dα,β. We also have min〈t(r)α〉,〈t(r)β〉(a) �
a〈t(r)αc〉 ≺ a and by Lemma 18, Assertion H〈t(r)α〉,〈t(r)β〉 holds. Hence, ∆c,`

r,t

(
{n/p`}

)
≥ 1.

By Lemma 37, we have

vp
(
Λb,r(n)

)
=

1

ϕ(pν)

∞∑
`=1

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
n

p`

})
+ n

{
λp
p− 1

}
,

so that

vp
(
Λb,r(n)

)
≥ vp

(
gr(n)

)
+ n

{
λp
p− 1

}
.
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Let us now assume that β ∈ Zr. If we have 1 > {n/p`} ≥ τ(r, `), then there exists an el-
ement α of α whose denominator is not divisible by p and such that {n/p`} ≥ Dpc,`(〈t(r)α〉)
for some c ∈ {1, . . . , pν} not divisible by p. The denominator of 〈t(r)α〉 divides D and pc,` ≡
p` mod D hence we have Dpc,`(〈t(r)α〉) = D`

p(〈t(r)α〉), which yields ∆̃p,`
r,t

(
{n/p`}

)
≥ 1. By

Lemma 37, for all n ∈ N, n ≥ 1, we have

vp
(
Λb,r(n)

)
=
∞∑
`=1

∆̃p,`
r,t

({
n

p`

})
− λp

sp(n)

p− 1
+ n

{
λp
p− 1

}
≥ µr(n)− λp

p− 1
+

{
λp
p− 1

}
≥ vp

(
gr(n)

)
−
⌊

λp
p− 1

⌋
,

because λp ≤ 0. This proves Lemma 39. �

We are now in position to prove (8.5).

Proof of (8.5). If ρ(a, 〈tα〉) = 0 then (8.5) holds. We may thus assume that ρ(a, 〈tα〉) =
1, i. e. that a > pDp(〈tα〉) − 〈tα〉. In particular, we have 〈tα〉 < 1 and a ≥ 1. For all
j ∈ {0, . . . , K}, we have a+ jp ≥ 1 hence by Lemma 39,

Q0,·(a+ jp) ∈ g0(a+ jp)Kb.

It follows that it is su�cient to show that

ρ(a, 〈tα〉)
Dp(〈tα〉) + j

g0(a+ jp) ∈ pZp. (8.6)

By Lemma 38 with 〈tα〉 instead of x and j instead m, we obtain, for all j ∈ {0, . . . , K}
and all ` ∈

{
1, . . . , 1 + vp

(
Dp(〈tα〉) + j

)}
, that

{
(a + jp)/p`

}
≥ D`

p

(
〈tα〉

)
= Dpc,`(〈tα〉)

because 〈tα〉 ∈ Zp. We obtain
{

(a+ jp)/p`
}
≥ τ(0, `), thus

vp
(
g0(a+ jp)

)
=
∞∑
`=1

1r,`

({
a+ jp

p`

})
≥ vp

(
Dp(〈tα〉) + j

)
+ 1,

and this completes the proof of (8.6) and also that of (8.5). �

8.2.2. A combinatorial lemma. We now use a combinatorial identity due to Dwork (see
[12, Lemma 4.2, p. 308]) that enables us to write

K∑
j=0

H〈t(1)α〉(j)
(
Q0,t(a+ jp)Q1,t(K − j)−Q1,t(j)Q0,t

(
a+ (K − j)p

))

=
r∑
s=0

pr+1−s−1∑
m=0

Wt(a,K, s, p,m),

where r is such that K < pr,

Wt(a,K, s, p,m) :=
(
H〈t(1)α〉(mp

s)−H〈t(1)α〉(bm/pcps+1)
)
St(a,K, s, p,m)
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and

St(a,K, s, p,m) =

(m+1)ps−1∑
j=mps

(
Q0,t(a+ jp)Q1,t(K − j)−Q1,t(j)Q0,t

(
a+ (K − j)p

))
,

where, for all r ∈ N, we set Qr,t(n) = 0 if n < 0. Thus, to complete the proof, it is enough
to show that, for all s,m ∈ N, we have

(
t ∈ Ωb 7→ Wt(a,K, s, p,m)

)
∈ pKb. If m = 0, this

is obvious. We now assume that m ≥ 1.

We write m = k + qp with k ∈ {0, . . . , p − 1} and q ∈ N, so that mps = kps + qps+1

and bm/pcps+1 = qps+1. By [12, Lemma 4.1], we obtain

H〈t(1)α〉(mp
s)−H〈t(1)α〉(bm/pcps+1) ≡ 1

ps+1

ρ
(
k,Ds

p(〈t(1)α〉)
)

Ds+1
p (〈t(1)α〉) + q

mod
1

ps
Zp.

Let us show that, for all s,m ∈ N, m ≥ 1, we have

gs+1(m)
ρ
(
k,Ds

p(〈t(1)α〉)
)

Ds+1
p (〈t(1)α〉) + q

∈ pZp. (8.7)

If ρ
(
k,Ds

p(〈t(1)α〉)
)

= 0, this is clear. Let us assume that ρ
(
k,Ds

p(〈t(1)α〉)
)

= 1. Since

〈t(1)α〉 ∈ Zp, Eq. (8.3) yields Ds
p(〈t(1)α〉) = 〈t(s+1)α〉 and Ds+1

p (〈t(1)α〉) = Dp(〈t(s+1)α〉).
Using Lemma 38 with 〈t(s+1)α〉 for x, k for a and q for m, we get that, for all ` ∈{

1, . . . , 1 + vp
(
Dp(〈t(s+1)α〉) + q

)}
, we have {m/p`} ≥ D`

p(〈t(s+1)α〉) = Dpc,`(〈t(s+1)α〉)
because 〈t(s+1)α〉 ∈ Zp. We obtain {m/p`} ≥ τ(s+ 1, `) and

vp
(
gs+1(m)

)
=
∞∑
`=1

1s+1,`

({
m

p`

})
≥ vp

(
Dp(〈t(s+1)α〉) + q) + 1,

which �nishes the proof of (8.7).

By (8.7), for all s,m ∈ N, m ≥ 1, we have(
H〈t(1)α〉(mp

s)−H〈t(1)α〉(bm/pcps+1)
)
ps+1gs+1(m) ∈ pZp.

Hence, to complete the proof of Theorem 6, it is enough to show that, for all s,m ∈ N,
m ≥ 1, we have (

t ∈ Ωb 7→ St(a,K, s, p,m)
)
∈ ps+1gs+1(m)Kb. (8.8)

We do this in the next section.
8.2.3. Application of Theorem 30. To prove (8.8), we will use Theorem 30 with the ring

Zp for Z and the Zp-algebra A de�ned as follows:

• A = Ab if (β ∈ Zr or p− 1 - λp) or if (p = 2 and m is odd);
• A = A∗b otherwise.

A map f ∈ A∗b is regular if and only if, for all t ∈ Ωb, we have f(t) 6= 0. Moreover, we have
Ab ⊂ A∗b .

In particular, by Lemma 37 and Assertion (2) of Lemma 36, for all r,m ∈ N, the map
Qr,·(m) is a regular element of Ab. In the sequel, for all r,m ∈ N, we set Ar(m) := Qr,·(m)
and we de�ne a function gr as follows:

50



• If β ∈ Zr and p | dα,β, then gr(0) = 1 and gr(m) = 1
p
Λb,r(m) for m ≥ 1;

• If β /∈ Zr or p - dα,β, then gr = gr.

We recall that, if m ≥ 1 and if p | dα,β, then for all r ∈ N, we have Λb,r(m) ∈ pZp. Hence,
the maps gr take their values in Zp.

We will show in the next sections that the sequences
(
Ar

)
r≥0

and (gr)r≥0 satisfy Hy-

pothesis (i), (ii) and (iii) of Theorem 30. Thus, for all m, s ∈ N, m ≥ 1, we will obtain
that

S·(a,K, s, p,m) ∈


psΛb,s+1(m)Ab if β ∈ Zr and p | dα,β;
ps+1gs+1(m)Ab if β /∈ Zr and p− 1 - λp;
ps+1gs+1(m)Ab if β /∈ Zr, p = 2 and m is odd;

ps+1gs+1(m)A∗b otherwise.
because, if p - dα,β, then Ab = A∗b .

Proceeding in this way, we will obtain (8.8). Indeed, the only nonobvious case is the
one for which β ∈ Zr and p | dα,β. But in this case, by Lemma 39, we have

psΛb,s+1(m)Ab ∈ ps+1p
−1−

⌊
λp
p−1

⌋
gs+1(m)Ab = ps+1gs+1(m)Kb.

In the next sections, we check the various hypotheses of Theorem 30.
8.2.4. Veri�cation of Conditions (i) and (ii) of Theorem 30. For all r ≥ 0, the map

Qr,·(0) is constant on Ωb with value 1, and thus it is invertible in Ab.
By Lemmas 37 and 39, for all m ∈ N, we have Qr,·(m) ∈ gr(m)Ab and Qr,·(m) ∈

Λb,r(m)Ab so that in all these cases we have Qr,·(m) ∈ gr(m)Ab. This shows that Condi-
tions (i) and (ii) of Theorem 30 hold.

8.2.5. Veri�cation of Condition (iii) of Theorem 30. For all r ∈ N, we set

Nr :=
⋃
t≥1

({
n ∈ {0, . . . , pt − 1} : ∀` ∈ {1, . . . , t}, {n/p`} ≥ τ(r, `)

}
×
{
t
})

.

We apply Theorem 30 with the sequence N := (Nr)r≥0. We observe that, for all r, ` ∈ N,
we have τ(r, `) > 0 and hence, if (n, t) ∈ Nr, then n ≥ 1. Moreover, in the sequel, we will
often use the fact that, for all h ∈ N, all c ∈ {1, . . . , pν} not divisible by p and all t ∈ Ωb,
we have

τ(r, `+ h) = τ(r + h, `), ∆̃p,`+h
r,t = ∆̃p,`

r+h,t and ∆c,`+h
r,t = ∆c,`

r+h,t. (8.9)

Indeed, let α be a term of the sequences α or β. Writing 〈α〉 = k/N as an irreducible
fraction, we obtain

Dpc,`+h(〈t(r)α〉) =
$N(p−1

c,`+ht
(r)k)

N
=
$N(p−1

c,` t
(r+h)k)

N
= Dpc,`(〈t(r+h)α〉),

so that τ(r, ` + h) = τ(r + h, `) and ∆c,`+h
r,t = ∆c,`

r+h,t. Furthermore, if α ∈ Zp, then, by
(8.3), we have

D`+h
p (〈t(r)α〉) = D`

p

(
Dh
p(〈t(r)α〉)

)
= D`

p(〈t(r+h)α〉),
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which yields ∆̃p,`+h
r,t = ∆̃p,`

r+h,t.
8.2.6. Veri�cation of Condition (b) of Theorem 30. Let r,m ∈ N and (n, u) ∈ Nr. We

want to show that gr(n+mpu) ∈ pugr+u(m)Zp. We need to distinguish two cases.

