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Abstract

Using Dwork’s theory, we prove a broad generalization of his famous p-adic formal
congruences theorem. This enables us to prove certain p-adic congruences for the general-
ized hypergeometric series with rational parameters; in particular, they hold for any prime
number p and not only for almost all primes. Furthermore, using Christol’s functions, we
provide an explicit formula for the “Eisenstein constant” of any hypergeometric series with
rational parameters.

As an application of these results, we obtain an arithmetic statement “on average” of a
new type concerning the integrality of Taylor coefficients of the associated mirror maps. It
contains all the similar univariate integrality results in the literature, with the exception
of certain refinements that hold only in very particular cases.
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1. Introduction

Mirror maps are power series which occur in Mirror Symmetry as the inverse for com-
position of power series of the form ¢(z) = exp(wa(2)/wi(2)), called canonical coordinates,
where w(z) and ws(z) are particular solutions of the Picard-Fuchs equation associated
with certain one-parameter families of Calabi-Yau varieties. They can be viewed as higher
dimensional generalizations of the classical modular forms, and in several cases, it has been
observed that such mirror maps and canonical coordinates have integral Taylor coefficients
at the origin.

The arithmetical study of mirror maps began with the famous example of a family of
mirror manifolds for quintic threefolds in P* given by Candelas et al. [6] and associated
with the Picard-Fuchs equation

d
0*w — 52(50 + 1)(50 +2)(50 +3)(50 + 4w =0, 6= i
z
This equation is (a rescaling of) a generalized hypergeometric differential equation with
two linearly independent local solutions at z = 0 given by

e}

wi(z) = Z Ei:l)); 2" and  wo(z) = G(z) + log(2)ws (2),

n=0

where

—~

5n)!
nl)s

G(z) =)

n=1

(5Hs, — 5H,)z" and H, :=

—~

The corresponding canonical coordinate exp (w2 (z) /w1 (2)) oceurs in enumerative geometry
and in the Mirror Conjecture associated with quintic threefolds in P* (see [25]). The
integrality of its Taylor coefficients at the origin has been proved by Lian and Yau in [26].

In a more general context, Batyrev and van Straten conjectured the integrality of the
Taylor coefficients at the origin of a large class of canonical coordinates |2, Conjecture 6.3.4]
built on A-hypergeometric series (see |[33| for an introduction to these series, which gen-
eralize the classical hypergeometric series to the multivariate case). Furthermore, they
provided a lot of examples of univariate canonical coordinates whose Taylor coefficients
were subsequently proved to be integers in many cases by Zudilin [34| and Krattenthaler
and Rivoal [18].

In the sequel of this article, we say that a power series f(z) € C[[z]] is N-integral if
there exists ¢ € Q such that f(cz) € Z[[z]]. The constant ¢ might be called the Eisenstein
constant of f, in reference to Eisenstein’s theorem that such a constant c exists when f is
a holomorphic algebraic function over Q(z).

Motivated by the search for differential operators £ associated with particular families
of Calabi-Yau varieties, Almkvist et al. [1] and Bogner and Reiter [5] introduced the
notion of “Calabi-Yau operators”. Even if both notions slightly differ, both require that an
irreducible differential operator £ € Q(z)[d/dz] of Calabi-Yau type satisfies

(P;) L has a solution w(z) € 1+ 2C[[z]] at z = 0 which is N-integral.
1



(P,) L has a linearly independent solution ws(2) = G(2) + log(z)w1(z) at z = 0 with
G(z) € 2C|[[z]] and exp (w2(z)/wi(z)) is N-integral.

The present paper is mainly concerned with arithmetic properties of mirror maps as-
sociated with generalized hypergeometric equations, that we shall now define.

We let o := (ay, ..., ) and B := (f1,...,[s) be tuples of parameters in Q \ Z<o.

We introduce the generalized hypergeometric series

S e,
Fanl) =2 G 3, " -1

where (z),, denotes the Pochhammer symbol (z), = z(x 4+ 1)---(x +n—1)if n > 1 and
(x)o = 1 otherwise. If 5, = 1, then our definition (1.1) agrees with the classical notation

F,z(z)=,F. ’ ’ .
’() |:617'--7ﬁ51 Z ﬂs 1)
We also consider the series

Gap(z) =) ((;1)— (Z H, Z Hy, (n)> :

where, for all n € N and all z € Q \ Z<g, H.(n) := Y7~} g
We define the canonical coordinate associated with (e, 3) b

%ﬂ@w:zam(gﬁﬁg)ez@mn (1.2)

The mirror map 24 g(q) € ¢Q|[g]] associated with (e, B) is, by definition, the compositional
inverse of gq g(2).

This definition of ¢o g(2) is motivated by the fact that, if S,_1 = 85 = 1, then ¢o (2)
is the canonical coordinate associated to the generalized hypergeometric operator given by

Cop=[[0+5—1) ][0 +a), 6=2:2
=1

, dz
=1

S

Indeed, in this case, F g(2) and G g(2) + log(2)Fu (%) are formal solutions of L, g and
we have G () + log(2) )
a,8(2) +log(z)Fo (2
Jap(2) = exp < ) :
’ Fop(2)

We shall now give a brief overview of the content of the present paper, refering to
Section 2 for the detailed statements of our main results.

We start with a study of the N-integrality properties of F, g(z). Whether or not
Fop(z) is N-integral can be decided by using a criterion due to Christol. The first task
undertaken in this paper is to study the minimal constant Cy g in QT \ {0} such that

Fop(Capz) € Z[[2]].
2



In particular, we give an explicit formula for Cy g when r = s, o € (0,1]" and 8 € (0, 1]°.
We refer to Section 2.1 for details.

We shall now introduce some notations. For all z € Q, we denote by (x) the unique
element in (0, 1] such that z — (x) € Z, and, for all ® = (zq,...,2,) € Q™ we set
() = ((x1), ..., (Tm)). Hence (z) is the fractional part of z if x ¢ Z, and (x) = 1 otherwise.
We denote by dg g the least common multiple of the exact denominators () of the elements
of a and 3.

In the rest of this section, we assume that, for all (¢,7) € {1,...,7} x {1,..., s}, we have
o; —B; € Z (*), and that F g(2) is N-integral.

We now come to the N-integrality of ¢og(2). The N-integrality of g p(z) is the
exception, not the rule. This is illustrated in [8] where the N-integral mirror maps are
classified when the parameters o and (3 are R-partitioned (*) and in [31, 32| where such
a classification is obtained when 5 = --- = B, = 1. One of our main contribution is
to exhibit an explicit condition, denoted by Hy g, on a and B such that the following
properties are equivalent:

(1) ga,p(z) is N-integral;
(2) assertion Hq g holds, we have r = s and, for all a € {1,...,d g} coprime to dq g,
we have ¢ 8(2) = Q(aa),(g)(2)-

REMARK 1. For all C € Q, we have zo g(Cq) € Z[[q]] if and only if go g(Cz) € Z[[2]].
In particular, gop ts N-integral if and only if za g s N-integral.
Moreover, if one of the above equivalent properties holds true, then we prove that
(Cap?) 0a,8(Cap2) € Z[[]],

where C, 5 = 2C(q) () or Ciay(s)- We refer to Theorem 8 for details. Actually, we are
even able to improve this integrality result by considering roots of (C7, 52)'¢a,s(Ch 52);
see Theorem 10 and Corollary 14.

Instead of considering gq g(z) itself, which is not N-integral in general, we also study

da,p

Ga,p(2) = 2 H 2 Qlaay iap) (2).

a=1
ged(a,do,g)=1

We prove that, if H, g holds true and r = s, then g, g(z) is N-integral, and that
(Cap?) ' Gap(Copz) € Z[[2])-

'Consider = € Q. There exists a unique (a,b) € Z x Z>; such that = = a/b and gcd(a,b) = 1. We will
call b the exact denominator of x.

2This is equivalent to the irreducibility of L4 g on C(2).

3Thr0ugh0ut this article, we say that @ € Q" is R-partitioned if, up to permutation of its coordinates,
a is the concatenation of tuples of the form (b/m)pei,... . m},gcd(v,m)=1 for m € Zs;.

3
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Actually, we improve this N-integrality result by considering roots of (C7, 52)'Ga,s(Ch 52):
if hypothesis H, g holds true and r = s, then we exhibit some integer n, g such that

((Cop?) 'Gap(Copz)) " € Z[[2]]. (1.3)
We refer to Theorem 12 for details.

We shall now say a few words about the proof of (1.3); this will lead us to the main
technical ingredient of this paper (some generalizations of Dwork’s congruences detailed in
Section 2.2). The starting point is the following classical result (see [34, Lemma 5|, [17,
Chap. 1V, Sec. 2, Lemma 3|, [30, p. 409, Theorem]|).

PROPOSITION 2 (Dieudonné-Dwork’s lemma). Given a prime p and f(z) € 2Q|[[z]], we
have exp (f(2)) € 1+ 2Z,[[2]] if and only if f(z*) —pf(z) € pzZ,[[2]], where Z,, is the ring
of p-adic integers.

Since

da s !
_ e 1 < Glaa) s (Cap?)

(Ch 52) " Gap(Chgz)) "8 =exp | —— | | ’
( a8 e a8 ) az; F<aa>7<aﬁ>(0;7ﬁz)
ged(a,de,g)=1

Proposition 2 ensures that the integrality property (1.3) holds true if and only if, for all
primes p, we have

e, A
= Flaanes (Cop) ~ Fuaes)(Chgz) 0
ged(a,da,g)=1 ged(a,de,g)=1

The very basic strategy for proving such a congruence (for a fixed prime p) is to construct
a permutation a — a’ of {a € {1,...,dag} : gcd(a,dag) = 1} such that

Gla ) (Cap?’) pG<aa>,<a@>(C;,gZ)
Flaay@p)(Cap?) " Flaa.@s)(Cog?)

(1.5)

satisfies “nice congruences”. The meaning of “nice congruences” and the explicit construc-
tion of a’ are too technical for this introduction and we refer to Section 2.2, and especially
Theorem 6, for details. We shall just mention the fact that congruences for (1.5) were first
derived by Dwork when e € Z7, B € (Z,)® and ny g = 1. In this paper, it is fundamental
to get rid of these hypotheses, and to study how the congruence (1.5) depends on a.

4



With these “nice congruences” in hands, the proof of the congruence (1.4) is (with
simplifications) a consequence of the equality

de, de,

Zﬁ G<aa>,<aﬂ>(02p)_p Zﬁ Glac,(a8) (C2)

' Flaa),a) (C2) ~ Fla)p)(C7)
ged(a,do,3)=1 ged(a,dq,g)=1

Flaoy ) (C2P) 7~ Flaray ) (C2)

dOM
_ ZB <G<aa>,<aﬁ><czp) pG(a’a>,<a',3>(CZ)) . (16)

a=1
ged(a,do,g)=1

It is now clear that the study of congruences for (1.5) is central in this paper: they are
the main ingredient of the proofs of our N-integrality results for g, g(z) and g (2).

2. Statements of the main results.

In this section, we consider tuples a = (s, ..., ) and 8 = (B, ..., ;) of parameters
in Q\ Z<o. We write do g for the least common multiple of the exact denominators of the
elements of a and (.