• If β ∈ Zr and p | dα,β, then

vp
(
Λb,r(n+mpu)

)
=
∞∑
`=1

∆̃p,`
r,t

({
n+mpu

p`

})
− λp

sp(n+mpu)

p− 1
+ (n+mpu)

{
λp
p− 1

}

>
u∑
`=1

∆̃p,`
r,t

({
n

p`

})
+

∞∑
`=u+1

∆̃p,`
r,t

({
n+mpu

p`

})
− λp

sp(m)

p− 1
+m

{
λp
p− 1

}
,

because λp ≤ −1 and n ≥ 1. Since (n, u) ∈ Nr, for all ` ∈ {1, . . . , u}, we have {n/p`} ≥
τ(r, `) and thus

vp
(
Λb,r(n+mpu)

)
> u+

∞∑
`=u+1

∆̃p,`
r,t

({
n+mpu

p`

})
− λp

sp(m)

p− 1
+m

{
λp
p− 1

}
.

We set m =
∑∞

k=0 mkp
k, where mk ∈ {0, . . . , p− 1} is 0 for all but a �nite number of k's.

For all ` ≥ u+ 1,

{
n+mpu

p`

}
=
n+ pu

(∑`−u−1
k=0 mkp

k
)

p`
≥
pu
(∑`−u−1

k=0 mkp
k
)

p`
=

{
m

p`−u

}
.

Moreover, since 〈β〉 = (1, . . . , 1), the map ∆̃p,`
r,t is nondecreasing on [0, 1) and we obtain

that

vp
(
Λb,r(n+mpu)

)
> u+

∞∑
`=u+1

∆̃p,`
r,t

({
m

p`−u

})
− λp

sp(m)

p− 1
+m

{
λp
p− 1

}
.

But we have

∞∑
`=u+1

∆̃p,`
r,t

({
m

p`−u

})
=
∞∑
`=1

∆̃p,`+u
r,t

({
m

p`

})
=
∞∑
`=1

∆̃p,`
r+u,t

({
m

p`

})
,

which yields vp
(
Λb,r(n+mpu)

)
> u+ vp

(
Λb,r+u(m)

)
and thus

vp
(
Λb,r(n+mpu)

)
≥ u+ vp

(
Λb,r+u(m)

)
+ 1.

Since n ≥ 1, we have gr(n+mpu) = 1
p
Λb,r(n+mpu) and we obtain

vp
(
gr(n+mpu)

)
≥ u+ vp

(
Λb,r+u(m)

)
≥ u+ vp

(
gr+u(m)

)
,

as expected.
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• If β /∈ Zr or p - dα,β, then we have to show that gr(n + mpu) ∈ pugr+u(m)Zp. We
have

vp
(
gr(n+mpu)

)
=
∞∑
`=1

1r,`

({
n+mpu

p`

})

≥
u∑
`=1

1r,`

({
n

p`

})
+

∞∑
`=u+1

1r,`

({
n+mpu

p`

})

≥ u+
∞∑

`=u+1

1r,`

({
n+mpu

p`

})
, (8.10)

because (n, u) ∈ Nr. Hence, for all ` ∈ {1, . . . , u}, we have {n/p`} ≥ τ(r, `). Furthermore,
for all h ∈ N, we have τ(r, `+ h) = τ(r + h, `) and consequently

∞∑
`=u+1

1r,`

({
n+mpu

p`

})
≥

∞∑
`=u+1

1r,`

({
m

p`−u

})
=
∞∑
`=1

1r+u,`

({
m

p`

})
= vp

(
gr+u(m)

)
.

Together with (8.10), we obtain gr(n+mpu) ∈ pugr+u(m)Zp.
8.2.7. Veri�cation of Condition (a2) of Theorem 30. Let r, s,m ∈ N, u ∈ ΨN (r, s) and

v ∈ {0, . . . , p− 1} be such that v + up /∈ ΨN (r − 1, s+ 1). It is enough to show that

gr(v + up)
Qr+1,·(u+mps)

Qr+1,·(u)
∈ ps+1gr+s+1(m)Ab. (8.11)

We will �rst provide a few important properties concerning the set ΨN (r, s).

Lemma 40. Let r ∈ Z, r ≥ −1 and s ∈ N. Then ΨN (r, s) is the set of the u ∈
{0, . . . , ps−1} such that {u/ps} < τ(r+1, s). Moreover, for all u ∈ ΨN (r, s) and all ` ≥ s,
we have {u/p`} < τ(r + 1, `) and, for all m ∈ N, we have

Qr+1,·(u+mps)

Qr+1,·(u)
∈ 2ιmp

s

p

{
λp
p−1

}
m(ps−1)

Λb,r+s+1(m)Ab.

By Lemma 40, to show (8.11) and thus to complete the veri�cation of Condition (a2),
it is enough to show that vp

(
gr(v + up)

)
≥ s+ 1.

We have v + up /∈ ΨN (r − 1, s + 1), hence there exist (n, t) ∈ Nr+s−t+1, t ≤ s + 1 and
j ∈ {0, . . . , ps+1−t − 1} such that v + up = j + ps+1−tn. Since u ∈ ΨN (r, s), we necessarily
have s + 1 − t = 0, so that (v + up, s + 1) ∈ Nr, i. e., for all ` ∈ {1, . . . , s + 1}, we have{

(v+up)/p`
}
≥ τ(r, `) and thus gr(v+up) ∈ ps+1Zp. Furthermore, if β ∈ Zr and p | dα,β,

then, since v+up ≥ 1, we have gr(v+up) = 1
p
Λb,r(v+up)Zp and by Lemma 39, we obtain

vp
(
gr(v + up)

)
≥ vp

(
gr(v + up)

)
− 1−

⌊
λp
p− 1

⌋
≥ s+ 1,

because λp ≤ −1. This completes the veri�cation modulo Lemma 40.
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Proof of Lemma 40. We �rst show that ΨN (r, s) is the set of the u ∈ {0, . . . , ps−1}
such that {u/ps} < τ(r+ 1, s). If s = 0, then ΨN (r, 0) = {0} and τ(r+ 1, 0) > 0, thus this
is obvious. We may then assume that s ≥ 1. Let u ∈ {0, . . . , ps− 1}, u =

∑s−1
k=0 ukp

k, with
uk ∈ {0, . . . , p− 1}. It is su�cient to prove that the following assertions are equivalent.

(1) We have {u/ps} ≥ τ(r + 1, s).
(2) There exist (n, t) ∈ Nr+s−t+1, t ≤ s and j ∈ {0, . . . , ps−t − 1} such that u =

j + ps−tn.

Proof of (2)⇒ (1): we have{
u

ps

}
=

u

ps
=
j + ps−tn

ps
≥ n

pt
=

{
n

pt

}
.

Moreover, by de�nition of the sequence N , we have {n/pt} ≥ τ(r+s− t+1, t) = τ(r+1, s)
and hence {u/ps} ≥ τ(r + 1, s).

Proof of (1)⇒ (2): for all s ≥ 1, we denote by Bs the assertion: �For all u ∈ {0, . . . , ps−
1} and all r ∈ Z, r ≥ −1, such that {u/ps} ≥ τ(r + 1, s), there exists i ∈ {0, . . . , s − 1}
such that

(∑s−1
k=i ukp

k−i, s− i
)
∈ Nr+i+1.� It is enough to show by induction on s that, for

all s ≥ 1, Bs holds.

If s = 1, then, for all u ∈ {0, . . . , p − 1} and all r ∈ Z, r ≥ −1, such that {u/p} ≥
τ(r + 1, 1), we have (u, 1) ∈ Nr+1. Hence, B1 holds.

Let s ≥ 2 be such that B1, . . . ,Bs−1 hold, let u ∈ {0, . . . , ps− 1} and r ∈ Z, r ≥ −1, be
such that {u/ps} ≥ τ(r + 1, s). We further assume that (u, s) /∈ Nr+1. Hence, there exists
` ∈ {1, . . . , s} such that

a` :=

∑`−1
k=0 ukp

k

p`
=

{
u

p`

}
< τ(r + 1, `).

We necessarily have ` ∈ {1, . . . , s− 1}. We write{
u

ps

}
=

u

ps
=
p`a` + p`

∑s−1
k=` ukp

k−`

ps
=

a`
ps−`

+

∑s−1
k=` ukp

k−`

ps−`
.

Since {u/ps} ≥ τ(r + 1, s), we obtain that

s−1∑
k=`

ukp
k−` ≥ ps−`τ(r + 1, s)− a` > ps−`τ(r + 1, s)− τ(r + 1, `),

so that
s−1∑
k=`

ukp
k−` > ps−`τ(r + `+ 1, s− `)− τ(r + `+ 1, 0).
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Let α be an element of the sequences α̃ or β̃ such that τ(r+`+1, s−`) = Ds−`
p (〈t(r+`+1)α〉).

Then, we have τ(r + `+ 1, 0) ≤ 〈t(r+`+1)α〉 and thus

s−1∑
k=`

ukp
k−` > ps−`Ds−`

p (〈t(r+`+1)α〉)− 〈t(r+`+1)α〉. (8.12)

Both sides of inequality (8.12) are integers, so that

s−1∑
k=`

ukp
k−` ≥ ps−`Ds−`

p (〈t(r+`+1)α〉)− 〈t(r+`+1)α〉+ 1 ≥ ps−`Ds−`
p (〈t(r+`+1)α〉).

It follows that ∑s−1
k=` ukp

k−`

ps−`
≥ Ds−`

p (〈t(r+`+1)α〉) = τ(r + `+ 1, s− `).

By Bs−`, there exists i ∈ {0, . . . , s−`−1} such that
(∑s−1

k=`+i ukp
k−`−i, s− `− i

)
∈ Nr+`+i+1.

Hence there exists j ∈ {`, . . . , s−1} such that
(∑s−1

k=j ukp
k−j, s− j

)
∈ Nr+j+1, which proves

Assertion Bs and �nishes the induction on s.

The equivalence of Assertions (1) and (2) is now proved and we have

ΨN (r, s) =
{
u ∈ {0, . . . , ps − 1} : {u/ps} < τ(r + 1, s)

}
.

Let u ∈ ΨN (r, s). Let us prove that, for all ` ≥ s, we have {u/p`} < τ(r + 1, `).

To get a contradiction, let us assume that there exists ` ≥ s such that {u/p`} ≥
τ(r+1, `). Let α be an element of the sequences α̃ or β̃ such that τ(r+1, `) = D`

p(〈t(r+1)α〉).
We obtain that{

u

ps

}
= p`−s

{
u

p`

}
≥ p`−sD`

p(〈t(r+1)α〉)

≥ p`−sD`
p(〈t(r+1)α〉)−Ds

p(〈t(r+1)α〉) + Ds
p(〈t(r+1)α〉)

≥ Ds
p(〈t(r+1)α〉)

≥ τ(r + 1, s),

which is a contradiction. Hence, for all ` ≥ s, we have {u/p`} < τ(r + 1, `).

To complete the proof of Lemma 40, it remains to prove that, for all u ∈ ΨN (r, s) and
all m ∈ N, we have

Qr+1,·(u+mps)

Qr+1,·(u)
∈ 2ιmp

s

p

{
λp
p−1

}
m(ps−1)

Λb,r+s+1(m)Ab. (8.13)

By Lemma 37, we have

Qr+1,·(u+mps)

Qr+1,·(u)
∈ 2ιmp

s Λb,r+1(u+mps)

Λb,r+1(u)
A×b ,
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with

vp

(
Λb,r+1(u+mps)

Λb,r+1(u)

)
=
∞∑
`=1

(
∆̃p,`
r+1,t

({
u+mps

p`

})
− ∆̃p,`

r+1,t

({
u

p`

}))
− λp

sp(m)

p− 1
+mps

{
λp
p− 1

}

=
∞∑

`=s+1

∆̃p,`
r+1,t

({
u+mps

p`

})
− λp

sp(m)

p− 1
+mps

{
λp
p− 1

}
, (8.14)

because, for all ` ∈ {1, . . . , s}, we have {u/p`} =
{

(u+mps)/p`
}
and, for all ` ≥ s+ 1, we

have {u/p`} < τ(r+ 1, `), thus ∆̃p,`
r+1,t

(
{u/p`}

)
= 0. Let us show that, for all ` ≥ s+ 1, we

have

∆̃p,`
r+1,t

({
u+mps

p`

})
= ∆̃p,`−s

r+s+1,t

({
m

p`−s

})
. (8.15)

Let α be an element of the sequences α or β whose denominator is not divisible by p. To
prove (8.15), it is enough to show that, for all ` ≥ s+ 1, we have{

u+mps

p`

}
≥ D`

p(〈t(r+1)α〉)⇐⇒
{
m

p`−s

}
≥ D`−s

p (〈t(r+s+1)α〉). (8.16)

We write m =
∑∞

k=0 mkp
k with mk ∈ {0, . . . , p− 1}. Then, we have{

u+mps

p`

}
=
u+

∑`−s−1
k=0 mkp

k+s

p`
=
u

p`
+

{
m

p`−s

}
.

We observe that D`−s
p (〈t(r+s+1)α〉) = D`

p(〈t(r+1)α〉), so that{
m

p`−s

}
≥ D`−s

p (〈t(r+s+1)α〉) =⇒
{
u+mps

p`

}
≥ D`

p(〈t(r+1)α〉).

Moreover, we have{
u+mps

p`

}
≥ D`

p(〈t(r+1)α〉) =⇒ u

p`
+

{
m

p`−s

}
≥ D`

p(〈t(r+1)α〉)

=⇒ p`−s
{
m

p`−s

}
≥ p`−sD`

p(〈t(r+1)α〉)− u

ps

=⇒ p`−s
{
m

p`−s

}
> p`−sD`

p(〈t(r+1)α〉)−Ds
p(〈t(r+1)α〉)

=⇒ p`−s
{
m

p`−s

}
≥ p`−sD`

p(〈t(r+1)α〉)−Ds
p(〈t(r+1)α〉) + 1

=⇒
{
m

p`−s

}
≥ D`−s

p (〈t(r+s+1)α〉).
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Equivalence (8.16) is thus proved and we have (8.15). Using (8.15) in (8.14), we obtain

vp

(
Λb,r+1(u+mps)

Λb,r+1(u)

)
=

∞∑
`=s+1

∆̃p,`−s
r+s+1,t

({
m

p`−s

})
− λp

sp(m)

p− 1
+mps

{
λp
p− 1

}

=
∞∑
`=1

∆̃p,`
r+s+1,t

({
m

p`

})
− λp

sp(m)

p− 1
+mps

{
λp
p− 1

}
= vp

(
Λb,r+s+1(m)

)
+m(ps − 1)

{
λp
p− 1

}
.

This completes the proof of Lemma 40. �

8.2.8. Veri�cation of Conditions (a) and (a1) of Theorem 30. Let us �x r ∈ N. For all
s ∈ N, all v ∈ {0, . . . , p − 1} and all u ∈ ΨN (r, s), we set θr,s(v + up) := Qr,·(v + up) if
v + up /∈ ΨN (r − 1, s+ 1), and θr,s(v + up) := gr(v + up) otherwise.

The aim of this section is to prove the following fact: for all s,m ∈ N, all v ∈ {0, . . . , p−
1} and all u ∈ ΨN (r, s), we have

θr,s(v + up)

(
Qr,·(v + up+mps+1)

Qr,·(v + up)
− Qr+1,·(u+mps)

Qr+1,·(u)

)
∈ ps+1gr+s+1(m)A. (8.17)

This will prove Conditions (a) and (a1) of Theorem 30. Indeed, by Lemmas 37 and 39, for
all v ∈ {0, . . . , p− 1} and all u ∈ ΨN (r, s), we have

Qr,·(v + up) ∈ Λb,r(v + up)A ⊂ gr(v + up)A.
Hence, Congruence (8.17) implies Condition (a) of Theorem 30. Moreover, by de�nition
of θr,s, when v + up ∈ ΨN (r − 1, s + 1), Congruence (8.17) implies Condition (a1) of
Theorem 30.

If m = 0, then we have (8.17). In the sequel, we write Ψ for ΨN , we assume that m ≥ 1
and we split the proof of (8.17) into four cases.

• Case 1: we assume that v + up /∈ Ψ(r − 1, s+ 1).

We then have θr,s(v+up) = Qr,·(v+up) ∈ Λb,r(v+up)Ab. Let us show that Λb,r(v+up) ∈
ps+1Zp. We have

vp
(
Λb,r(v + up)

)
=

1

ϕ(pν)

∞∑
`=1

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
v + up

p`

})
+ (v + up)

{
λp
p− 1

}
.

Since v+ up /∈ Ψ(r− 1, s+ 1) and u ∈ Ψ(r, s), we obtain that (v+ up, s+ 1) ∈ Nr and, for
all ` ∈ {1, . . . , s+ 1}, we have {(v + up)/p`} ≥ τ(r, `). It follows that

1

ϕ(pν)

s+1∑
`=1

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
v + up

p`

})
≥ s+ 1
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and vp
(
Λb,r(v + up)

)
≥ s+ 1 because the functions ∆c,`

r,t are nonnegative on [0, 1).
Since u ∈ Ψ(r, s), Lemma 40 yields

Qr,·(v + up)
Qr+1,·(u+mps)

Qr+1,·(u)
∈ ps+1Λb,r+s+1(m)Ab ⊂ ps+1gr+s+1(m)Ab.

Thus, to show (8.17), it is enough to show

Qr,·(v + up+mps+1) ∈ ps+1gr+s+1(m)Ab. (8.18)

By Lemma 37, we have

vp
(
Λb,r(v + up+mps+1)

)
=

1

ϕ(pν)

∞∑
`=1

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
v + up+mps+1

p`

})

+ (v + up+mps+1)

{
λp
p− 1

}
,

hence

vp
(
Λb,r(v + up+mps+1)

)
≥ s+ 1 +

1

ϕ(pν)

∞∑
`=s+2

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
v + up+mps+1

p`

})

+m

{
λp
p− 1

}
.

If β ∈ Zr, then the functions ∆c,`
r,t are nondecreasing on [0, 1) and, by (8.9), for all

` ≥ s+ 2, we obtain

∞∑
`=s+2

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
v + up+mps+1

p`

})
≥

∞∑
`=s+2

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
mps+1

p`

})

≥
∞∑
`=1

pν∑
c=1

gcd(c,p)=1

∆c,`+s+1
r,t

({
m

p`

})

≥
∞∑
`=1

pν∑
c=1

gcd(c,p)=1

∆c,`
r+s+1,t

({
m

p`

})
.

Consequently, if β ∈ Zr, then

vp
(
Λb,r(v + up+mps+1)

)
≥ s+ 1 + vp

(
Λb,r+s+1(m)

)
≥ s+ 1 + vp

(
gr+s+1(m)

)
,

as expected.
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On the other hand, if β /∈ Zr, then we observe that, for all ` ∈ N, ` ≥ 1, we have{
m

p`

}
≥ τ(r + s+ 1, `) =⇒

{
mps+1

p`+s+1

}
≥ τ(r, `+ s+ 1)

=⇒
{
v + up+mps+1

p`+s+1

}
≥ τ(r, `+ s+ 1)

=⇒ 1

ϕ(pν)

pν∑
c=1

gcd(c,p)=1

∆c,`+s+1
r,t

({
v + up+mps+1

p`+s+1

})
≥ 1,

so that

1

ϕ(pν)

∞∑
`=s+2

pν∑
c=1

gcd(c,p)=1

∆c,`
r,t

({
v + up+mps+1

p`

})
≥ vp

(
gr+s+1(m)

)
and thus vp

(
Λb,r(v + up + mps+1)

)
≥ s + 1 + vp

(
gr+s+1(m)

)
, as expected. Hence (8.18) is

proved, which �nishes the proof of (8.17) when v + up /∈ Ψ(r − 1, s+ 1).

• Case 2: we assume that v + up ∈ Ψ(r − 1, s+ 1) and that p− 1 - λp.
We have θr,s(v + up) = gr(v + up), A = Ab, and we have to show that

gr(v + up)

(
Qr,·(v + up+mps+1)

Qr,·(v + up)
− Qr+1,·(u+mps)

Qr+1,·(u)

)
∈ ps+1gr+s+1(m)Ab.

By Lemma 40,
Qr+1,·(u+mps)

Qr+1,·(u)
∈ p

{
λp
p−1

}
m(ps−1)

Λb,r+s+1(m)Ab

and
Qr,·(v + up+mps+1)

Qr,·(v + up)
∈ p

{
λp
p−1

}
m(ps+1−1)

Λb,r+s+1(m)Ab.

Since p− 1 - λp and m ≥ 1, we have{
λp
p− 1

}
m(ps − 1) ≥ m

ps − 1

p− 1
≥ s and

{
λp
p− 1

}
m(ps+1 − 1) ≥ s+ 1.

Thus, we obtain

gr(v + up)
Qr,·(v + up+mps+1)

Qr,·(v + up)
∈ ps+1Λb,r+s+1(m)Ab ⊂ ps+1gr+s+1(m)Ab,

because gr(v + up) ∈ Zp. It remains to show that

gr(v + up)
Qr+1,·(u+mps)

Qr+1,·(u)
∈ ps+1gr+s+1(m)Ab. (8.19)

By Lemma 39,

vp
(
Λb,r+s+1(m)

)
≥ vp

(
gr+s+1(m)

)
+m

{
λp
p− 1

}
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and thus, since p− 1 - λp and m ≥ 1, we obtain that Λb,r+s+1(m) ∈ pgr+s+1(m)Zp. Hence,
we have Λb,r+s+1(m) ∈ pgr+s+1(m)Zp, as well as (8.19) because gr(v + up) ∈ Zp.

• Case 3: we assume that v + up ∈ Ψ(r − 1, s+ 1), β /∈ Zr, p = 2, and that m is odd.

We have θr,s(v + up) = gr(v + up) = gr(v + up), A = Ab, and we have to show

gr(v + up)

(
Qr,·(v + up+mps+1)

Qr,·(v + up)
− Qr+1,·(u+mps)

Qr+1,·(u)

)
∈ ps+1gr+s+1(m)Ab. (8.20)

By Lemma 40, we have

Qr+1,·(u+mps)

Qr+1,·(u)
∈ 2mp

s

Λb,r+s+1(m)Ab

and
Qr,·(v + up+mps+1)

Qr,·(v + up)
∈ 2mp

s+1

Λb,r+s+1(m)Ab.

Moreover, we have m2s ≥ s + 1 and m2s+1 ≥ s + 1 because m ≥ 1. Since Λb,r+s+1(m) ∈
gr+s+1(m)Zp and gr(v + up) ∈ Zp, we get (8.20).

• Case 4: we assume that v + up ∈ Ψ(r − 1, s+ 1), p− 1 divides λp and that, if p = 2
and β /∈ Zr, then m is even.

We set

Xr,s(v, u,m) :=
Qr,·(v + up)

Qr+1,·(u)

Qr+1,·(u+mps)

Qr,·(v + up+mps+1)
.