2.1. N-integrality of I, g. We first state a criterion for /', g to be N-integral, which
is due to Chritsol. We will use the following notations:

e for all z € Q, we write (z) for the unique element in (0, 1] such that = — (z) € Z.
In other words, we have (x) = 1—{1—x} = x+[1—=x], where {-} is the fractional
part function and where |-] is the floor function;

e we write < for the total order on R defined by

r3ye= (@) <@ o ((0)=() and z2y));
o for all a € {1,...,dn g} coprime to do g and all x € R, we set
éapla,z) =#{1<i<r :aw; 22} —#{1<j<s:af; 2z}
THEOREM 3 (Christol, |7]). The following assertions are equivalent:
(i) Fap is N-integral.
(i7) For alla € {1,...,dag} coprime to do g and all x € R, we have £ g(a,z) > 0.
If Fy g is N-integral, then we denote by C, g the minimal constant in QT \ {0} such
that
Fap(Cap2) € Z[[2]].

(Actually, it is easily seen that the set of all C' € Q satistying Fi, g(Cz) € Z][[z]] is equal to
CapZ.) Our first result, Theorem 4 below, gives some arithmetical properties of Cy, g and
even a formula for Co g when 7 = s, a € (0,1]" and B € (0, 1]*. We will use the following
notations:



e for all primes p, we define

N =Mo,B) =#{1<i<r:oqeZ,}—#{1<j<s: p; €Ly},
where Z,, is the ring of p-adic integers;
o we write Pq g for the set of all primes p such that p divides do g or p <71 —5+1;
o for all a € Q\ {0}, we write d(a) for the exact denominator of a.

THEOREM 4. Assume that Fo g is N-integral. Then, there exists C € N\ {0} such that

_ A d(en) =
Ca,ﬂ—cm H p e (2.1)

Furthermore, if r = s, a € (0,1]" and B € (0,1]°, then we have C = 1.

2.2. Generalizations of Dwork’s congruence. As explained at the end of the in-
troduction, Theorem 6 below is the cornerstone of this paper, on which the proofs of the
N-integrality results stated in Sections 2.3 and 2.4 below rely. The reader interested in
our N-integrality statements for canonical coordinates, but not in the proofs, can skip this
section. We will use the following notations:

e For all primes p and all positive integers n, we write 2l,,,, respectively 2(7 , for
the Zy-algebra of the functions f : (Z))" — Z, such that, for all positive integers

m, all x € (Z;)" and all a € Zj, we have
f(x+ap™) = f(x) mod p"Z,,
respectively
f(x+ap™) = f(x) mod p™'Z,.

e If D is a positive integer coprime to p, then, for all v € N, and all b € {1,..., D}
coprime to D, we write Qy(p”, D) for the set of all t € {1,...,p"D} coprime to
p¥ D satisfying t =b mod D.

o We write A,(p”, D), respectively Ay(p”, D)*, for the Z,-algebra of the functions
[ Q(p”, D) — Z, such that, for all positive integers m and all t,t, € Qy(p”, D),
we have

t1 =ty mod p™" = f(t1) = f(t2) mod p"Z,,
respectively
ti=t, mod p™ = f(t;) = f(t2) mod p" 'Z,.

o For all t € Q(p¥, D) and all r € N, we write t") for the unique element of
{1,...,p"D} satisfying
t" =¢ mod p” and p"t™) =¢ mod D.
o If B ¢ Z°, then we write my g for the number of elements of o and 8 with exact
denominator divisible by 4.

e We write d;, 5 for the integer obtained by dividing do g by the product of its prime
divisors.



e Weset Cf, 5 = 2Ca)p) and d,, g = 2d;, 5 if B ¢ Z° and if m4 g is odd, and we set
Cop = Clay,py and d, 5 = dy, 5 otherwise.

e Throughout this article, when = (x1,...,2,) and f is a map defined on
{z1,..., 2y}, we write f(x) for (f(:r;l), ..., f(zm)). Forinstance, (a) = ({(av), ..., {a,)).

According to Theorem 3, the N-integrality of F, g depends on the graphs of Christol’s
functions £, g(a, -). The N-integrality of g, g also strongly depends on them. The following
definition involving Christol’s functions will play a central role.

DEFINITION 5 (Hypothesis Ho g). Let ming g(a) denote the smallest element in the
ordered set ({aal, coaqp,afy, .. afbs ), < ) We denote by Hq g the following assertion:

Hop: “Foralla € {1,...,dag} coprime to dag and all x € R satisfying
ming g(a) < = < a, we have £ g(a, ) > 1.7

We are now in a position to state our generalization of Dwork’s congruences.

THEOREM 6. Assume that r = s, that (o) and (B) are disjoint and that Ha g holds.

Let p be a fized prime and write do g = p*D with v,D € N and D coprime to p. Let
be {l,...,D} be coprime to D. Then, there ezists a sequence (Ryp)r>0 of elements in
Ay(p”, D)* such that, for all t € Qu(p¥, D), we have

Gua 1 Gu

<t( )a>,<t< )ﬂ> (Cl p) (tar), (tﬂ
(O 52P) — p—=— (O 52) g Rip(t
Flay, ey ’ Flay,(18) s

Furthermore, if p is a prime divisor of de g, then, for all k € N,
o if B € 7", then we have Ry, € p~ '~ /=D] A, (p. D);
o if B¢ Z" and p— 11\, then we have Ry, € Ay(p”, D);
o if B¢ L, myg is odd and p = 2, then we have Ry, € Ay(p”, D).

REMARK 7. Let us make some remarks on the previous result.

o The tuples (o) and (B) are disjoint if, and only if, for all (i,j) € {1,...,r} %
{1,...,s}, we have o; — B; ¢ Z.

o [f the hypotheses of Theorem 6 are satisfied, then Fyo g is N-integral (direct con-
sequence of Theorem 3). Indeed, if * < ming g(a) then, by definition, we have
€apla,x) = 0. Furthermore, if a € Q\ Z<g, then ac < a. Hence, for all v € R
satisfying a < x, we have o gla,z) =1 —s = 0.

o Assume that B € Z", and that p is a prime divisor of dop. Then, we have
N < —1and —1—|)\,/(p—1)| >0 so that p~'=/=DI A (p, D) C A,(p¥, D) C
Ay(p¥, D)*.

2.3. N-Integrality of ¢, . Our first main result concerning the N-integrality of

Ga,8(2) can be stated as follows (the constant Cy, 4 involved below was defined in Sec-
tion 2.2).

THEOREM 8. Assume that (o) and (B) are disjoint and that Fy g is N-integral. Then,
the following assertions are equivalent:



(1) qop(z) is N-integral;
(1) (Ch ) 4ap(Clag?) € ZII)
(13i) assertion Hq g holds, we have r = s and, for alla € {1,...,da g} coprime to da g,
we have qo.p(2) = Glaa) (a8) (2)-
Moreover, if one of the above equivalent properties holds, then we have either o = (1/2)
and B = (1), or s > 2 and there are at least two 1’s in ((3).

Once we know that ¢a g(2) is N-integral, it is natural to ask for the signs of its Taylor
coefficients.

THEOREM 9. Under the assumptions of Theorem 8, if qap(z) is N-integral, then all
the Taylor coefficients at z =0 of (C”aﬂz)*lqaﬂ(C’ %) are positive integers.

(07

The following result improves the implication (i) = (i7) of Theorem 8 when 3 € Z*.

THEOREM 10. Assume that (a) and (B) are disjoint and that Fo g and qap are N-
integral. Assume moreover that B is a tuple of positive integers. Then, we have

((Cla ) aonp(Clap)) ™ € T[],

A
o= [0

p|da,ﬁ
REMARK 11. Let us note the following facts.

o Assume that B € Z", and that p is a prime divisor of do,g. Then, we have \, < —1
and =1 — | A,/(p —1)] > 0. It follows that v, 5 is a nonnegative integer.

o According to |14, Lemma 5|, if f(z) € Z[[2]] and if V' is the greatest positive integer
satisfying f(2)VV € Z[[2]], then the positive integers U satisfying f(2)V € Z[[Z]]
are exactely the positive divisors of V.. Furthermore, by [24, Introduction|, for all
positive integers v and all C' € Q, we have ((C’q)*lzawg(C’q))l/v € Zl[q]] if and

only if ((C’z)_lqaﬁ(C’z))l/v € Z[[z]]. So, what precedes can be rephrased in terms
of N-integrality properties of mirror maps.

where

2.4. N-Integrality of g, g. Instead of considering ¢ (%), which is not N-integral in
general, we now focus our attention on

das
s =2 [ = darws ().
a=1
ged(a,de, g)=1
Note that
de 8
7 ' S~ Glay s (?)
Gap(2) = 26xD (Sap(2)) with Sap(z) = Y el

~ Flaa)ep(2)
ged(a,do,g)=1



THEOREM 12. Assume that r = s, that (o) and (B) are disjoint and that Ha g holds.
Then, qa,p(z) is N-integral and we have

1
((Cap?) ' Gap(Cap2)) P € Z[2]], (2.2)
where ng. g 1s the integer defined by
Ap
Nag = dag H p_Z_LPjJ if B€Z and nap:=d,z H p~! otherwise.
plda.p plde g

P*l‘)‘p

REMARK 13. It is tempting to try to improve (2.2) by replacing nwa.g by ¢(dag), which
is the number of terms in the product defining qap. But this is not possible in general.
Indeed, a counterexample is given by a = (1/7,1/4,3/7,6/7) and B3 = (1,1,1,1), where we
have dag = 28, Cl 5 = Cap = 2°7°, 9(28) = 12, nap = 2,

81541341 , 1328534273395 ,
z° 4+ 3 z° +
This example also shows that one cannot replace ng g by dag, since

29299137
i

ZQ[[]].

1
((Chy 52) LGnp(Cl 52)) 8 € 1+ 48022 +

((C" 7132)_150(,5(0;752))@ €1+2058z + 22Q[[2]).

«
As a consequence of Theorem 12, we obtain the following result.

COROLLARY 14. Assume that (o) and (B) are disjoint and that Fog and qop are
N-integral. Then, we have
((c

(0%

- (da,)/Ma,
,ﬁz> lQaﬂ(Céx,,Bz))w pifet € Z[[z]]> (23)
where ¢ denotes Euler’s totient function.

REMARK 15. If B € Z", then Theorem 10 is stronger than Corollary 14 because
Na /N 5 = df 5 divides o(dag).

3. Structure of the paper

In Section 4, we make comments on our main results (those stated in Section 2) and we
compare these results with previous ones on the N-integrality of mirror maps associated
with generalized hypergeometric functions. Then, we formulate some open questions and
we give a corrected version of a lemma of Lang on Mojita’s p-adic Gamma function (*).

Section 5 contains a detailed study of the p-adic valuation of the Pochhammer symbols.
In particular, we define and study step functions A, g associated with tuples o and 3 which
play a central role in the rest of the paper.

“Indeed, while working on this article, we found an error in a lemma in Lang’s book [23, Lemma 1.1,
Section 1, Chapter 14] about the arithmetic properties of Mojita’s p-adic Gamma function. This lemma
has been used in several articles on the integrality of the Taylor coefficients of mirror maps including papers
of the authors. Even if we do not use this lemma in this article, we give in Section 4.4 a corrected version
and we explain why the initial error does not change the validity of our previous results.

9



Section 6 is devoted to the proof of Theorem 4.

Section 7 is devoted to the statement and the proof of Theorem 30, which is a vast
generalization of Dwork’s theorem [12, Theorem 1.1] on formal congruences. We also
compare Theorem 30 with previous generalizations of Dwork’s formal congruences.

Section 8 is devoted to the proof of Theorem 6. This proof relies on Theorem 30 and
constitute (by far) the longest and the most technical part of this article.

Sections 9, 10, 11, 12 and 13 are dedicated to the proofs of Theorem 9, Theorem 12,
Theorem 8, Theorem 10 and Corollary 14 respectively. These proofs rely on Theorem 6,
via Dieudonné-Dwork’s lemma.

We warmly thank the referee for his very careful reading of the paper and for this
comments that helped to improve the presentation.

4. Comments on the main results, comparison with previous results and open
questions

This section contains a detailed study of certain consequences of our main results (stated
in Section 2). We also compare our theorems with previous results on the N-integrality of
generalized hypergeometric series and of their associated mirror maps. This section also
contains some results that we use throughout this article.

4.1. Comments on Theorem 3, Theorem 4 and on the hypothesis H, g.

4.1.1. An example of application of Theorem 4. We illustrate Theorem 3 and Theorem
4 with an example. Let o := (1/6,1/2,2/3) and 8 := (1/3,1,1) so that we have d, g = 6.
According to Theorem 3, Fy, g is N-integral if and only if, for all a € {1,5} and all z € R,
we have & g(a, x) > 0.

We have 1/6 < 1/3 < 1/2 < 2/3 < 1 thus, for all z € R, we get {4(1,2) > 0.
Furthermore, we have 1/3 +3 =10/3 < 5/2 < 5/3 < 5/6 < 5 and thus, for all z € R, we
get o (5, ) > 0. This shows that Fy, g is N-integral.

Moreover, we have r = s, all elements of a and 3 lie in (0,1}, (e, 8) =1 -3 = =2
and \3(a, B) =1 — 2 = —1 thus, according to Theorem 4, we get
6-2-3

o-1=2]3-1-1/2] _ 9432

Cap =

4.1.2. N-integrality of Flay,e . We show that if F g is N-integral then Fiqy g) is
also N-integral. The converse is false in general, a counterexample being given by a =
(1/2,1/2) and B = (3/2,1) since we have 3/2 < 1/2 < 1 and () = (1/2,1/2), (B) =
(1/2,1). But, if (o) and (3) are disjoint, then, for all a € {1,...,da g} coprime to dq g,
(ac) and (aB) are disjoint. Hence, applying Theorem 3, we obtain that (Fiay g is N-
integral)=(F, g is N-integral). More precisely, we shall prove the following proposition
that we use several times in this article.

In Proposition 16 and throughout this article, if f is a function defined on D C R and
x € D, then we adopt the notations

fla+) = lm fy) and fl-) = lm f(y).

y—x
yeDy>x yeDy<z

10



PROPOSITION 16. Let v and 3 be tuples of parameters in Q\Z<y and a € {1,...,da g}
coprime to da,g. Then we have dgay (o8) = da,g. Let c € {1,...,dag} coprime to dag and
x € R be fired and let b€ {1,...,dag} be such that b= ca mod dng. Then we have

€ap(b, (x)—) if x > ¢
§<aa),<aﬁ>(6, x)=<Kr—sifr<candx € Z;
Ea (b, (x)—) or &4 p(b, (x)+) otherwise,
where r, respectively s, is the number of elements of a, respectively of 3.

REMARK 17. For all a € {1,...,da g} coprime to da g, © — s is the limit of {a.g(a,n)
when n € Z tends to —oo

PROOF. For all elements o and 8 of a or 3, we have (c(aa)) = (caa) = (ba) and
(ba) = (bp) if and only if (o) = (B). If (ba) = (), then we have c{aa) < x < c{aa) > x.
It follows that if > ¢, then we have

oo iap (1) = #{1 <i<r i (bay) < ()} —#{1 <j<s: (bB)) < (z)}
= &ap(b, (x)—).

If v € Z and x < ¢, then we have (z) =1 and &(4a),(a8)(c, x) = 7 — 5. Now we assume
that © < cand x ¢ Z. If @ and § are elements of a or 3 satistfying (x) = (ba) = (bf),
then () = (B) so (aa) = (af) and we obtain that c(aa) < z < ¢(aff) = x. Thus we have
#{1<i<r: (boy) < (z)} —#{1<j<s: (bB;) < (x)}
§(aa),(ap)(C; T) = q or
(A{1<i<r: (boy) < (o)} —#{1<j<s: (b5;) < (x)}
(ap(b, (1))
= (or
kfa,ﬂa), <J]>—|—)

because (z) < 1. O

By Proposition 16 with a = 1 together with Theorem 3, we obtain that, if Fy g is
N-integral, then Fiqy g is also N-integral. Similarly, if Hq g holds then Ha> y also
holds. More precisely, we have the following result, used several times in the proofs of our
N-integrality results.

LEMMA 18. Let o and B be two disjoint tuples of parameters in Q\ Z<y with the same
number of elements and such that Hqa g holds. Then, for all a € {1,...,dag} coprime to
dap, Assertion H,qy (ap)y holds.

PROOF. Let ¢ € {1,...,dqg} be coprime to do g and x € R be such that minay ) (¢) =<
x < c. We shall prove that §a),ap)(c, ) > 1 by applying Proposition 16.

Let b € {1,...,dag} be such that b = ac mod dug. First, note that there exists an
element « of v or @ such that c(acr) < z, that is (z) > (ba) or ((z) = (ba) and c{ac) > z).
We distinguish three cases.

11



o If x > ¢ then we have (z) > (ba) and &(ua),(a8)(¢; %) = €a,p(b, (x)—). Thus there
exists y € R, ming g(b) < y < b such that ), as) (¢, ) = &a (b, y) > 1.

o If v < cand x ¢ Z, then we have (z) < 1 and {ya),a8)(¢;7) = &a,p(b, (x)—)
or {ap(b, (x)+). Since (xr) > (ba), there exists y € R, min, g(b) = y < b such that
€ap(b, ()+) = ap(b,y) > 1. Furthermore, if (z) > (ba) then we have £, g(b, (z)—) > 1
as in the case x > ¢. Now we assume that, for all elements 5 of a or 3, we have (z) < (bf3).
Hence we have (x) = (ba) and, as explained in the proof of Proposition 16, we have

Elaa(ap)(:7) = F#{1 < i <7 (bag) < ()} —#{1 < j <5 1 (b5;) < ()}
= fa”@(b, <ZL’>+) Z 1.

e It remains to consider the case z < ¢ and x € Z. But in this case we do not have
x < ¢ thus Hyay,ep) is proved. Ol

4.1.3. Numerators of the elements of & and 8. Let o = (ay, ..., ) and B8 = (b1, ..., 5r)
be tuples of parameters in Q\ Z<o. Then, Theorem 4 gives a necessary condition on the nu-
merators of elements of a and 3 for Fy, g to be N-integral. Indeed, let us assume that Fy, g
is N-integral. Then, according to Section 4.1.2, Fi4) g is also N-integral. We write n,,
respectively n’, for the exact numerator of (a;), respectively of (3;). Then, by Theorem 4,

the first-order Taylor coefficient at the origin of Fiay g)(Ciay32) is (°)

)\p(aﬂ>

H::lni _{ p—1 J
o Hp € 7,

so that, for all primes p, we have

o(fen) > M),
[Tz n) p—1
For instance, the last inequality is not satisfied with p = 2, @ = (1/5,1/3,3/5) and
B=(1/2,1,1),or with p =3, a = (1/7,2/7,4/7,5/7) and B = (3/4,1,1,1). Thus in both
cases the associated generalized hypergeometric series Fy, g is not N-integral.

4.1.4. The Eisenstein constant of algebraic generalized hypergeometric series. Let o =
(aq,...,a,) and B = (B4, ..., 3;) be tuples of parameters in Q\ Z<o. If Fy, g(z) is algebraic
over Q(z) then F, g is N-integral (Eisenstein’s theorem) and one can apply Theorem 4 to
get arithmetical properties of the Eisenstein constant of F, g. For the sake of completeness,

let us remind the reader of a result of Beukers and Heckman [3, Theorem 1.5] proved in
[4] on algebraic hypergeometric functions:

“Assume that 5, = 1 and that L, g is irreducible. Then the set of solutions
of the hypergeometric equation associated with L, g consists of algebraic
functions (over C(z)) if and only if the sets {aa; : 1 < 1 < r} and

5Note that, for all primes p, we have Ap(a, B) = A ((a), (B)).
12



{ap; : 1 < i <r}interlace modulo 1 for every integer a with 1 < a < d, g
and ged(a, dog) = 1.7
The sets {a; : 1 <i<r}and {f; : 1 <i<r} interlace modulo 1 if the points of the sets
{e?me 1 < j <r}and {e¥™ : 1 < j <r} occur alternatively when running along the
unit circle.
The Beukers-Heckman criterion can be reformulated in terms of Christol’s functions as
follows.

“Assume that 3, = 1 and that L, g is irreducible. Then the solution set
of the hypergeometric equation associated with L, g consists of algebraic
functions (over C(z)) if and only if, for every integer a with 1 < a < du,p
and ged(a, do,g) = 1, we have &, g(a,R) = {0,1}.”

4.2. Comparison with previous results.

4.2.1. Theorem 6 and previous results. The first result on p-adic integrality of gn g is
due to Dwork [12, Theorem 4.1]. This result enables us to prove that, for particular tuples
a and 3, we have gog(2) € Z,[[2]] for almost all primes p. It follows without much
trouble that g, g is N-integral. Thus we know that there exists C' € N, C' > 1, such that
(C2)"qap(Cz) € Z[[z]] but the only information on C' given by Dwork’s result is that we
can choose C' with prime divisors in an explicit finite set associated with (a, 3). Hence,
improvements of Dwork’s method consist in finding explicit formulas for C' and we discuss
such previous improvements in the next section. But Theorem 6 is more general and, in
order to compare this theorem with Dwork’s result [12, Theorem 4.1], we introduce some
notations that we use throughout this article. Until the end of this section, we restrict
ourself to the case where a and 3 have the same numbers of elements.

e For all primes p and all p-adic integers o in Q, we write ©,(«) for the unique p-
adic integer in Q satisfying p®,(a) —a € {0,...,p—1}. The operator a — D,(«a)
has been used by Dwork in [12| and denoted by a ~— o (%).

e For all primes p, all x € QN Z, and all a € [0, p) we define

0ifa <p®,(x) — x;
pola,z) = A= PDy(x)
Lif a > p®,(z) — .

e We write @ = (aq,...,a;) and B8 = (f1,...,5.). Let ' be the number of elements
B; of B such that 3; # 1. We rearrange the subscripts so that ; # 1 for i < .
For all a € [0,p) and all k£ € N, we set

NF (a) = pr(a, Dk(ay)) and  NJg(a) = pr (a,D(8)).

e For a given prime p not dividing dq g, we define two assertions:
(v)p for all i € {1,...,7"} and all k € N, we have D%(5;) € Z;

6See Section 5 for a detailed study of Dwork’s map Dp.
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(vi)p for all a € [0,p) and all k € N, we have either N¥(a) = NFg(a+) = 0 or
N} (a) = N¥ g(a+) > 1.