Assertion (8.17) is satis�ed if and only if, for all s,m ∈ N, all v ∈ {0, . . . , p − 1} and all
u ∈ ΨN (r, s), we have

gr(v + up)
(
Xr,s(v, u,m)− 1

)Qr,·(v + up+mps+1)

Qr,·(v + up)
∈ ps+1gr+s+1(m)A. (8.21)

The following lemma will give the conclusion.

Lemma 41. We assume that p− 1 divides λp and that, if p = 2 and β /∈ Zr, then m is
even. Then,

(1) For all r, s ∈ N, all v ∈ {0, . . . , p−1}, all u ∈ ΨN (r, s) and all m ∈ N, there exists
Yr,s(v, u,m) ∈ Zp independent of t ∈ Ωb such that

Xr,s(v, u,m) ∈

{
Yr,s(v, u,m)(1 + psAb) if β ∈ Zr and p | dα,β ;

Yr,s(v, u,m)(1 + ps+1A∗b) otherwise;
.

(2) If there exists j ∈ {1, . . . , s + 1} such that
{

(v + up)/pj
}
< τ(r, j), then we have

Yr,s(v, u,m) ∈ 1 + ps−j+2Zp.
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Since v + up ∈ Ψ(r − 1, s + 1), Lemma 40 implies that
{

(v + up)/ps+1
}
< τ(r, s + 1).

Let j0 be the smallest j ∈ {1, . . . , s+ 1} such that
{

(v + up)/pj
}
< τ(r, j). By Lemma 41

applied with j0, we obtain that Yr,s(v, u,m) ∈ 1 + ps−j0+2Zp and that

Xr,s(v, u,m) ∈

{
1 + ps−j0+1Ab if β ∈ Zr and p | dα,β;
1 + ps−j0+2A∗b otherwise.

.

Hence, Lemma 40 yields

(
Xr,s(v, u,m)−1

)Qr,·(v + up+mps+1)

Qr,·(v + up)
∈ ps−j0+2gr+s+1(m)×

{
Ab if β ∈ Zr and p | dα,β;
A∗b otherwise.

.

Therefore to prove (8.21), it is enough to show that gr(v + up) ∈ pj0−1Zp. If v + up = 0,
then we have j0 = 1 and the conclusion is clear. We may thus assume that v+up ≥ 1. But
for all j ∈ {1, . . . , j0 − 1}, we have

{
(v + up)/pj

}
≥ τ(r, j), hence vp

(
gr(v + up)

)
≥ j0 − 1.

Furthermore, if β ∈ Zr and if p | dα,β, we have λp ≤ −1 and, by Lemma 39, we have

gr(v + up) =
Λb,r(v + up)

p
∈ gr(v + up)Zp ⊂ pj0−1Zp,

as expected.

To complete the proof of (8.21) and that of Theorem 6, it remains to prove Lemma 41.

Proof of Lemma 41. We will show that Lemma 41 holds with

Yr,s(v, u,m) :=

∏
βi∈Zp

(
1 + mps

〈t(r+1)βi〉+u

)ρ(v,〈t(r)βi〉)

∏
αi∈Zp

(
1 + mps

〈t(r+1)αi〉+u

)ρ(v,〈t(r)αi〉)
.

By Lemma 1 of [13], if α is an element of the sequences α or β whose denominator is
not divisible by p, then for all v ∈ {0, . . . , p− 1}, all s,m ∈ N and all u ∈ {0, . . . , ps − 1},
we have

(α)v+up+mps+1

(
Dp(α)

)
u(

Dp(α)
)
u+mps

(α)v+up

∈
(
(−p)psεps

)m(
1 +

mps

Dp(α) + u

)ρ(v,α)

(1 + ps+1Zp), (8.22)

where εk = −1 if k = 2, and εk = 1 otherwise.
Similarly, using Dwork's method, we will show that if α is an element of the sequences

α or β whose denominator is divisible by p, then for all v ∈ {0, . . . , p− 1}, all r, s,m ∈ N
and all u ∈ {0, . . . , ps − 1}, we have(

t ∈ Ωb 7→ d(α)mϕ(ps+1) (〈t(r)α〉)v+up+mps+1(〈t(r+1)α〉)u
(〈t(r+1)α〉)u+mps(〈t(r)α〉)v+up

)
∈ ε′ps(α)m(1 + ps+1A∗b), (8.23)

where ε′k(α) = εk if vp
(
d(α)

)
= 1 and ε′k(α) = 1 otherwise.
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We �rst show that (8.22) and (8.23) imply the validity of Assertion (1) of Lemma 41.
Indeed, by (8.22), we obtain

Λb,r(v + up+mps+1)Λb,r+1(u)

Λb,r+1(u+mps)Λb,r(v + up)

∈

(
C

∏
βi /∈Zp d(βi)∏
αi /∈Zp d(αi)

)mϕ(ps+1) (
(−p)psεps

)mλp
Yr,s(v, u,m)

(1 + ps+1Zp). (8.24)

We write

C

∏
βi /∈Zp d(βi)∏
αi /∈Zp d(αi)

= σp
−
⌊
λp
p−1

⌋
= σp−

λp
p−1 ,

with σ ∈ Z×p , so that(
C

∏
βi /∈Zp d(βi)∏
αi /∈Zp d(αi)

)mϕ(ps+1)

∈ p−mpsλp(1 + ps+1Zp).

We thus have(
C

∏
βi /∈Zp d(βi)∏
αi /∈Zp d(αi)

)mϕ(ps+1) (
(−p)psεps

)mλp ∈ (−1)mp
sλpε

mλp
ps (1+ps+1Zp) ⊂ ε

mλp
ps (1+ps+1Zp),

(8.25)
because −1 ∈ Z×p and ϕ(ps+1) = ps(p−1) divides mpsλp. Using (8.25) in (8.24), we obtain
that

Λb,r+1(u)Λb,r(v + up+mps+1)

Λb,r(v + up)Λb,r+1(u+mps)
∈

ε
mλp
ps

Yr,s(v, u,m)
(1 + ps+1Zp). (8.26)

By (8.23), we also obtain

Rr+1(u+mps, ·)Rr(v + up, ·)
Rr(v + up+mps+1, ·)Rr+1(u, ·)

∈

(∏
βi /∈Zp ε

′
ps(βi)∏

αi /∈Zp ε
′
ps(αi)

)m

(1 + ps+1A∗b).

If ps 6= 2, then, for any element α /∈ Zp of α or β, we have ε′ps(α) = εps = 1. If ps = 2 and

if the number of elements α of α and β that satisfy v2

(
d(α)

)
≥ 2 is even, then, since α

and β have the same length, we have∏
βi /∈Zp ε

′
ps(βi)∏

αi /∈Zp ε
′
ps(αi)

= (−1)λ2 = ελ22 .

Moreover, we have pA∗b ⊂ Ab and εps , ε′ps(α) ∈ 1 + psZp. It follows that we obtain

Rr+1(u+mps, ·)Rr(v + up, ·)
Rr(v + up+mps+1, ·)Rr+1(u, ·)

∈

{
1 + psAb if β ∈ Zr and p | dα,β;
ε
mλp
ps (1 + ps+1A∗b) otherwise.

(8.27)
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By (8.26) and (8.27), we obtain

Xr,s(v, u,m) ∈ Yr,s(v, u,m)×

{
(1 + psAb) if β ∈ Zr and p | dα,β;
(1 + ps+1A∗b) otherwise.

To �nish the proof of Assertion (1) of Lemma 41, we have to prove (8.23).

Let α be an element of α or β whose denominator is divisible by p. For all s,m ∈ N
and all u ∈ {0, . . . , ps − 1}, we set

qr(u, s,m) := t ∈ Ωb 7→ d(α)mp
s (〈t(r)α〉)u+mps

(〈t(r)α〉)u
=

mps−1∏
k=0

(
d(α)〈t(r)α〉+ d(α)u+ d(α)k

)
.

Hence, proving (8.23) amounts to proving that

qr(v + up, s+ 1,m)

qr+1(u, s,m)
∈ ε′ps(α)m(1 + ps+1A∗b).

As functions of t, we have

qr(u, s,m)(t) =

ps−1∏
i=0

m−1∏
j=0

(
d(α)〈t(r)α〉+ d(α)u+ d(α)i+ d(α)jps

)
≡

ps−1∏
i=0

(
d(α)〈t(r)α〉+ d(α)u+ d(α)i

)m
mod ps+1Ab

≡
ps−1∏
i=0

(
d(α)〈t(r)α〉+ d(α)i

)m
mod ps+1Ab.

Since d(α) is divisible by p, we obtain that, for all i ∈ {0, . . . , ps − 1}, the map t ∈ Ωb 7→
d(α)〈t(r)α〉+ d(α)i is invertible in Ab and thus

qr(u, s,m) ∈ qr(0, s, 1)m(1 + ps+1Ab).
Hence proving (8.23) amounts to proving that, for all s ∈ N, we have

qr(0, s+ 1, 1)

qr+1(0, s, 1)
∈ ε′ps(α)(1 + ps+1A∗b). (8.28)

• Case 1: we assume that s = 0.

As functions of t, we have

qr(0, 1, 1)(t)

qr+1(0, 0, 1)(t)
∈
(
d(α)〈t(r)α〉

)p
d(α)〈t(r+1)α〉

(1 + pAb)

and

t(r) ≡ $pν

(
t

D

)
D +$D

(
b

pν+r

)
pν mod pνD.
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Hence, with 〈α〉 := κ/d(α), we obtain the existence of η(r, t) ∈ Z such that

d(α)〈t(r)α〉 = $pν

(
tκ

D

)
D +$D

(
bκ

pν+r

)
pν + d(α)η(r, t).

Moreover, by Assertions (2), (4) and (5) of Lemma 36, the maps t ∈ Ωb 7→ d(α)〈t(r)α〉
and f : t ∈ Ωb 7→ $pν (tκ/D)D are in A×b . Thus t ∈ Ωb 7→ d(α)η(r, t) is in Ab and
t ∈ Ωb 7→ d(α)η(r, t)/p is in A∗b because p divides d(α). It follows that(

t ∈ Ωb 7→ d(α)〈t(r)α〉
)
∈ f(1 + pA∗b). (8.29)

We obtain

qr(0, 1, 1)

qr+1(0, 0, 1)
∈ fp−1(1 + pA∗b) ⊂

(
1 + p(E1 ◦ f)

)
(1 + pA∗b) ⊂ 1 + pA∗b ,

as expected, where the �nal inclusion is obtained via Assertion (3) of Lemma 35.

• Case 2: we assume that s ≥ 1.