Dwork’s result [12, Theorem 4.1| restricted to the case where av and 3 have the same
number of elements is the following.

THEOREM 19 (Dwork). Let o and 3 be two tuples of parameters in Q \ Z<o with the
same number of elements. Let p be a prime not dividing do g such that a and B satisfy
(v), and (vi),. Then we have

Go, ()2, Ga,p(z
Cae1nui0) () pGan) () ¢ peg 112
Dp(),Dp(B) a,B

Now let us assume that a and B3 are disjoint with elements in (0,1] and that H, g
holds. For all primes p not dividing dn g, we have ®,(a) = (wax) and ©,(8) = (wB) where
w € Z satisfies wp =1 mod dg g (see Section 5.2 below). Then, by Theorem 6 for a fixed
prime p and b =t = 1, we obtain that

Go,(2,0) iy Gap v
P20 (0 o) = p D (Coe) € 03T ) (4.1
Thus, contrary to Theorem 19, there is no restriction on the primes p because of the
constant C7, 5. Furthermore, in the proof of Lemma 48 in Section 11.1.3, we show that
if Hy g holds then o and 3 satisfy Assertions (v), and (vi), for almost all primes p. By
Theorem 8, the converse holds when (o) and (3) are disjoint, Fy, g(2) is N-integral and,
for all a € {1,...,da g} coprime to du g, we have

G a aQ, Ga
(acx),(aB) 2) = B (Z)
Flaa) ap) Fap
Indeed, in this case, Theorem 19 in combination with Proposition 2 implies that, for almost
all primes p, we have o g(2) € Zy[[2]]. Then it is a simple exercise to show that ¢4 g(2) is

N-integral and, by Theorem 8, we obtain that H, g holds.

The main improvement in Theorem 6 is the use of algebras of Z,-valued functions
instead of Z,,. This is precisely this generalization which enables us to prove the integrality
of the Taylor coefficients of certain roots of (C7, 32) ' Ga,8(Cy 52)-

4.2.2. Theorem 8 and previous results. The constants C' € Q* such that an N-integral
canonical coordinate g, g satisfies go g(Cz) € Z[[2]] was first studied when there exist some
digjoint tuples of positive integers e = (eq,...,¢e,), f = (fi1,..., f,) and a constant Cy € Q*
such that

= (en)! - (eqn)!
Fap(Coz) = n; GG (4.2)
and
Fog(Coz) € Z[[7]]. (4.3)
We now assume that such a constant Cj exists. According to |8, Proposition 2|, the con-
dition (4.2) ensures that a and 3 are R-partitioned, i. e. a = (ay,...,q,), respectively

14



B = (b1,---,0Bs),is the concatenation of tuples (b/N; )be{l _____ N }eed(b,No)=1, 1 < 7 < 7', Tespec-
tively of tuples (b/N; )be{leJ/,},gcd(@N;)_l, 1 < j <. Furthermore, by [8, Proposition 2],
if a and (3 are R-partioned, then one can take

Hr’ N@(Ni) H | pwp(ﬁ) U v
=11V N,

/ 1o(N') - P(N}) and Z €= Z fi=r—s (4.4)
Hj:1 NP Hp\N;p =1 i=1 j=1

Moreover, Landau’s criterion [22] asserts that the condition (4.3) is equivalent to the
nonnegativity on [0, 1] of the function of Landau

ZLWJ Z z),

7=1

Co =

which can be checked easily because, by [8, Proposition 3], for all z € [0, 1], we have

Acr(r) =#{i s v =2 ai} = #{j : = 2 5;}. (4.5)

The results obtained by Lian and Yau [26], Zudilin [34], Krattenthaler and Rivoal [18|
and Delaygue [8] led to an effective criterion [8, Theorem 1| for the N-integrality of g, g(2).

By combining and reformulating this criterion and [8, Theorem 3|, we obtain the fol-
lowing result.

THEOREM 20 (Delaygue). If (4.2) and (4.3) hold, then the following assertions are
equivalent:

(1) qap(z) is N-integral;
(2) (Co2)™"'qa,p(Co2) € Z[[2]];
(3) we have Y7\ e; = Y75, f; and, for all x € [1/Mey, 1[, we have Agg(r) > 1,

where Mg 15 the largest element of e and f.

Let us show that Theorem 8 implies Theorem 20. Let o and 3 be disjoint tuples of
parameters in Q\ Z<g such that (4.2) and (4.3) hold. Then a and 3 are R-partitioned and
their elements lie in (0, 1] so that (o) and (ﬁ> are disjoint and Fy g is N-integral. First
we prove that if 7 = s, then we have C[, 5 = Cap = Co. We write A, for \,(ex, B). Since
a and B are R- partltloned the number of elements of a and 3 Wlth exact denominator
divisible by 4 is a sum of multiples of integers of the form ¢(2*) with & € N, k > 2, so this
number is even. Thus, we have C, 5 = Cq g. Furthermore, for all primes p, we have

=1 =3 p(Ni) = s+ 3 _e(N)) Zso +Zs@

pIN; pIN] P|N p\N’

If p divides N; then p—1 divides o(N;) so that — |,/ (p—1)] = =), /(p—1) and Co g = Cp as
expected. Now we assume that (4.2) and Theorem 8 hold and we prove that Assertions (1),
(2) and (3) of Theorem 20 are equivalent.
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e (1) = (2): If gap(2) is N-integral, then we obtain that (C}, 52) ' qa,8(Ch g2) € Z[[2]]
and r = s so that C, 5 = Cj and Assertion (2) of Theorem 20 holds.

e (2) = (3): If (Co2) 'qaps(Coz) € Z[[2]] then gqp(z) is N-integral and, according to
Theorem 8, we have r = s and Hg g is true. We deduce that we have > i e; = >0, f;.
Now, since e and 3 are disjoint tuples with elements in (0, 1], Equation (4.5) ensures that
the assertions “for all x € [1/Me¢, 1, we have Ag¢(z) > 17 and “for all x € R, min, g(1) <
x < 1, we have , g(1, ) > 17 are equivalent. Thus Assertion (3) of Theorem 20 holds.

® (3) = (1): We assume that > ;" e; = > 7, f;, that is 7 = s, and that, for all x €
[1/Meg, 1], we have Ag¢(x) > 1. Since o and 8 are R-partitioned, forall a € {1,...,dn g}
coprime to do g we have (aa) = a and (a3) = B, and these tuples are disjoint. We
deduce that, for all a € {1,...,d g} coprime to do g and all z € R, ming g(a) < = < a,
Equation (4.5) gives us that £, g(a,z) > 1, so that H, g holds. Thus Assertion (ii7)
of Theorem 8 holds and g4 g(z) is N-integral as expected. This finishes the proof that
Theorem 8 implies Theorem 20.

Furthermore, when (4.2) holds, Delaygue [11, Theorem 8] generalized some of the
results of Krattenthaler and Rivoal [21] and proved that all Taylor coefficients at the origin
of go g(Coz) are positive but its constant term, which is 0. Proposition 42 generalizes this
result since it does not use the assumption that a and 3 are R-partitioned.

Later, Roques studied (see [31] and [32]) the integrality of the Taylor coefficients of
canonical coordinates ¢o g without assuming that (4.2) holds, in the case o and 8 have the
same number of elements r > 2, all the elements of 3 are equal to 1 and all the elements of
a lie in (0,1] N Q. In this case, we have r = s and it is easy to prove that H, g holds but
a is not necessarily R-partitioned. Roques proved that ¢o g(z) is N-integral if and only
if, for all @ € {1,...,dag} coprime to do g, Wwe have qay, (a8)(2?) = ¢a,8(2) in accordance
with Theorem 8. Furthermore, when r = 2, he found the exact finite set (7) of tuples a
such that gag(z) is N-integral (see [31, Theorem 3|) and, when r > 3, he proved (see
[32]) that ga,g(z) is N-integral if and only if o is R-partitioned (the “if part” is proved by
Krattenthaler and Rivoal in [18]). Note that if 3 = (1,...,1), then it is easy to prove that
Fo (%) is N-integral.

The integrality of Taylor coefficients of roots of a rescaling of 27'g4 (2) has been
studied in case (4.2) holds by Lian and Yau [24], Krattenthaler and Rivoal [19], and by
Delaygue [9]. For a detailed survey of these results, we refer the reader to [9, Section 1.2].

e In [24|, Lian and Yau studied the case e = (p) and f = (1,...,1) with p I’s in f and
where p is a prime. In this case, we have 8 = (1,...,1) and n, 5 = 1, thus we do not
obtain a root with Theorem 10.

e In [19], Krattenthaler and Rivoal studied the case e = (N,...,N) with & N’s in e
and f = (1,...,1) with kN Usin f. In this case, we also have 8 = (1,...,1). For all prime
divisors p of N, we write N = p* N,, with 7,, N, € N and N, not divisible by p. A simple

"This set contains 28 elements amongst which 4 are R-partitioned.
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computation of the associated tuples a and 8 shows that do g = N and A\, = k(N, — N).
Thus, for all prime divisors p of NV, p — 1 divides A, and we have

N—Np

/ _ —14+k——*
na7ﬁ = Hp p—1 |
p|N

It seems that the integrality properties of roots of mirror maps found by Krattenthaler and
Rivoal are always stronger in these cases.

e However, in a lot of cases, our root n’aﬂ improves the one found by Delaygue in [9].
For example, if e = (4,2) and f = (1,1,1,1,1,1), then |9, Corollary 1.1] gives us the root
4 while 8= (1,...,1) and nj, 5 = 32.

4.3. Open questions. We formulate some open questions directly related to our main
results.

e Does the equivalence of Theorem 8 still hold if we do not assume that Fy g(2) is
N-integral?

e Theorem 9 leads to a natural question: do the coefficients of (Cy, 32) ™" qa,8(Ch, 52)
count any object?

e One of the conditions for g, g(z) to be N-integral is that, for all a € {1,...,dn g}
coprime to dq g, we have ¢a,g(2) = Q(aa), (@) (2). According to [31] and [32], we know that,
when B = (1,...,1) and all elements of a belong to (0, 1], this condition implies a stronger
characterization related to the exact forms of a and 3. Is it possible to deduce a similar
characterization in the general case?

4.4. A corrected version of a lemma of Lang. While working on this article, we
noticed an error in a lemma stated by Lang [23, Lemma 1.1, Section 1, Chapter 14| about
arithmetic properties of Mojita’s p-adic Gamma function. This lemma has been used in
several articles on the integrality of the Taylor coefficients of mirror maps including papers
of the authors. First we give a corrected version of Lang’s lemma, then we explain why
this error does not change the validity of our previous results.

Let p be a fixed prime. For all n € N, we define the p-adic Gamma function I', by

n—1
Ty(n):=(-1)" J[ *
k=1
ged(k,p)=1
In particular, I',(0) =1, I',(1) = —1 and I', can be extended to Z,,.

PROPOSITION 21. For all k,m,s € N, we have

I',(k) mod p° if p° # 4;

ry(k %) =
p(kmp’) {(—1)mfp(k) mod p° if p* = 4.

The case p® # 4 in Proposition 21 is proved by Morita in [28]. We provide a complete
proof of the proposition.
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PROOF. If s = 0 or if m = 0 this is trivial. We assume in the sequel that s > 1 and
m > 1. Then

O (k + mp’) vt o
e = O I i=¢vm™ H [T +i+jp)
p( ) i=k = 7=0
ged(i,p)=1 ged(k+ ) 1
p*—1
= (-1)m" H (k+9)™ mod p°
i=0
ged(k+i,p)=1
p*—1
= (-1)m”" J™ mod p°, (4.6)
j=0
ged(j,p)=1

because, for all j € {0,...,p° — 1}, there exists a unique ¢ € {0,...,p* — 1} such that
k+i=j mod p°.

We first assume that p > 3. In this case, the group (Z/p°Z)* is cyclic and contains just
one element of order 2. Collecting each element of (Z/p*Z)* of order > 3 with its inverse,
we obtain

H = —1 mod p°.
gcd( )

Together, with (4.6), we get

I'y(k 4+ mp®)

=1 mod p’,
(k)

because p is odd.

Let us now assume that p = 2. If s = 1, then

H

gcd(] p)

and by (4.6) this yields I',(k + mp®) =T',(k) mod p*. If s =2, then

p°-1
H j=3=-1 mod p°,

gcd( p)=
18



and by (4.6), this yields I',(k + mp®) = (—1)"I',(k) mod p°. It remains to deal with the
case s > 3. The group (Z/2°Z)* is isomorphic to Z /25727 x 7Z/27. Moreover,

25721 1 25—2_1
> (k)= (2 > k;,28—2> = (272(272 - 1),2°72) € 2°7*Z x 2Z,
k=0

k=0 j=0

because s > 3. Hence,

and by (4.6), this yields

p(k)
which completes the proof of the proposition. [

The error in Lang’s version is that he wrote I',(k + mp®) = I',(k) mod p* if p* = 4,
forgetting the factor (—1)™. He gives the proof only for p > 3 and he claims that the proof
goes through similarly when p = 2, overlooking the subtility. Delaygue and Krattenthaler
and Rivoal used Lang’s version in |8, Lemma 11|, |10, Lemma 8| and [18]. Fortunately,
the resulting mistakes in these papers are purely local and can be fixed. Indeed, the factor
(—1)¢ (that should have been added when p* = 4) would have occurred for an even value
of £ and thus would have immediately disappeared without changing the rest of the proof.

5. The p-adic valuation of Pochhammer symbols

We introduce certain step functions, defined over R, that enable us to compute the
p-adic valuation of Pochhammer symbols. We will then provide a connection between
the values of these functions and the functions £, g(a, -). This construction is inspired by
various articles of Christol [7], Dwork [12] and Katz [16].

5.1. Christol’s criterion for the N-integrality of F, 3. We shall first state and
prove the following preliminary result.

PROPOSITION 22. Let o and B be tuples of parameters in Q \ Z<o. Then, Fo g is
N-integral if and only if, for almost all primes p, we have Fq g(2) € Z,[[2]].

PROOF. Let a and B be two sequences taking their values in Q \ Z<o. If there exists
C € QF such that F,g(Cz) € Z[[z]], then for all primes p such that v,(C") < 0, we
have F, g(2) € Z,[[z]]. Hence, there exists only a finite number of primes p such that
Fap(2) ¢ Z[[2]].

Conversely, let us assume there exists only a finite number of primes p such that
Fop(z) ¢ Z,[[2]]. To prove Proposition 22, it is enough to prove that, for all primes
p, there exists m € Z<, such that, for all n € N, we have

Up (%) 2 man. (5.1)
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Let z € Q, x = a/b with a,b € Z, b > 1, and a and b coprime. If b is not divisible by
p, then for all n € N, we have v,((z),) > 0. On the other hand, if p divides b, then

Up (<x>n) = vp(@)n.

Let us now assume that @ ¢ Z<o. Then, for all n € N, n > 1,

o ((ml)) = <a(a+b)...€:+b(n— 1))) = (Wﬁ)

b o
> L P
> () - -2 ) o -2,

|a| —|—an > |a| + bn |al b
al + bn)!) { < = + n.
( | | Z ézl pé p—1 p—1

=
Hence, (5.1) holds and Proposition 22 is proved. O

because

We shall now come to Theorem 3 stated in Section 2.1.

THEOREM 3. The following assertions are equivalent:
(i) Fap is N-integral.
(17) For alla € {1,...,dag} coprime to do g and all v € R, we have £ g(a,z) > 0.

PROOF. According to Proposition 22, F, g is N-integral if and only if, for almost all
(*) primes p, we have F, (2) € Z,[[z]]. Then, the proof is a consequence of Christol’s
Proposition 1 in [7]. Note that Christol assumes that r = s, that there is j € {1,...,s}
such that 8; € N and that all elements o € N of o and @3 satisfies a > 3;. But, his proof
does not use these assumptions. O

5.2. Dwork’s map ©,. Given a prime p and some o € Z, N Q, we recall that ©,(«)
denotes the unique element in Z, N Q such that

pOp(a) —a€{0,...,p—1}.
The map a — D,(a) was used by Dwork in [12] (denoted there as a — a’). We observe

that the unique element k € {0,...,p—1} such that K+« € pZ, is k = p®,(a) — . More
precisely, the p-adic expansion of —« in Z, is

—a =Y (pD5 () - Di(a))p’

where @f) is the ¢-th iteration of ®,. In particular, forall / € N, ¢ > 1, @f,(oz) is the unique
element in Z, N Q such that pfgﬁ(a) —a€{0,...,p" —1}.

For all primes p, we have ©,(1) = 1. Let us now assume that « is in Z, N Q N (0, 1).
Set N e N, N>2andr e {1,...,N — 1}, ged(r, N) = 1, such that & = r/N. Let sy

84For almost all” means “for all but finitely many”.
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be the unique right inverse of the canonical morphism 7y : Z — Z/NZ with values in
{0,..., N —1}. Then (see [31] for details)

SN(WN(I?)AWN(T))
N .

Dy(a) =
Hence, for all £ € N, £ > 1, we obtain

sy (mn(p) “mn (7))
N :

In particular, if o € (0, 1), then ©,(«) depends only on the congruence class of p modulo
N. If a € Z satisfies ap = 1 mod N, then D/ () = {a‘a} = (a‘a) because a is coprime to

D(a) = (5.2)

N, hence a‘a ¢ Z. This formula is still valid when o = 1 and a is any integer.

LEMMA 23. Let o € Q\ Z<o. Then for any prime p such that o € Z,, and all ¢ € N,
(> 1, such that p* > d(a)(|[1 — o]| + (a)), we have Di(a) = DE((a)) = (wa), where
w € 7Z satisfies wp’ =1 mod d(a).

PROOF. Let a € Q\ Z<y and p be such that oo € Z, and ¢ € N, £ > 1 be such that
p" > d(a)(|[1 — a]| + (@)). By definition, ®{(«) is the unique rational number in Z, such
that p"@f(a)—a € {0,...,p"—1}. Weset o = (a)+k, k € Zand r := D) ((a))+ | k/p"] +a,
with a = 0 if k — p‘[k/p’] < p"D;((@)) — (a) and a = 1 otherwise. We obtain

k
p'r —a=p'D((a)) — (a) + ' L?J —k+p'aec{0,...p -1},
because p'@!((a)) — (a) and k — p‘[k/p’| are in {0,...,p" — 1}. Since r € Z,, we get
D () = r. We have d(a)(|k| + (a)) > |k| thus |k/p‘] € {-1,0}.

If |k/p'] = 0, then, since D\ ((a)) > 1/d(a), we get p"D((a)) — (a) > [k| and thus
a = 0. In this case, we have D! (a) = D (()).

Let us now assume that |k/p‘] = —1, 4. e. k < —1. We have (a) < 1 because a ¢ Z<,
hence d(«) > 2. We have

PO — () = (4 ) <o (TG0 1) — ) < - - ) -k

< —|k| — 2{(a) — k < —2(a) < 0,
thus a = 1 and D! («) = D5 (()). O

5.3. Analogues of Landau functions. We now define the step functions that will
enable us to compute the p-adic valuation of the Taylor coefficients at z = 0 of F, g(2).
For all primes p, all « € QN Z, and all £ € N, £ > 1, we denote by d,¢(c,-) the step
function defined, for all x € R, by
— O-’J
o

(5P,g(o¢,x) =k<2—-9)(a)— L € k-1, k)) .k eZ.
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In particular, if & € (0, 1], then for all k£ € Z, we have
dpela,z) =k <=z — @f,(&) €k—1k).

Let o := (aq,...,0a;,) and B := (f,...,0s) be two sequences taking their values in
Q\ Z<p. For any p that does not divide dn g, and all £ € N, £ > 1, we denote by Aﬁfﬁ the
step function defined, for all x € R, by

Ag,eﬁ(x) = Z Op,e(ti, ) — Zép’f(ﬁj’ 7).
i=1 7=l

The motivation behind the functions A’;fﬁ is given by the following result.

PROPOSITION 24. Let o := (ay,..., ) and B := ((1,...,0s) be two sequences taking
their values in Q\ Z<o. Let p be a prime such that o and B are in Z,. Then, for alln € N,
we have

o (tee) - () - s ({3) + - mon

REMARK 25. This proposition is a reformulation of results in Section III of |7], proved
by Christol in order to compute the p-adic valuation of the Pochhammer symbol (), for
T € L.

PROOF. For any p, any n := Y .- np"* € Z, with ny, € {0,...,p— 1}, and any ¢ € N,
0> 1, we set Tp(n,l) = f;_:% nip®. For all £ € N, £ > 1, we have

Tp(—a, €) = p"Di () — .
We fix a p-adic integer o € Q \ Z<p. For all k € Z and all £ € N, £ > 1, we have

n P |1 —«f 11—«
Op i (a, E) =k <=9, (a)+ pr o

= pECDf;(oz) +ll—a]l+(k-1p'<n< pg’Dﬁ(a) + |1 —af + kp*

+k

n
+k—1§ﬁ<©f,(oz)+

= pgi)f;(a) —a+(k=1)pf<n< pfi)f;(a) —a+ kp' (5.3)
PN [Lg—aﬂ k.
p

where, for all x € R, [z] is the smallest integer larger than z. We have used in (5.3) the
fact that —a = —(a) + [1 — a), =1 < —(a) < 0 and p’®f(a) — & € N. We then obtain

5,0 (a,}%) - [L([“ﬂ | (5.4)

p
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Christol proved in [7] that, for all o € Z,, \ Z< and all n € N, we have

wlw,) = 3 [0 55

pé

P’ ﬁz’
so that if & € Z is such that
‘1 _ _
kgn—i—p 1€Tp( a,l) .y
p
then
E_1 n—T,(—a,l) n

Hence, we get

n+p'—1-"T,(-a,l) n—T,(—a,?)
R T |
By (5.4) and (5.5), it follows that

vp((@)n) = g%e (04’ ]%) = g%e (C% {z%}) +vp(nlh),

because dy,¢(a, n/p) = pe(a, {n/p}) + [n/p'] and vy(n!) = 3572, [n/p]. m

The following lemma provides an upper bound for the abscissae of the jumps of the
functions A’;’fﬁ.