If s ≥ 1, then

ps−1∏
i=0

(
d(α)〈t(r)α〉+ d(α)i

)
=

ps−1−1∏
j=0

p−1∏
a=0

(
d(α)〈t(r)α〉+ d(α)j + d(α)aps−1

)
(8.30)

≡
ps−1−1∏
j=0

(
d(α)〈t(r)α〉+ d(α)j

)p
mod psAb. (8.31)

Using (8.31) with s+ 1 for s, we obtain

qr(0, s+ 1, 1) ∈ qr(0, s, 1)p(1 + ps+1Ab)
and thus

qr(0, s+ 1, 1) ∈
(
d(α)〈t(r)α〉

)ps+1

(1 + ps+1Ab). (8.32)

We set P (x) := xp − x ∈ Zp[x]. For all a ∈ {0, . . . , p − 1}, we have ap − a ≡ 0
mod pZp. Since P ′(x) = pxp−1 − 1, for all a ∈ {0, . . . , p− 1}, we have vp

(
P ′(a)

)
= 0 and,

by Hensel's lemma (see [30]), there exists a root wa of P in Zp such that wa ≡ a mod pZp.
Consequently, for all x ∈ Zp and all s ∈ N, s ≥ 1, we have

p−1∏
a=0

(
x+ d(α)aps−1

)
≡

p−1∏
i=0

(
x− d(α)wip

s−1
)

mod ps+1Zp

≡ xp −
(
d(α)ps−1

)p−1
x mod ps+1Zp. (8.33)

If p 6= 2, then
(
d(α)ps−1

)p−1
x ∈ ps+1Zp thus, by (8.30), for all s ∈ N, s ≥ 1, we obtain

qr+1(0, s, 1) ∈
ps−1−1∏
j=0

(
d(α)〈t(r+1)α〉+ d(α)j

)p
(1 + ps+1Ab),

64



hence qr+1(0, s, 1) ∈ qr+1(0, s− 1, 1)p(1 + ps+1Ab) and

qr+1(0, s, 1) ∈
(
d(α)〈t(r+1)α〉

)ps
(1 + ps+1Ab).

By (8.32) and (8.29), we obtain the existence of f1, f2 ∈ A∗b such that

qr(0, s+ 1, 1)

qr+1(0, s, 1)
∈ fϕ(ps+1) (1 + pf1)p

s+1

(1 + pf2)ps
(1 + ps+1Ab)

⊂
(
1 + ps+1(Es+1 ◦ f)

)
(1 + ps+1A∗b) ⊂ 1 + ps+1A∗b ,

which proves (8.28) when p 6= 2 because in this case we have ε′ps(α) = 1.

Let us now assume p = 2. Then by (8.30) and (8.33), for all s ∈ N, s ≥ 1, we obtain

qr+1(0, s, 1) ∈
2s−1−1∏
j=0

(
d(α)〈t(r+1)α〉+ d(α)j

)2
(

1− d(α)2s−1

d(α)〈t(r+1)α〉+ d(α)j

)
(1 + 2s+1Ab).

Since 2 divides d(α), we have

2s−1−1∏
j=0

(
1− d(α)2s−1

d(α)〈t(r+1)α〉+ d(α)j

)
=

2s−1−1∏
j=0

(
1− d(α)2s−1

1 + 2E1

(
d(α)〈t(r+1)α〉+ d(α)j

))

≡
2s−1−1∏
j=0

(
1− d(α)2s−1

)
mod 2s+1A∗b

≡ 1− d(α)22s−2 mod 2s+1A∗b ,

with 1−d(α)22s−2 ≡ 1 mod 2s+1 if s ≥ 2 or v2

(
d(α)

)
≥ 2, and 1−d(α)22s−2 ≡ −1 mod 4

if s = v2

(
d(α)

)
= 1. It follows that

qr+1(0, s, 1) ∈ ε′2s(α)
2s−1−1∏
j=0

(
d(α)〈t(r+1)α〉+ d(α)j

)2
(1 + 2s+1A∗b),

i. e. qr+1(0, s, 1) ∈ ε′2s(α)qr+1(0, s− 1, 1)2(1 + 2s+1A∗b) and thus

qr+1(0, s, 1) ∈ ε′2s(α)
(
d(α)〈t(r+1)α〉

)2s
(1 + 2s+1A∗b).

By (8.32) and (8.29), we obtain the existence of f1, f2 ∈ A∗b such that

qr(0, s+ 1, 1)

qr+1(0, s, 1)
∈ 1

ε′2s(α)
fϕ(2s+1) (1 + 2f1)2s+1

(1 + 2f2)2s
(1 + 2s+1A∗b)

⊂ ε′2s(α)
(
1 + 2s+1(Es+1 ◦ f)

)
(1 + 2s+1A∗b) ⊂ ε′2s(α)(1 + 2s+1A∗b),

which proves (8.28) and completes the proof of (1) of Lemma 41.
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Let us now prove Assertion (2) of Lemma 41. We have

Yr,s(v, u,m) =

∏
βi∈Zp

(
1 + mps

〈t(r+1)βi〉+u

)ρ(v,〈t(r)βi〉)

∏
αi∈Zp

(
1 + mps

〈t(r+1)αi〉+u

)ρ(v,〈t(r)αi〉)
.

Let j ∈ {1, . . . , s + 1} be such that
{

(v + up)/pj
}
< τ(r, j). We set u =

∑∞
k=0 ukp

k. For
all elements α ∈ Zp of the sequences α or β, we have{
v + up

pj

}
< τ(r, j) =⇒ v + p

j−2∑
k=0

ukp
k < pjDj

p(〈t(r)α〉)

=⇒ v + p

j−2∑
k=0

ukp
k ≤ pjDj

p(〈t(r)α〉)− 〈t(r)α〉

=⇒ v + p

j−2∑
k=0

ukp
k ≤

j−1∑
k=0

pk
(
pDk+1

p (〈t(r)α〉)−Dk
p(〈t(r)α〉)

)
=⇒

(
ρ(v, 〈t(r)α〉) = 0 or

j−2∑
k=0

ukp
k < pj−1Dj

p(〈t(r)α〉)−Dp(〈t(r)α〉)

)

=⇒

(
ρ(v, 〈t(r)α〉) = 0 or

j−2∑
k=0

ukp
k < pj−1Dj−1

p (〈t(r+1)α〉)− 〈t(r+1)α〉

)
=⇒

(
ρ(v, 〈t(r)α〉) = 0 or vp(u+ 〈t(r+1)α〉) ≤ j − 2

)
=⇒

(
1 +

mps

〈t(r+1)α〉+ u

)ρ(v,〈t(r)α〉)

∈ 1 + ps−j+2Zp,

as expected. This completes the proof of Lemma 41 and that of Theorem 6. �

9. Proof of Theorem 9

We shall prove the following more precise statement.

Proposition 42. Let α and β be tuples of parameters in Q \ Z≤0 such that 〈α〉 and
〈β〉 are disjoint. Let a ∈ {1, . . . , dα,β} be coprime to dα,β such that, for all x ∈ R, we have
ξα,β(a, x) ≥ 0. Then, all the Taylor coe�cients at the origin of q〈aα〉,〈aβ〉(z) are positive
but its constant term, which is 0.

To prove Proposition 42, we follow the method used by Delaygue in [11, Section 10.3],
itself inspired by the work of Krattenthaler and Rivoal in [21]. We state three lemmas
which enable us to prove Proposition 42.

Lemma 43 (Lemma 2.1 in [21]). Let a(z) =
∑∞

n=0 anz
n ∈ R[[z]], a0 = 1, be such

that all Taylor coe�cients at the origin of a(z) = 1 − 1/a(z) are nonnegative. Let
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b(z) =
∑∞

n=0 anhnz
n where (hn)n≥0 is a nondecreasing sequence of nonnegative real num-

bers. Then, all Taylor coe�cients at the origin of b(z)/a(z) are nonnegative.
Furthermore, if all Taylor coe�cients of a(z) and a(z) are positive (excepted the con-

stant term of a(z)) and if (hn)n≥0 is an increasing sequence, then all Taylor coe�cients at
the origin of b(z)/a(z) are positive, except its constant term if h0 = 0.

The following lemma is a re�ned version of Kaluza's Theorem [15, Satz 3]. Initially,
Satz 3 did not cover the case an+1an−1 > a2

n.

Lemma 44 (Lemma 2.2 in [21]). Let a(z) =
∑∞

n=0 anz
n ∈ R[[z]], a0 = 1, be such that

a1 > 0 and an+1an−1 ≥ a2
n for all positive integers n. Then, all Taylor coe�cients of

a(z) = 1− 1/a(z) are nonnegative.
Furthermore, if we have an+1an−1 > a2

n for all positive integers n, then all Taylor
coe�cients of a(z) are positive (except its constant term).

For all n ∈ N, we set

Qα,β(n) :=
(α1)n · · · (αr)n
(β1)n · · · (βs)n

.

By Lemmas 43 and 44, to prove Proposition 42, it su�ces to prove the following result.

Lemma 45. Let α = (α1, . . . , αr) and β = (β1, . . . , βs) be tuples of parameters in
Q \ Z≤0 such that 〈α〉 and 〈β〉 are disjoint. Let a ∈ {1, . . . , dα,β} be coprime to dα,β such
that, for all x ∈ R, we have ξα,β(a, x) ≥ 0. Then, for all positive integers n, we have

Q〈aα〉,〈aβ〉(n+ 1)Q〈aα〉,〈aβ〉(n− 1) > Q〈aα〉,〈aβ〉(n)2.

Furthermore,
(∑r

i=1 H〈aαi〉(n)−
∑s

j=1H〈aβj〉(n)
)
n≥0

is an increasing sequence.

To prove Lemma 45, we �rst prove the following lemma that we also use in the proof
of Theorem 8.

Lemma 46. Let α = (α1, . . . , αr) and β = (β1, . . . , βs) be tuples of parameters in Q\Z≤0

such that 〈α〉 and 〈β〉 are disjoint. Let a ∈ {1, . . . , dα,β} be coprime to dα,β. Let γ1, . . . , γt
be rational numbers such that 〈aγ1〉 < · · · < 〈aγt〉 and such that

{
〈aγ1〉, . . . , 〈aγt〉

}
is the

set of the numbers 〈aγ〉 when γ describes all the elements of α and β. For all i ∈ {1, . . . , t},
we de�ne mi := #

{
1 ≤ j ≤ r : 〈aαj〉 = 〈aγi〉

}
−#

{
1 ≤ j ≤ s : 〈aβj〉 = 〈aγi〉

}
.

Assume that, for all x ∈ R, we have ξα,β(a, x) ≥ 0. Then, for all i ∈ {1, . . . , t} and all
b ∈ R, b ≥ 0, we have

i∑
k=1

mk

〈aγk〉+ b
> 0 and

i∏
k=1

(
1 +

1

〈aγk〉+ b

)mk
> 1.

Proof of Lemma 46. First, observe that by Proposition 16, for all j ∈ {1, . . . , t}, we
have

j∑
i=1

mi = ξ〈aα〉,〈aβ〉(1, 〈aγj〉) ≥ 0.
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Furthermore, since 〈aα〉 and 〈aβ〉 are disjoint, for all i ∈ {1, . . . , t}, we have mi 6= 0. In
particular, we obtain that m1 ≥ 1. It follows that we have

m1

〈aγ1〉+ b
> 0 and

(
1 +

1

〈aγ1〉+ b

)m1

> 1.

Now assume that t ≥ 2. We shall prove by induction on i that, for all i ∈ {2, . . . , t}, we
have

i∑
k=1

mk

〈aγk〉+ b
>

∑i
k=1mk

〈aγi〉+ b
and

i∏
k=1

(
1 +

1

〈aγk〉+ b

)mk
>

(
1 +

1

〈aγi〉+ b

)∑i
k=1mk

.