LEMMA 26. Let « € Q\ Z<o. There exists a constant M(«) > 0 such that, for all p
such that o € Z,, and all ¢ € N, ¢ > 1, we have

1
<Dt
M(a) = 7 P’

<1

REMARK 27. In particular, if o and 3 are two sequences taking their values in Q\ Z<o,
there exists a constant M (e, 3) > 0 such that for all p that do not divide de g, all ¢ € N,

¢>1, and all z € [0,1/M(ax, B)), we have Ag’gﬁ(x) =0.

PROOF. Set a := péi)f;(a) —a€{0,...,p" —1}. We have

¢ 1-a] a (o
D,(a) + P + o € (0,1],
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because 0 < (a) < 1. By Lemma 23, if p* > d(«)(|[1—a][+(a)), then D (a) = DL (@) >
1/d({«)) and hence

, [1—«af I
Dpla) + P’ & d(a) P’

This completes the proof of Lemma 26 because there exists only a finite number of pairs
(p,£) such that p® < d(a)(|[1 — a| + (a)). O

Finally, our next lemma enables us to connect the functions A‘Z"gﬁ to the values of the
functions €4 g(a, ). This is useful to decide if F, g is N-integral.

LEMMA 28. Let a and (3 be two sequences taking their values in Q\ Z<y. There ezists
a constant N g such that, for all elements o and 3 of the sequence o or B, for all p that
do not divide do g and all ¢ € N, £ > 1 such that p* > N g, we have

[1-5]

VA Y

ac = aff <= @f,(oz) + U;—EQJ < @f;(ﬁ) + .

where a € {1,...,da g} satisfies pfa =1 mod dag. Moreover, if the sequences o and (3
take their values in (0, 1], then we can take Nog = 1.

PROOF. Let p be such that the sequences av and 3 take their values in Z,. By Lemma
23, there exists a constant N; such that, for all £ € N, ¢ > 1 such that p* > N;, and all
elements « of a or B, we have Df(a) = D! ((a)). Moreover, if o and 3 take their values
in (0, 1], we can take N = 1 because o = (o). We set

No i=max {dag|[l —a] = |1 =5]| : a, Binaor B} +1

and No g := max(Ni,Ny). In particular, if o and 3 take their values in (0, 1], then
Nop=1. Let £ € N, £ > 1 be such that p* > Ny and a € {1,...,dos} coprime to dog
such that p‘a =1 mod dg .

Let o and 3 be elements of o or 3. We set ky := |1 —« and ko := |1 — (]. By (5.2),
we have a{a) — Df((«)) € Z. Hence,

ao = ale) — aky = D ((a)) + ala) — D (@) — aky,
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with ©f((ar)) € (0,1] and a{a) =D ({a)) —aky € Z. Moreover, if D ((cr)) = DE((3)), then
still by (5 2), we have (o) = (f). By definition of the total order <, we obtain

aa < aff <= D({a)) <DL(B) or (DL((a) = DL((B) and aa > ap)
— Dh((a) < DL((B) or (DL((a)) =DL(B) and ky > ki)

= DL((a) — D)) < ’“2]; il (5.6)
ky ko

= D! (o) + o <D((B) + o

= Dffa) + - <DUH) + (5.7)

where in (5.6) we have used the fact that if D5((ar)) # DL((6)), then |DL((a)) —DE((B))] >
1/dqn . The equivalence (5.7) finishes the proof of Lemma 28. O

Proposition 24 shows that the functions Ai’fﬁ allow to compute the p-adic valuation of
(@)n/(B)n (°) when p does not divide dq g. If o and 3 have the same number of parameters
and if these parameters are in (0, 1], the constant Cy g enables us to get a very convenient
formula for the computation of the p-adic valuation of Cy, 5(a),/(8), when p divides dq .
This formula, stated in the next proposition, is the key to the proof of Theorem 4 and is
also used many times in the proof of Theorem 6.

PROPOSITION 29. Let a and 3 be two tuples of r parameters in Q N (0, 1] such that
Fup is N-integral. Let p be a prime divisor of deg. We set dog = p'D, f > 1, with
D € N, D not divisible by p. For all a € {1,...,p'} not divisible by p, and all { € N,
¢ > 1, we choose a prime p,, such that

Par=p" mod D and p,,=a modyp’. (5.8)

Then, for all n € N, we have

e O REC I ((RIC = S RS

gcd(ap) 1
where
Ht1 d(%’) _ V‘p(a,ﬁ)J
Co = ;7— D p—1
" TT=, d(B)) 11

p|da,ﬂ

PRrROOF. We denote by a, respectively [N‘i, the (possibly empty) sequence of elements of
a, respectively of 3, whose denominator is not divisible by p. We also set A\, := A\, (e, 3).

IFor all x = (x1,...,z,) € R" and all n € N, we set (x), := (X1)n - (T4 )n-
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For all n € N, we have

(@) S (3]) e o] o

Let o be an element of v or 3. Let N be the denominator of a. If p does not divide
N, then N divides D and, for all @ € {1,...,p'}, ged(a,p) = 1, and all £ € N, £ > 1, we
have Pay =p° mod N. Hence D (o) = D,, (@) because a € (0,1].

On the other hand, if p divides N, then for all n,¢ € N, ¢ > 1, we define wy(c,n) as
the number of elements a€e{l,... ,pf}, ged(a, p) = 1, such that {n/p‘} > D, ,(a). Thus
forall n, e N, £ > 1, we get

Z st ({5}) ooz ({5}) + Eetawn) = ety (510
ged (a p) azzép Bj ;%P

Let a be an element of a or B such that p divides d(«). We now compute » >, we(a, n).
Let @« = 7/(p°N) where 1 < e < f, N divides D, 1 < r < p°N and r is coprime to
p°N. Given ¢ € N, ¢ > 1, there exists 7,0, € {1,...,p°N} coprime to p°N such that
Dp,. () =7140/(p°N) and parae —r =0 mod p°N. In particular, by (5.8), we have

péra,g —7r=0 mod N and ar,,—r=0 mod p",

Fat = Sx (%) P+ 5y ( Wp(fu&)) N mod p°N.

In the rest of the proof, if a/b is a rational number written in reduced form and the integer

¢ > 1 is coprime to b, we set
ay Te(a)
e <b> T (wc(b)) ‘

Then,
rae _ @n(r/pt) | @y (r/(aN))
= = d 1. A2
N N + p mo (5.12)
For all £ € N, we have p** ey (r/p™*t) — p'on(r/p’) =0 mod N, hence, since p and
N are coprime, we obtain pwy (r/p“*t) — (r/p )=0 mod N, i. e.
o (Er/P) _ @n(r/p™)
b N N ’
yielding

wN(T/pZH) e+l (T
N =Dy (N) ‘
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Let —r/N =77, aip® be the p-adic expansion of —r/N. For all ¢ € N, we have

¢
11 (T ro_ k
PO () - =

k=0
and thus
e l+e—1 -1 e—1
WN(T/I?H ) . r i ;;0 agp” T k=0 app” Zk:O aé+kpk (5.13)
N - p€+eN p£+e o pf-i-eN pf—i-e pe : ’

Moreover, powy(r/p) =r mod N but pwy(r/p) # r because r is not divisible by p. Hence,
pwn(r/p) —r > N and ag > 1.
The elements of the multiset (*°)

{{wpe (aLN> c1<a<yp’, geda,p) = 1}}

are those b € {1,...,p°} not divisible by p, where each b is repeated exactly p/~¢ times.
We fix £ € N, £ > 1. We have

0 r f;_:t ap” 1 pt—1 < 1 g [Tt 0.1
< p€+eN pé-i-e — pﬁ—i-e p€+e - E an peN < ( ) ]

By (5.12) et (5.13), the multiset

(I)g(Od) = {{;ﬁﬁajff o1 S a S pf7 ng(CL,p) = 1}}

has the elements
T o P b
Nep - PeN plre X

where b = Z;é bip®, b, € {0,...,p — 1}, by # as, and each 1y, is repeated exactly p/—°
times. In the sequel, we fix n = > "2 ngp® with ny € {0,...,p — 1} and, for all k > K,
ng = 0, where K € N. For all / € N, we let Ay(a,n) =1 if

f—e—1 /—1

ot > awt
k=0 k=e

and Ay(a,n) = 0 otherwise. Let us compute the number w;(a,n) of elements in ®,(c)
which are < {n/p*}.

10A multiset is a set where the repetition of elements is permitted. We use {{- - - }} to denote multisets.
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If ¢ <e—1, then

-1 1
n k=0 TkP r k () akp Zk bkp
— ¢ = Nep <= >
{pf} P’ prreN prre p°
/-1 /-1 k e—1 k+/
r _a b
— anpk >4 Zk_oe kP 4 > ko ekp
Pt peN p P
-1
=D ot > et
0
because
{— e A (. e—L
r ) 1 —1 —1
0 < +Z Zk Al §_+p AT ) <1,
p°IN pe p° p° p° p°
Thus
-1
we(a, n) ((p 1)p° “anp’“) P
k=0
If ¢ > e, then
/—1 k /-1 e—1 k
n —o kP r k=0 axp” > ko Ok
= ¢ 2> ey = =L > +
{ V4 } pf p€+6N p€+e pe
/-1 /— k e—1
r —o kP e
D NIV DS LA S
=0 N p k=0
-1 -1 e—1
=Y ot > apt T Y bt (5.14)
k=0 k=e k=0
because
- k
1 ¢ —1
0 < r _I_Zk:()akp §_+p <1
peN P° P° p°
If we have
/-1 e—1
Z nkpk > Zbkpk+€—e7
k=f—c+1 k=1

numbers b satisfying the above inequality. Let us now assume that

Z NP _Zbkpk—M e

k=f—e+1
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Then (5.14) is the same thing as

l—e /—1
Z nyp® > Z arp"™ ¢ + bop"*. (5.15)
k=0 k=e

If ng_. > a; + 1, then there are n,_, — 1 elements by € {0,...,p — 1} \ {a,s} such that
ne—e > by, and, for by = ny_., we have (5.15) if and only if Ay(o,n) = 1. Moreover, when
ng_ > ag + 1, we have Ay 1(a,n) = 1. Hence, if ny_. > ay + 1, we have ny_. + Ay(a,n) —
Agi1(a,n) numbers by such that (5.15) holds.

If ny_. = ay, then there are ny,_. numbers by such that (5.15) holds. Furthermore,
we have Ay(a,n) = Ayr1(a,n) and in this case we also have ny_. + Ag(a,n) — Apri(a,n)
numbers by such that (5.15) holds.

If ny_. < ay,—1, then there are n,_, numbers by such that by < n,_., and for by = n,_,,
we have (5.15) if and only if Ay(a,n) = 1. Moreover, if ny_. < a; — 1, then Ayq(a,n) =0
and again there are ny_. + Ag(a,n) — Agy1 (@, n) numbers by satisfying (5.15).

It follows that, if £ > e, then,

-1
we(a, n) = <W—e + Ao(a,n) — Appr(ayn) + (p— 1) Z nkp’f—“e—l) o=

k=f0—e+1
Hence, for all m € N, m > K + e, we get

m e—1 {—1
D wilan) = (p -1 pY nggh
/=1 /=1 k=0

+Z e + Mo(a,n) — Mgy (a,n)) Z Z prirett (5.16)
l=e =

Let us compute the coefficients hy of n,, 0 < k < K, on the rlght hand side of (5.16),

so that
m K

pe! ng(a, n) = Ae(a,n) — Apgr(a,n) + Z hn. (5.17)
=1 k=0
If e = 1, then for all k € {0,..., K}, we have hy = 1 = p®~!. Let us assume that e > 2.
We have

—_

e—

ho=(p—1)) p " +1=p7"
1

~
Il

If1<k<e-—2, then

e—1 k+e—1
hk:(p_l)zpkf-i-e 1+1+ _1 Zpkf-i-el el_pk+1+pk_1:p6_1.
{=k+1
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Finally, if £ > e — 1, then

k+e—1
hk =1+ <p . 1) Z pk—ﬂ—i-e—l -1 +pe—1 -1 :pe—l.
t=k+1
Hence, we obtain
pe—f Z CUg(Oé, n) = Ae(aa n) - Am+1 (CY, 77,) + pe_lsp(n)a
(=1

where 5,(n) == 3220 g = S r o T

Moreover, we have A.(a,n) = 0 and there exists K’ > K + e such that, for all m >
K', we have A, q1(a,n) = 0. Indeed, D32 arp® is the p-adic expansion of —r/N ¢ N.
Thus, there exists K’ > K + e such that ax # 0 and hence, for all m > K’, we have
Avii(a,n) = 0. Consequently, for all large enough ¢, we have wy(a,n) = 0 and

Zwe(a, n) = @(pf);pini- (5.18)

By (5.11) and (5.18), we obtain, for all n € N,

(G ) = e X s ({7))

But for all n € N, we have

so that, for all n € N,

A (ZI’(_ni + vp(n!)> “n Lﬁ—le —n {pA_”l} . (5.20)

Hence, using (5.20) in (5.19), we get equation (5.9), which completes the proof of Propo-
sition 29. O

30




6. Proof of Theorem 4

Let o and 3 be two sequences taking their values in Q \ Z<,. Let us assume that F g
is N-integral. We first prove (2.1).

We fix a prime p. We denote by a, respectively 3, the (possibly empty) sequence
(0, ..., ), respectively (1, ..., [(,), made from the elements of a, respectively of 3, and
whose denominator is not divisible by p. In particular, we have \,(a,3) = v —v. By
Proposition 24, for all n € N, we thus have

—> " Ei% ({pﬁ}) T Ayl By ().
B (6.1)

By Lemma 26, there exists a constant M > 0 such that, for any prime p that does not
divide dg 5, for any £ € N, £ > 1, and any x € [0,1/M), we have Ag’%(x) = 0. Hence, for
all n € N, we have 7

—v| log,(nM)] ZA ({ }) < ul log,(n)],
so that .
%;AQ% ({z%}) o O (6.2)

Moreover, for all n € N, we have v,(n!) = 3,2 |n/p’], hence

[log,,(n)] [log,,(n) ]

n n
Z P Uogp(n)J < wy(n!) < Z pri
=1 =1
and
Loty — (6.3
nvp K n—-+00 P — 1 '

We now use (6.2) and (6.3) in (6.1), and we obtain

L (el . (Tda)) | M)
np( .. ) — p<H§1d(ﬂj)>+ b1 .

But for all n € N,



It follows that, for all n € N, n > 1,

L ((a)n---(an)n o (i dle) |} Ap(@, B)
< : )_) p( ; d(ﬁj)) p—1

Up(Caﬂ) > _Evp e Hj:l

and thus

I, i) | dle8)
'#{Cs) Z”p<ni d(/aj)) sl

7j=1

because v,(Ca,g) € Z. Furthermore, if p does not divide dag and if p > r — s + 2, then
M(a, B) =r —sand [A\(a,3)/(p—1)] = 0. This proves the existence of C' € N* such

that
r d (o ﬁ)
Ca»ﬁ = Og; ! ( H p p_l . (64)
J=1 pepa B

We now define
(o) ) Vpp@lﬁ)J.

= T
J=LN plde,
In the sequel, we assume that both sequences a and (3 take their values in (0, 1] and
that r = s. We show that in this case C' = 1 and for this it is enough to prove that
Fop(Coz) € Z[[2]].
Consider a prime p that does not divide dq g, so that A\,(a, 8) = r — s = 0. Together

() S ()

1)

By Lemma 28 and Theorem 3, for all / € N, £ > 1, we have
ALS((0,1]) = Eapla,R) C N,

where a € {1,...,dsp} satisfies p‘a = 1 mod d,g. Hence, we obtain that F, g(Coz)
Zyl[z]]. It remains to show that for any prime p that divides da g, we also have that
Fap(Coz) € Zy[[2]].

Consider a prime p that divides do g. With the notations of Proposition 29, for all

with (6.1), this yields

n € N, we have

() - £ B () 520)

C (B (B)n

gcd(a p)=1
Since none of the primes p, ¢ divides dq g, we have Ai‘fé’l([o, 1]) € N so that Fi, g(Coz)
U

Z,||#]]. This completes the proof of Theorem 4.
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7. Formal congruences

To prove Theorem 6, we need a “formal congruences” result, stated in Theorem 30
below that we prove in this section.

We fix a prime p and denote by 2 the completion of the algebraic closure of @,, and
by O the ring of integers of (2.

To state the main result of this section, we introduce some notations. If N := (N),>o
is a sequence of subsets of | J,-, ({O, Pt =1} x {t}), then for all r € Z, r > —1 and
all s € N, we denote by Wx(r,s) the set of the u € {0,...,p* — 1} such that, for all
(n,t) € Nypys_tr1, with t < s, and all j € {0,...,p* " — 1}, we have u # j + p*~'n. In
particular, for all » > —1, we have Wy (r,0) = {0}.

For completeness, let us recall some basic notions. Let A be a commutative algebra
(with a unit) over a commutative ring (with a unit) Z. An element a € A is regular if, for
all b € A, we have (ab=0 = b=0). We define S as the set of the regular elements of A.
Hence S is a multiplicative set of A and the ring S~'A with the map

ZxS1'A — 8§14
(A, als) +— (N-a)/s

is a Z-algebra. Moreover, the algebra homomorphism a € A +— a/1 € S~ A is injective
and enables us to identify A with a sub-algebra of S~'A. This is what we do in the
statement of Theorem 30.

THEOREM 30. Let Z denote a sub-ring of O and A a Z-algebra (commutative with a
unit) such that 2 is a reqular element of A. We consider a sequence of maps (A,),>o from
N into S, and a sequence of maps (g,)r>0 from N into Z \ {0}. We assume there ezists a
sequence N := (N;),>o of subsets of J,~, ({0,...,p" — 1} x {t}) such that, for all r > 0,
we have the following properties: -

(1) A(0) is invertible in A;
(17) for all m € N, we have A, (m) € g,(m)A;
(zi1) for all s,m € N, we have:
(a) for allu € Uy (r,s) and all v € {0,...,p — 1}, we have
Ar (/U +up + mps—i-l) - ArJrl (U + mps> ps-‘rl Erts+1 (m) .
Ao+ up) A, (0) Ao+ up)”
(a1) moreover, if v+up € War(r —1,s+ 1), then
A (v+up+mp ) A(u+ mps)) +1
r + — S ® r+s -’47
g (U Up) ( AT(’U + Up) AT+1(U) p r+ +1(m>
(az) however, if v+up & Up(r —1,s + 1), then
Ar+1 (U + mpg)
Ar-i—l (u)

(b) for all (n,t) € N,, we have g.(n+ mp") € p'g,(m)Z.

€ PS+1gr+s+1 (m)A,;

g-(v + up)
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Then, for all a € {0,...,p— 1} and all m,s,r, K € N, we have

Sy(a, K, s,p,m) =
(m+1)p*~1
Z (Ar (a + (K - j)p) AT‘+1<j) - Ar+1(K - ])Ar(a + ]p)> c ps+1gr+s+1<m)~’4a
j=mp?

(7.1)
where A.(n) =0 if n <O0.

Theorem 30 is a generalization of a result due to Dwork [12, Theorem 1.1, first used
(in a weaker version [13]) to obtain the analytic continuation of certain p-adic functions.
Dwork then developed in [12] a method to prove the p-adic integrality of the Taylor coeffi-
cients of canonical coordinates. This method is the basis of the proofs of the N-integrality
of go,g(2). In the literature, one finds many generalizations of Dwork’s formal congruences
used to prove the integrality of Taylor coefficients of canonical coordinates with increasing
generality (see [20], [8] and [10]).

If we consider only the univariate case, then Theorem 30 encompasses all the analogous
results in [20] and [10]. Its interest is due to the two following improvements.

e Theorem 30 can be applied to Z,-algebras more “abstract” than O. We use this
possibility in this paper, where we consider algebras of functions taking values in Z,. This
improvement enables us to consider the integer ny g in Theorem 12.

e Beside this difference, Theorem 30 is a univariate version of Theorem 4 in [10] that
allows to consider a set N that depends on r. This property is crucial when we deal with
the case of non R-partitioned tuples o and (3.

There also exist in the literature other types of generalizations of Dwork’s formal con-
gruences, such as the truncated version of Ota [29] and the recent version of Mellit and
Vlasenko |27] (applied to constant terms of powers of Laurent polynomials).

7.1. Proof of Theorem 30. For all s € N, s > 1, we denote by «a, the following
assertion: “For all @ € {0,...,p— 1}, allu € {0,...,s — 1}, all m,r € N and all K € Z,
we have

S7'<a7 K7 u, p, m) € pu+1gr+’u+1 (m>A'//

Forall s € N, s > 1, and all t € {0,...,s}, we denote by S;, the following assertion:
“For all a € {0,...,p— 1}, all m,r € N and all K € Z, we have

ST(CL7 K + mpsa Sap7 m) =

A, |+ mp*! : s
Z —H?&l(‘] ( ) )Sr(a7 K7t7p7]) mod p +1gT+s+1(m)A'//
JEVN (r+t,s5—t) e

For all a € {0,...,p— 1}, all K € Z and all r, j € N, we define

Ur(a7K7p7j) = Ar<a + (K - j)p)Ar—H(j) - Ar—l—l(K - ])Ar(a +.]p)
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Then, we have

S

pS—1

S,(a,K,s,p,m)=>_ U,(a,K,p,j+mp").
j=0

We now state four lemmas that will be needed to prove (7.1).
LEMMA 31. Assertion oy holds.

LEMMA 32. For all s,r,m € N, alla €{0,...,p—1}, all j € Up(r,s) and all K € Z,
we have
ArJrl(j =+ mps)
Ar+1(j)

LEMMA 33. Foralls € N, s > 1, if as holds, then, for alla € {0,...,p—1}, dll K € Z
and all r,m € N, we have

Sr(a’a K? S, D, m) = Z UT(CL7 Kapuj + mps) mod ps+1g7“+8+1 (m)A7

JEY N (1,8)

U, (a, K +mp®,p,j +mp°®) = U, (a,K,p,j) mod p°*'g,4s1(m)A

LEMMA 34. For all s € N, s > 1, allt € {0,...,s — 1}, Assertions oy and [, imply
Assertion B s.