(9.1)
We have 〈aγ1〉 < 〈aγ2〉 and m1 > 0, thus we get

m1

〈aγ1〉+ b
+

m2

〈aγ2〉+ b
>
m1 +m2

〈aγ2〉+ b

and (
1 +

1

〈aγ1〉+ b

)m1
(

1 +
1

〈aγ2〉+ b

)m2

>

(
1 +

1

〈aγ2〉+ b

)m1+m2

,

so that (9.1) holds for i = 2. We now assume that t ≥ 3, and let i ∈ {2, . . . , t− 1} be such
that (9.1) holds. We obtain that

i+1∑
k=1

mk

〈aγk〉+ b
>

∑i
k=1 mk

〈aγi〉+ b
+

mi+1

〈aγi+1〉+ b
(9.2)

and

i+1∏
k=1

(
1 +

1

〈aγk〉+ b

)mk
>

(
1 +

1

〈aγi〉+ b

)∑i
k=1mk

(
1 +

1

〈aγi+1〉+ b

)mi+1

. (9.3)

Since 〈aγi〉 < 〈aγi+1〉 and
∑i

k=1mk ≥ 0, we obtain that∑i
k=1 mk

〈aγi〉+ b
≥
∑i

k=1mk

〈aγi+1〉+ b
and

(
1 +

1

〈aγi〉+ b

)∑i
k=1mk

≥
(

1 +
1

〈aγi+1〉+ b

)∑i
k=1mk

,

which, together with (9.2) and (9.3), �nishes the induction on i. By (9.1) together with∑t
k=1mk ≥ 0, this completes the proof of Lemma 46. �

We can now prove Lemma 45 and hence complete the proof of Proposition 42 and
Theorem 9.
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Proof of Lemma 45. Throughout this proof, we use the notations de�ned in Lemma
46. For all nonnegative integers n, we have

Q〈aα〉,〈aβ〉(n+ 1)

Q〈aα〉,〈aβ〉(1)Q〈aα〉,〈aβ〉(n)
=

1

Q〈aα〉,〈aβ〉(1)
·
∏r

i=1(〈aαi〉+ n)∏s
j=1(〈aβj〉+ n)

=

∏r
i=1(1 + n/〈aαi〉)∏s
j=1(1 + n/〈aβj〉)

=
t∏

k=1

(
1 +

n

〈aγk〉

)mk
.

We deduce that, for all positive integers n, we obtain

Q〈aα〉,〈aβ〉(n+ 1)Q〈aα〉,〈aβ〉(n− 1)

Q〈aα〉,〈aβ〉(n)2
=

t∏
k=1

(
1 + n/〈aγk〉

1 + (n− 1)/〈aγk〉

)mk
=

t∏
k=1

(
1 +

1

〈aγk〉+ n− 1

)mk
> 1,

where the last inequality is obtained by Lemma 46 with n− 1 instead of b.

Furthermore, for all n ∈ N, we have
r∑
i=1

H〈aαi〉(n+ 1)−
s∑
j=1

H〈aβj〉(n+ 1)−

(
r∑
i=1

H〈aαi〉(n)−
s∑
j=1

H〈aβj〉(n)

)

=
r∑
i=1

1

〈aαi〉+ n
−

s∑
j=1

1

〈aβj〉+ n

=
t∑

k=1

mk

〈aγk〉+ n
> 0,

where the last inequality is obtained by Lemma 46 with n instead of b. It follows that(∑r
i=1 Hαi(n)−

∑s
j=1Hβj(n)

)
n≥0

is an increasing sequence and Lemma 45 is proved. �

10. Proof of Theorem 12

Throughout this section, we �x two tuples α and β of parameters in Q\Z≤0 of the same
length such that 〈α〉 and 〈β〉 are disjoint. Furthermore, we assume that Hα,β holds, that
is, for all a ∈ {1, . . . , dα,β} coprime to dα,β and all x ∈ R satisfying minα,β(a) � x ≺ a, we
have ξα,β(a, x) ≥ 1. We will also use the notations de�ned at the beginning of Section 8.2.

10.1. A p-adic reformulation of Theorem 12. To prove Theorem 12, we have to
prove that

exp

(
Sα,β(C ′α,βz)

nα,β

)
∈ Z[[z]]. (10.1)
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A classical method to prove the integrality of the Taylor coe�cients of exponential of a
power series is to reduce the problem to a p-adic one for all primes p and to use Dieudonné-
Dwork's lemma as follows. Assertion (10.1) holds if and only if, for all primes p, we have

exp

(
Sα,β(C ′α,βz)

nα,β

)
∈ Zp[[z]]. (10.2)

Let us recall that we have

Sα,β(z) =
d∑
a=1

gcd(a,d)=1

G〈aα〉,〈aβ〉(z)

F〈aα〉,〈aβ〉(z)
∈ zQ[[z]],

with d = dα,β. By Proposition 2 applied to (10.2), we obtain that (10.1) holds if and only
if, for all primes p, we have

Sα,β(C ′α,βz
p)− pSα,β(C ′α,βz) ∈ pnα,βZp[[z]]. (10.3)

The map t 7→ t(1) is a permutation of the elements of {1, . . . , dα,β} coprime to dα,β.
Hence, we have

Sα,β(C ′zp)− pSα,β(C ′z) =
d∑
t=1

gcd(t,d)=1

(
G〈t(1)α〉,〈t(1)β〉
F〈t(1)α〉,〈t(1)β〉

(C ′zp)− p
G〈tα〉,〈tβ〉
F〈tα〉,〈tβ〉

(C ′z)

)
,

with d = dα,β and C ′ = C ′α,β. By Theorem 6, we obtain

Sα,β(C ′α,βz
p)− pSα,β(C ′α,βz) = p

D∑
b=1

gcd(b,D)=1

∑
t∈Ωb

∞∑
k=0

Rk,b(t)z
k

= p
D∑
b=1

gcd(b,D)=1

∞∑
k=0

(∑
t∈Ωb

Rk,b(t)

)
zk,

with Rk,b ∈ A∗b and, moreover if p divides dα,β, then we have

Rk,b ∈


p−1−bλp/(p−1)cAb if β ∈ Zr;
Ab if β /∈ Zr and p− 1 - λp;
Ab if β /∈ Zr, mα,β is odd and p = 2.

By point (7) of Lemma 36, we have∑
t∈Ωb

Rk,b(t) ∈ nα,βZp. (10.4)

Indeed, if p does not divide dα,β, then p does not divide nα,β and Rk,b(t) ∈ Zp. Let us
now assume that p divides dα,β so that ν ≥ 1.

If β ∈ Zr, then we have vp(nα,β) = ν−2−bλp/(p−1)c. If β /∈ Zr and if p−1 - λp, then
we have p 6= 2 and vp(nα,β) = ν − 1. Let us now assume that β /∈ Zr and that p− 1 | λp.
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If p 6= 2 then vp(nα,β) = 0 or ν − 2. On the other hand, if p = 2, then either mα,β is even
and v2(nα,β) = 0 or ν − 2, or mα,β is odd and v2(nα,β) = ν − 1.

It follows that, in all cases, we have (10.3) and Theorem 12 is proved.

11. Proof of Theorem 8

Let α and β be tuples of parameters in Q \ Z≤0 such that 〈α〉 and 〈β〉 are disjoint
(this is equivalent to the irreducibility of Lα,β) and such that Fα,β is N -integral. Theorem
12 implies Assertion (iii)⇒ (i) of Theorem 8. Indeed, if (iii) holds, then we have

z−1q̃α,β(z) =
(
z−1qα,β(z)

)ϕ(dα,β)

and, according to Theorem 12, z−1q̃α,β(z) is N -integral. Hence, it su�ces to prove the
following result.

Proposition 47. Let f(z) ∈ 1 + zQ[[z]] be an N-integral power series and let a be a
positive integer. Then f(z)1/a is an N-integral power series.

Proof. We write f(z) = 1 + zg(z) with g(z) ∈ Q[[z]]. Thus, we obtain that

f(z)1/a = 1 +
∞∑
n=1

(−1)n
(−1/a)n

n!
zng(z)n.

Since f(z) is N -integral, there exists C ∈ N such that g(Cz) ∈ Z[[z]]. Furthermore, by
Theorem 3 applied with α = (−1/a) and β = (1), we obtain that there exists K ∈ N such
that, for all n ∈ N, we have

Kn (−1/a)n
n!

∈ Z.

It follows that f(CKz)1/a ∈ Z[[z]], i. e. f(z)1/a is N -integral. �

Furthermore, by de�nition, we have (ii) ⇒ (i) of Theorem 8. Thus, we only have to
prove that (i)⇒ (iii), (i)⇒ (ii) and that, if (i) holds, then we have either α = (1/2) and
β = (1) or there are at least two elements equal to 1 in 〈β〉. Throughout this section, we
assume that (i) holds, i. e. that qα,β is N -integral.

11.1. Proof of Assertion (iii) of Theorem 8. The aim of this section is to prove
that r = s, that Hα,β holds and that, for all a ∈ {1, . . . , dα,β} coprime to dα,β, we have
qα,β(z) = q〈aα〉,〈aβ〉(z). Since Fα,β and qα,β are N -integral, there exists C ∈ Q \ {0} such
that

Fα,β(Cz) ∈ Z[[z]] and qα,β(Cz) = Cz exp

(
Gα,β(Cz)

Fα,β(Cz)

)
∈ Z[[z]].

Thus, for almost all primes p, we have

Fα,β(z) ∈ Zp[[z]] and exp

(
Gα,β(z)

Fα,β(z)

)
∈ Zp[[z]]. (11.1)

We shall use Dieudonné-Dwork's lemma in order to get rid of the exponential map in
(11.1).
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Let p be a prime such that (11.1) holds. By Proposition 2 applied to (11.1), we obtain
that

Gα,β(zp)

Fα,β(zp)
− pGα,β(z)

Fα,β(z)
∈ pzZp[[z]].

Since Fα,β(z) ∈ Zp[[z]], we get

Gα,β(zp)Fα,β(z)− pGα,β(z)Fα,β(zp) ∈ pzZp[[z]]. (11.2)

In the sequel of the proof of Theorem 8, we use several times that (11.2) holds for almost
all primes p.

11.1.1. Proof of r = s. We give a proof by contradiction assuming that r 6= s. Since
Fα,β is N -integral, Christol's criterion ensures that, for all a ∈ {1, . . . , dα,β} coprime to
dα,β and all x ∈ R, we have ξα,β(a, x) ≥ 0. In particular, since r−s is the limit of ξα,β(1, n)
when n ∈ Z tends to −∞, we obtain that r − s ≥ 1. For all n ∈ N, we write An for the
assertion

r∑
i=1

Hαi(n)−
s∑
j=1

Hβj(n) = 0.

First, we prove by induction on n that An is true for all n ∈ N.

Assertion A0 holds. Let n be a positive integer such that, for all integers k, 0 ≤ k < n,
Ak holds. The coe�cient Φp(np) of z

np in (11.2) belongs to pZp and is equal to

n∑
j=0

Qα,β(jp)Qα,β(n− j)

(
r∑
i=1

(
Hαi(n− j)− pHαi(jp)

)
−

s∑
i=1

(
Hβi(n− j)− pHβi(jp)

))
.

By induction, we obtain that

Φp(np) = Qα,β(n)

(
r∑
i=1

Hαi(n)−
s∑
i=1

Hβi(n)

)

− p
n∑
j=1

Qα,β(jp)Qα,β(n− j)

(
r∑
i=1

Hαi(jp)−
s∑
i=1

Hβi(jp)

)
.

Furthermore, according to Lemma 26, there exists a constant Mα,β > 0 such that, for

all x ∈ [0, 1/Mα,β[, all primes p not dividing dα,β and all ` ∈ N, ` ≥ 1, we have ∆p,`
α,β(x) = 0.

Hence, for almost all primes p and all j ∈ {1, . . . , n}, we have

vp
(
Qα,β(jp)

)
=
∞∑
`=1

∆p,`
α,β

(
jp

p`

)
= ∆p,1

α,β(j)+
∞∑
`=1

∆p,`+1
α,β

(
j

p`

)
= ∆p,1

α,β(j) = j(r−s). (11.3)

According to Lemma 23, for almost all primes p and all the elements α in α or β, we
have Dp(α) = Dp(〈α〉), so that Dp(α) = 〈ωα〉 where ω ∈ {1, . . . , dα,β} satis�es ωp ≡ 1
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mod dα,β. Thus we get

pHα(jp) = p

p−1∑
k=0

j−1∑
i=0

1

α + k + ip

= HDp(α)(j) + p

p−1∑
k=0

k 6=pDp(α)−α

j−1∑
i=0

1

α + k + ip
∈ H〈ωα〉(j) + pZp,

which leads to

p

(
r∑
i=1

Hαi(jp)−
s∑
i=1

Hβi(jp)

)
≡

r∑
i=1

H〈ωαi〉(j)−
s∑
i=1

H〈ωβi〉(j) mod pZp. (11.4)

Furthermore, for almost all primes p, we have{
r∑
i=1

H〈ωαi〉(j)−
s∑
i=1

H〈ωβi〉(j) : 1 ≤ j ≤ n, 1 ≤ ω ≤ dα,β, gcd(ω, dα,β) = 1

}
⊂ Zp,

which, together with (11.3) and (11.4), gives us that

−pQα,β(jp)Qα,β(n− j)

(
r∑
i=1

Hαi(jp)−
s∑
i=1

Hβi(jp)

)
∈ pr−sZp,

for almost all primes p and all j ∈ {1, . . . , n}. In addition, for almost all primes p, we have

Qα,β(n)

(
r∑
i=1

Hαi(n)−
s∑
j=1

Hβj(n)

)
∈ Z×p ∪ {0} and Qα,β(n) 6= 0.

Since Φp(np) ∈ pZp and r − s ≥ 1, we obtain that An holds, which �nishes the induction
on n.

It follows that, for all n ∈ N, we obtain that

r∑
i=1

1

αi + n
−

s∑
i=1

1

βi + n
=

r∑
i=1

(
Hαi(n+ 1)−Hαi(n)

)
−

s∑
i=1

(
Hβi(n+ 1)−Hβi(n)

)
= 0,

contradicting that α and β are disjoint since

r∑
i=1

1

αi +X
−

s∑
i=1

1

βi +X
∈ Q(X)

must be a nontrivial rational fraction in this case. Thus we have r = s as expected. �
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11.1.2. Proof of Hα,β. Let us recall that, since Fα,β isN -integral, for all a ∈ {1, . . . , dα,β}
coprime to dα,β and all x ∈ R, we have ξα,β(a, x) ≥ 0. We give a proof of Hα,β by contra-
diction, assuming that there exist a ∈ {1, . . . , dα,β} coprime to dα,β and x0 ∈ R such that
minα,β(a) � x0 ≺ a and ξα,β(a, x0) = 0. Let α and β be such that

aβ = max
(
{aγ : aγ � x0, γ is in α or β},�

)
and

aα = min
(
{aγ : x0 ≺ aγ, γ equals 1 or is in α or β},�

)
.

It follows that, for all x ∈ R satisfying aβ � x ≺ aα, we have ξα,β(a, x) = 0. Observe that,
since 〈α〉 and 〈β〉 are disjoint, 〈aα〉 and 〈aβ〉 are also disjoint, thus β is a component of
β and α equals 1 or is an element of α because ξα,β(a, ·) is nonnegative on R.

Let us write Pα,β(a) for the set of all primes p such that ap ≡ 1 mod dα,β. For all large
enough p ∈ Pα,β(a), Lemma 23 gives us that Dp(α) = Dp(〈α〉) = 〈aα〉 and Dp(β) = 〈aβ〉.
On the one hand, if 〈aβ〉 < 〈aα〉, then, for almost all p ∈ Pα,β(a), we obtain that

Dp(α) +
b1− αc

p
−Dp(β)− b1− βc

p
≥ 1

dα,β
+
b1− αc

p
− b1− βc

p
≥ 1

p
.

On the other hand, if 〈aβ〉 = 〈aα〉 and β > α, then we have 〈β〉 = 〈α〉 so β ≥ 1 + α and

Dp(α) +
b1− αc

p
−Dp(β)− b1− βc

p
=
b1− αc

p
− b1− βc

p
≥ 1

p
.

In both cases, we obtain that, for almost all p ∈ Pα,β(a), there exists vp ∈ {0, . . . , p−1}
such that

Dp(β) +
b1− βc

p
≤ vp

p
< Dp(α) +

b1− αc
p

,

which, together with Lemma 28, gives us that ∆p,1
α,β(vp/p) = 0 for all large enough p ∈

Pα,β(a). Furthermore, by Lemma 26, for almost all p ∈ Pα,β(a) and all ` ∈ N, ` ≥ 1,

∆p,`
α,β vanishes on [0, 1/p] so that

vp
(
Qα,β(vp)

)
=
∞∑
`=1

∆p,`
α,β

(
vp
p`

)
= ∆p,1

α,β

(
vp
p

)
= 0,

i. e. Qα,β(vp) ∈ Z×p . Now looking at the coe�cient of zvp in (11.2), one obtains that

−pQα,β(vp)
r∑
i=1

(
Hαi(vp)−Hβi(vp)

)
∈ pZp.

To get a contradiction, we shall prove that, for all large enough p ∈ Pα,β(a), we have

p

(
r∑
i=1

Hαi(vp)−
r∑
i=1

Hβi(vp)

)
∈ Z×p . (11.5)
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Indeed, for all elements γ of α or β and all large enough p ∈ Pα,β(a), we have

pHγ(vp) = p

vp−1∑
k=0

1

γ + k
≡ ρ(vp, γ)

Dp(γ)
mod pZp

≡ ρ(vp, γ)

〈aγ〉
mod pZp.

Furthermore, we have

ρ(vp, γ) = 1⇐⇒ vp ≥ pDp(γ)− γ + 1⇐⇒ vp ≥ pDp(γ) + b1− γc

⇐⇒ vp
p
≥ Dp(γ) +

b1− γc
p

,

because pDp(γ)−γ ∈ Z which leads to vp ≥ pDp(γ)+b1−γc ⇒ vp ≥ pDp+b1−γc+{1−γ}.
Thus, by Lemma 28, for all large enough p ∈ Pα,β(a), we have ρ(vp, γ) = 1 if aγ � aβ and
ρ(vp, γ) = 0 otherwise.

Now, let γ1, · · · , γt be rational numbers such that 〈aγ1〉 < · · · < 〈aγt〉 and such that
{〈aγ1〉, . . . , 〈aγt〉} is the set of the numbers 〈aγ〉 when γ describes all the elements of α
and β satisfying aγ � aβ. For all i ∈ {1, . . . , t}, we de�ne

mi := #
{

1 ≤ j ≤ r : 〈aαj〉 = 〈aγi〉
}
−#

{
1 ≤ j ≤ r : 〈aβj〉 = 〈aγi〉

}
.

Then, we obtain that

p

(
r∑
i=1

Hαi(vp)−
r∑
j=1

Hβj(vp)

)
≡

r∑
i=1

ρ(vp, αi)

〈aαi〉
−

r∑
j=1

ρ(vp, βj)

〈aβj〉
mod pZp

≡
t∑
i=1

mi

〈aγi〉
mod pZp.

For almost all primes p, we have
∑t

i=1(mi/〈aγi〉) ∈ Z×p ∪ {0}. Thus, to prove (11.5), it
su�ces to prove that

t∑
i=1

mi

〈aγi〉
6= 0,

which follows by Lemma 46 applied with b = 0. This �nishes the proof of Hα,β. �
11.1.3. Last step in the proof of Assertion (iii) of Theorem 8. To �nish the proof of

Assertion (iii) of Theorem 8, it remains to prove that, for all a ∈ {1, . . . , dα,β} coprime
to dα,β, we have qα,β(z) = q〈aα〉,〈aβ〉(z). For that purpose, we shall use Dwork's results
presented in [12] on the integrality of Taylor coe�cients at the origin of power series
similar to qα,β. We remind the reader that, by Sections 11.1.1 and 11.1.2, we have r = s
and Hα,β holds.

More precisely, we prove the following lemma which shows that, under these assump-
tions, we can apply Dwork's result [12, Theorem 4.1] for almost all primes.
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Lemma 48. Let α and β be two tuples of parameters in Q\Z≤0 with the same numbers
of elements. If 〈α〉 and 〈β〉 are disjoint (this is equivalent to the irreducibility of Lα,β)
and if Hα,β holds, then for almost all primes p not dividing dα,β, we have

GDp(α),Dp(β)(z
p)

FDp(α),Dp(β)(zp)
− pGα,β(z)

Fα,β(z)
∈ pZp[[z]].

Remark 49. Lemma 48 in combination with Lemma 18 gives us that q̃α,β(z) ∈ Zp[[z]]
for almost all primes p.

Proof. If p is a prime not dividing dα,β, then the elements of α and β lie in Zp and
GDp(α),Dp(β)(z

p)

FDp(α),Dp(β)(zp)
− pGα,β(z)

Fα,β(z)
∈ Qp[[z]].

Furthermore, α and β have the same number of elements so that Lemma 48 follows from
the conclusion of Dwork's theorem [12, Theorem 4.1]. In the sequel of this proof, we check
that α and β satisfy the hypotheses of [12, Theorem 4.1] for almost all primes p. We use
the notations de�ned in Section 4.2.1. For a given �xed prime p not dividing dα,β, the
hypotheses of [12, Theorem 4.1] read

(v) for all i ∈ {1, . . . , r′} and all k ∈ N, we have Dk
p(βi) ∈ Z×p ;

(vi) for all a ∈ [0, p) and all k ∈ N, we have either Nk
p,α(a) = Nk

p,β(a+) = 0 or

Nk
p,α(a)−Nk

p,β(a+) ≥ 1.

If p is a large enough prime, then, by Lemma 23, for all i ∈ {1, . . . , r′}, we have
Dp(βi) = Dp(〈βi〉) so that

Dp(βi) ∈
{

1

dα,β
, . . . ,

dα,β − 1

dα,β
, 1

}
⊂ Z×p . (11.6)

Thus, for all large enough primes p, β satis�es Assertion (v).

Let α and β be elements of α and β. First, we prove that, for all large enough primes
p, we have

pDp(α)− α ≤ pDp(β)− β ⇐⇒ ωα � ωβ, (11.7)

where ω ∈ {1, . . . , dα,β} satis�es ωp ≡ 1 mod dα,β. Assume that p is large enough so that,
by Lemma 23, we get Dp(α) = 〈ωα〉 and Dp(β) = 〈ωβ〉. In particular, we obtain that

Dp(α) = Dp(β) or
∣∣Dp(α)−Dp(β)

∣∣ ≥ 1

dα,β
.

Thus, for all large enough primes p, we have

pDp(α)− α ≤ pDp(β)− β ⇐⇒ Dp(α)−Dp(β) ≤ α− β
p

⇐⇒
(
Dp(α) < Dp(β) or

(
Dp(α) = Dp(β) and α ≥ β

))
⇐⇒ ωα � ωβ,
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as expected. Now, we observe that, if Nk
p,β(a+) = 0, then Assertion (vi) is trivial, so

we may assume that Nk
p,β(a+) ≥ 1. We set β′ := (β1, . . . , βr′). Let us write θkp(x) for

pDk+1
p (x) − Dk

p(x), and let γ be the component of α or β′ such that θkp(γ) is the largest
element of{

θkp(αi) : 1 ≤ i ≤ r, θkp(αi) < a
}⋃{

θkp(βj) : 1 ≤ j ≤ r′, θkp(βj) ≤ a
}
.

Since 〈α〉 and 〈β〉 are disjoint, Dk
p(α) and Dk

p(β
′) are also disjoint and, according to

(11.7), θkp(α) and θkp(β
′) are disjoint. It follows that Nk

p,α(a)−Nk
p,β(a+) is equal to

#
{

1 ≤ i ≤ r : θkp(αi) ≤ θkp(γ)
}
−#

{
1 ≤ i ≤ r′ : θkp(βj) ≤ θkp(γ)

}
= #

{
1 ≤ i ≤ r : ωDk

p(αi) � ωDk
p(γ)

}
−#

{
1 ≤ i ≤ r′ : ωDk

p(βj) � ωDk
p(γ)

}
.

If k = 0, then we obtain that ωDk
p(α) � ωDk

p(γ)⇔ ωα � ωγ with minα,β(ω) � ωγ ≺ ω

since γ 6= 1. Indeed, if γ is an element of β′ then γ 6= 1, else γ is an element of α and
θkp(γ) < a so that γ 6= 1. Thus we have N0

p,α(a) − N0
p,β(a+) = ξα,β(ω, ωγ) and, by Hα,β,

we get N0
p,α(a)−N0

p,β(a+) ≥ 1 as expected.

If k ≥ 1, then, for all elements α of α and β′, we have Dk
p(α) = 〈ωkα〉 and

〈
ωDk

p(α)
〉

=〈
ω〈ωkα〉

〉
= 〈ωk+1α〉. We deduce that we have ωDk

p(α) � ωDk
p(γ) ⇔ 〈ωk+1α〉 ≤ 〈ωk+1γ〉

because

〈ωk+1α〉 = 〈ωk+1γ〉 ⇐⇒ 〈α〉 = 〈γ〉 ⇐⇒ 〈ωkα〉 = 〈ωkγ〉.
If 〈γ〉 < 1, then 〈ωk+1γ〉 < 1 and we obtain that

Nk
p,α(a)−Nk

p,β(a+) = ξα,β(ωk+1, 〈ωk+1γ〉+) ≥ 1.

On the other hand, if 〈γ〉 = 1, then we get Nk
p,α(a)−Nk

p,β(a+) = r − r′. Note that r′ < r
since there is at least one element of β equal to 1. Indeed, according to Hα,β, if x ∈ R
satis�es minα,β(1) � x ≺ 1, then we have ξα,β(1, x) ≥ 1. Since 〈α〉 and 〈β〉 are disjoint,
we have 〈minα,β(1)〉 < 1 so that minα,β(1) � 2 ≺ 1 and

1 ≤ ξα,β(1, 2) = #{1 ≤ i ≤ r : αi 6= 1} −#{1 ≤ j ≤ r : βj 6= 1}.

We deduce that there is at least one j ∈ {1, . . . , r} such that βj = 1 and we obtain that

Nk
p,α(a)−Nk

p,β(a+) = r − r′ ≥ 1,

as expected. Thus Assertion (vi) holds and Lemma 48 is proved. �

Now we �x a ∈ {1, . . . , dα,β} coprime to dα,β. For all large enough primes p ∈ Pα,β(a)
and all the elements α of α or β, we have Dp(α) = 〈aα〉. By Lemma 48, we obtain that,
for almost all primes p ∈ Pα,β(a), we have

G〈aα〉,〈aβ〉(z
p)

F〈aα〉,〈aβ〉(zp)
− pGα,β(z)

Fα,β(z)
∈ pZp[[z]].
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Furthermore, since qα,β(z) is N -integral, for almost all primes p, we have

Gα,β(zp)

Fα,β(zp)
− pGα,β(z)

Fα,β(z)
∈ pZp[[z]].

Thus, for almost all primes p ∈ Pα,β(a), we obtain that

G〈aα〉,〈aβ〉(z
p)

F〈aα〉,〈aβ〉(zp)
− Gα,β(zp)

Fα,β(zp)
∈ pZp[[z]],

which leads to
G〈aα〉,〈aβ〉(z)

F〈aα〉,〈aβ〉(z)
− Gα,β(z)

Fα,β(z)
∈ pZp[[z]].

By Dirichlet's theorem, there are in�nitely many primes in Pα,β(a) so that we have

G〈aα〉,〈aβ〉(z)

F〈aα〉,〈aβ〉(z)
=
Gα,β(z)

Fα,β(z)
,

which implies that qα,β(z) = q〈aα〉,〈aβ〉(z) as expected. This �nishes the proof of Asser-
tion (iii) of Theorem 8.

11.2. Proof of Assertion (ii) of Theorem 8. We have to prove that (C ′α,βz)−1qα,β(C ′α,βz)
is in Z[[z]]. By Section 11.1, Assertion (iii) of Theorem 8 holds, i. e. we have r = s, Hα,β

holds and, for all a ∈ {1, . . . , dα,β} coprime to dα,β, we have q〈aα〉,〈aβ〉(z) = qα,β(z) so that

G〈aα〉,〈aβ〉(z)

F〈aα〉,〈aβ〉(z)
=
Gα,β(z)

Fα,β(z)
. (11.8)

By Theorem 6 in combination with (11.8), we obtain that

Gα,β

Fα,β

(C ′α,βz
p)− pGα,β

Fα,β

(C ′α,βz) ∈ pZp[[z]],

so that, according to Proposition 2, we have (C ′α,βz)−1qα,β(C ′α,βz) ∈ Zp[[z]]. Since p is an

arbitrary prime; we get (C ′α,βz)−1qα,β(C ′α,βz) ∈ Z[[z]], as expected.

11.3. Last step in the proof of Theorem 8. To complete the proof of Theorem 8,
we have to prove that we have either α = (1/2) and β = (1), or r ≥ 2 and there are at
least two 1's in β. We shall distinguish two cases.

• Case 1: We assume that r = 1.

As already proved at the end of the proof of Lemma 48, there is at least one el-
ement of β equal to 1. Thus we obtain that β = (1). We write α = (α). Since
Assertion (iii) of Theorem 8 holds, for all a ∈ {1, . . . , d(α)} coprime to d(α), we have
G〈aα〉,〈aβ〉(z)/F〈aα〉,〈aβ〉(z) = Gα,β(z)/Fα,β(z), i. e.

Fα,β(z)G〈aα〉,〈aβ〉(z) = F〈aα〉,〈aβ〉(z)Gα,β(z). (11.9)
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Now looking at the coe�cient of z in the power series involved in (11.9), one obtains that

〈aα〉
(

1

〈aα〉
− 1

)
= α

(
1

α
− 1

)
.

We deduce that, for all a ∈ {1, . . . , d(α)} coprime to d(α), we have 〈aα〉 = α. Thus we get
that{

κ

d(α)
: 1 ≤ κ ≤ d(α), gcd

(
κ, d(α)

)
= 1

}
=
{
〈aα〉 : 1 ≤ a ≤ d(α), gcd

(
a, d(α)

)
= 1
}

= {α},

which implies that α = 1/2 as expected.

• Case 2: We assume that r ≥ 2.

We already know that there is at least one element of β equal to 1. Since 〈α〉 and
〈β〉 are disjoint, for all the elements α of α, we have 〈α〉 < 1. Furthermore, for all
a ∈ {1, . . . , dα,β} coprime to dα,β, we have

ξ〈α〉,〈β〉(a, 1−) = #
{

1 ≤ i ≤ r : 〈αi〉 6= 1} −#{1 ≤ i ≤ r : 〈βi〉 6= 1
}

= r −#{1 ≤ i ≤ r : 〈βi〉 6= 1
}
.

It follows that we have to prove that ξ〈α〉,〈β〉(a, 1−) ≥ 2.
Let γ be an element of α or β with the largest exact denominator. Then, there exists

a ∈ {1, . . . , dα,β} coprime to dα,β such that 〈aγ〉 = 1/d(γ). By Hα,β in combination with
Lemma 18, we obtain that H〈α〉,〈β〉 holds. In addition, we have

〈
a〈γ〉

〉
= 〈aγ〉 = 1/d(γ) so

that ξ〈α〉,〈β〉
(
a, 1/d(γ) +

)
≥ 1. Since 〈aα〉 and 〈aβ〉 are disjoint and have elements larger

than or equal to 1/d(γ), we obtain that γ is a component of α.
Furthermore, there exists a ∈ {1, . . . , dα,β} coprime to dα,β such that

〈aγ〉 =
d(γ)− 1

d(γ)
=: κ.

Thus κ is the largest element distinct from 1 in 〈aα〉 and 〈aβ〉, and we obtain that
ξ〈α〉,〈β〉(a, κ+) = ξ〈α〉,〈β〉(a, 1−). If 〈min〈α〉,〈β〉(a)〉 = κ, then all the elements of 〈β〉 are
equal to 1 and the result is proved. Otherwise, we have 〈min〈α〉,〈β〉(a)〉 < κ so that
ξ〈α〉,〈β〉(a, κ−) ≥ 1. Since γ is an element of α, we obtain that ξ〈α〉,〈β〉(a, κ+) ≥ 2 as
expected. This �nishes the proof of Theorem 8.

12. Proof of Theorem 10

According to Dieudonné-Dwork's lemma, we have to prove that, for all primes p,

Gα,β(C ′α,βz
p)

Fα,β(C ′α,βz
p)
− p

Gα,β(C ′α,βz)

Fα,β(C ′α,βz)
∈ pn′α,βZp[[z]].
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Note that Theorem 8 ensures that the hypotheses of Theorem 6 are satis�ed. According to
Theorem 6, for any prime p, there exists a ∈ {1, ..., dα,β} (with the notations of Theorem 6,
one may take a = t(1) with t = 1) such that gcd(a, dα,β) = 1 and

G〈aα〉,〈aβ〉(C
′
α,βz

p)

F〈aα〉,〈aβ〉(C ′α,βz
p)
− p

G〈α〉,〈β〉(C
′
α,βz)

F〈α〉,〈β〉(C ′α,βz)
∈ pn′α,βZp[[z]].

The conclusion follows from assertion (iii) of Theorem 8, which ensures that

G〈aα〉,〈aβ〉(C
′
α,βz

p)

F〈aα〉,〈aβ〉(C ′α,βz
p)

=
Gα,β(C ′α,βz

p)

Fα,β(C ′α,βz
p)

and
G〈α〉,〈β〉(z)

F〈α〉,〈β〉(z)
=
Gα,β(z)

Fα,β(z)
.

13. Proof of Corollary 14

According to Theorem 8, for all a ∈ {1, ..., dα,β} such that gcd(a, dα,β) = 1, we have

qα,β(z) = q〈aα〉,〈aβ〉(z). Therefore, we have z−1q̃α,β(z) = (z−1qα,β(z))
ϕ(dα,β)

. Now, the
result follows from Theorem 12.
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