Before we prove these lemmas, let us check that they imply (7.1). We show that as
holds for all s > 1 by induction on s, which gives the conclusion of Theorem 30. By Lemma
31, oy holds. Let us assume that a holds for some s > 1. We observe that [, is the
assertion

60,5 . Sr<a7K —i—mps,s,p, m) =

A () ’
Z T—H(j i mp ) ST(CL? K, 07 b, ]) mod p8+1gr+s+1 (m)‘A
) AT—H(])
JEW N (7,5)

Since S, (a, K,0,p,7) = U,(a, K, p, j), we have

A, il + mp? Aol 4 g |
Z t;(j_l_mp )S’/‘(a7K707p7j): Z t;(]_‘_mp )UT(CL,K,p7])
JEU A (T,8) T+1(]) JEVA(rys) r+1(])

and, by Lemma 32, we obtain, modulo p*™'g, ,,1(m)A, that

3 A1 (J + mp®)

: U,(a,K,p,j) = U,.(a, K +mp®,p, j + mp®
g Ulefra= 2, Ul )

JEV A (7,8)

=S,(a, K +mp®, s,p,m), (7.2)

JEY A (1,8)

where (7.2) is obtained via Lemma 33.

Consequently, Assertion (), holds. We then obtain the validity of 3; s by means of
Lemma 34. Tterating Lemma 34, we finally obtain S, which, modulo p*™'g, . ,1(m)A,
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can be written
Arpo1(j+m)

S,(a, K +mp® s,p,m) = Z A G) S,(a,K,s,p,j)
jeUn(rtsg) Y
A, io1(m)
=————28,.(a,K,s,p,0), 7.3
Ar+s+1 (O) ( )

where we have used in (7.3) the fact that W,(r + s,0) = {0}.

Let us now prove that, for all @ € {0,...,p — 1}, all » € N and all K € Z, we
have S,(a, K,s,p,0) € p*™' A. For all N € Z, we denote by Py the assertion: “For all
a€{0,...,p—1} and all r € N, we have S,(a, N, s, p,0) € p*TtA”.

If N <0, then for all j € {0,...,p*— 1}, we have A, (a+ (N —j)p) =0 and A, (N —
j) = 0, so that S.(a, N,s,p,0) = 0 € p*"* A. To find a contradiction, let us assume the
existence of a minimal element N € N such that Py does not hold. Consider m € N,
m > 1, and set N’ := N —mp?®. Using (7.3) with N’ instead of K, we obtain

AT-I—S—H (m)
A on (0)

Since m > 1, we have N’ < N, which, by definition of N, yields that S,(a, N’,s,p,0) €
p*Tt A. By Condition (i), A,,s.1(0) is an invertible element of A and thus

S,(a, N,s,p,m) € p*HA.

Hence, for all m € N, m > 1, we have S,(a, N, s,p,m) € p*™' A. Consider T' € N such that
(T'+ 1)p* > N. Then,

S.(a,N,s,p,m) = S,(a,N',s,p,0) mod p* g, .i1(m)A.

T
> " S.(a,N,s,p,m)

m=0

(Ar(a+ (N = D) Ari(G) = Ara (N = DA.(a + jp)) (74)

o, (7.5

where we have used in (7.4) the fact that A,.(n) = 0if n < 0. Equation (7.5) holds because
2 is a regular element of A and the sign of the term of the sum (7.4) changes when we
change the index j to N — j. It follows that we have

T
S.(a,N,s,p,0) =— Z S,(a, N, s,p,m) € p*' A.
m=1

This contradicts the definition of N. Hence, for all N € Z, Py holds.
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Moreover, Conditions (i) and (i7) respectively imply that A,..+1(0) is an invertible
element of A and that A, ;1(m) € g,4+s11(m)A. By (7.3), we deduce that

Sr<a7 K + mps7 s, D, m) € ps+1gT+s+1(m)A-

The latter congruence holds for all @ € {0,...,p — 1}, all K € Z and all m,r € N, which
proves that Assertion agy; holds, and finishes the induction on s. It remains to prove
Lemmas 31, 32, 33 and 34.

7.1.1. Proof of Lemma 31. Let a € {0,...,p— 1}, K € Z and m,r € N. We have

Sr(aa K7 0, p, m) =A, (a + (K - m)p) Ar+1 <m> - ArJrl(K o m>Ar<a + mp)' (76)

If K—m ¢ N, then A, (a+ (K —m)p) = 0 and A, (K —m) = 0so that S,(a, K,0,p,m) =
0 € pg,.1(m).A, as stated. We may thus assume that K —m € N. We write (7.6) as follows:

A, (a + (K — m)p) A (K- m))

S.(a, K,0,p,m) = A,(a) <Ar+1(m) ( A, (a) A0

Ar(a + mp) ArJrl(m)
— A (K- m)( Ada) A0 )) . (7.7)

Since Wyr(r,0) = {0}, we can use Hypothesis (a) of Theorem 30 with 0 instead of u, and
a instead of v. In this way, we get

Ao+ (K —mp)  Ava(K—m) _ gran(K —m)

A, (a)  A4(0) A, (a A
and
Ar(a + mp) Ar+1 (m) 8r+1 (m)
A A0 TAW
Therefore,
A (a)Ari1(m) <AT <a +A<f({a)_ m>p) B AT—Xff(g)m)> € pgr+1(K —m)A,1(m)A
€ pgri1(m)A (7.8)

and

A (@A, (K — m) (A*“ tmp) Am(m)) € P& (M)A, (K —m)A

A, (a) A,11(0)
€ pgri1(m)A, (7.9)

where we have used, in (7.8), Condition (i7) that yields A, 1(m) € g,+1(m).A. Using (7.8)
and (7.9) in (7.7), we obtain S,(a, K,0,p,m) € pg,1(m).A, as expected.
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7.1.2. Proof of Lemma 32. We have

Ar+1 (] + mps)

U.(a, K +mp®,p,7 +mp®) — g U,.(a,K,p,j
( p°,p,j +mp®) A() ( p,7)
. (A(a+gp+mpttt) A (G4 mp®
= _Ar+1(K_j)Ar<a+jp) ( (A (Cl+jp> ) - +-;(+1(j) ) : (710)

Since j € Wxr(r, s), Hypothesis (a) implies that the right hand side of (7.10) is in

; : ris+1(m)
A, (K —j)A (a+ s LA
(K —j)Ar(a+jp)p Aot jp)
These estimates show that the left hand side of (7.10) is in p*™'g, .. 1(m).A, which con-
cludes the proof of the lemma.
7.1.3. Proof of Lemma 33. We consider s € N, s > 1, such that o, holds. We fix
r € N. If Up(r,s) ={0,...,p° — 1}, Lemma 33 is trivial. In the sequel, we assume that

Up(r,s) #{0,...,p° — 1}

We have u € {0,...,p* — 1} \ Wpr(r, s) if and only if there exist (n,t) € Nyis_t11,
t <s,and j €{0,...,p* " — 1} such that u = j + p°* 'n. We denote by M the set of the
(n,t) € Noys_11 with t < s. We thus have

{0,...,p° =1} \ Up(r,s) = U {j+p"m:0<j<p" -1}
(nt)eM
In particular, the set M is nonempty.
We will show that there exist £ € N, & > 1, and (ny,t1),..., (nk, tg) € M such that
the sets
J(nit;) == {j+p""n; : 0< 5 <ph -1}
form a partition of {0,...,p° — 1} \ War(r,s). We observe that

MCQ({O,...,pt—l}x{t})

and thus M is finite. Hence, it is enough to show that if (n,t),(n/,t') € M, j €
{0,...,p°* =1} and j' € {0,...,p°" — 1} satisfy j + p*'n = j' + p*~'n’, then we
have either J(n,t) C J(n',t') or J(n',t') C J(n,t).

Let us assume, for instance, that ¢ < ¢. Then there exists j, € {0,...,p" " — 1} such
that j = 7'+ p° " jo, so that p*~'n’ = p*tn+p** j, and thus J(n’,t') C J(n,t). Similarly,
if t > ¢/, then J(n,t) C J(n',t'). Hence, we obtain

Sr(a7K7 S?p’m) -
> U, K.pj+mp’)+ > U, (a, K,p,j+mp°), (T.11)
jE\IfN(’I‘,S) jE{O """" ps—l}\\PN(T,S)
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where
psfti —1

> U, (a, K,p,j +mp*) = U, (a, K,p,j +p""n; +mp*). (7.12)

7€40,...,p5 =1\ W s (1,s) =1 j=0
We will now prove that, for all i € {1,...,k}, we have

psfti -1

S U(a Kop,j+ "+ mp) € 5 g (m) A (7.13)
j=0

Let i € {1,...,k}. By definition of U,, we have
psfti_l

Z UT<a7 K7p7j +p5_tinz‘ + mps) = Sr(a’a K? s — ti,p, n; + mpti)'
7=0

Since t; > 1, we get via «, that
S,(a, K, s —ti,p,ni +mp") € p" gy (ng +mp') A

We have (n;,t;) € Nyys_t,11 and thus we can apply Hypothesis (b) of Theorem 30 with
r+s—t; + 1 instead of r:

s—t;+1 s—t;+1, t;

p 8ris—ti+1(n; +mp) € p P8rist1(m)Z = ps+1g7“+s+1(m)z-
It follows that, for all i € {1,...,k}, we have (7.13).
Congruence (7.13), together with (7.12) and (7.11), shows that
S.(a,K,s,p,m) = Z U.(a,K,p,j +mp®) mod p* g, oi1(m)A,
JEU A (T,5)

which completes the proof of Lemma 33.
7.1.4. Proof of Lemma 34. In this proof, i is an element of {0,...,p — 1} and u is an
element of {0,...,p* "' — 1}. For ¢ < s, we write 3, , as

S.(a, K +mp®, s,p,m) =

Z AT+t+l<i + up + mps_t)
Ay (i + up)

Sr(aa K7t7pai + Up) mod ps+1g’r+s+l(m)"4‘
i+upeW pr(r+t,s—t)

(7.14)

We want to prove the congruence 3,41 s, which can be written

Si(a, K +mp®, s,p,m) =
s—t—1
)ST(CL, K; t+ 17 b, U) mod ps+1gr+s+1 (m)A

Z Artipo(u+mp
Ao (U)

UEW pnr (r+t+1,s—t—1)
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We see that S,.(a, K, t+ 1,p,u) = Zf:_ol S, (a, K,t,p,i+ up). Hence, with

X :=S,(a, K +mp’,s,p,m)

p—1 i
Ar s—t—1
DD w2 WIS, (0, Kt ),
=0 u€W - (rt+1,5—t—1) r+t+2(t)
it remains to show that X € p*™'g,. .. 1(m)A. We have
itup e Un(r+t,s—t)=uecVUy(r+t+1,s—t—1). (7.15)

Indeed if u & Wpr(r+t+1,s—t—1), then there exist (n, k) € Nyys_py1, k <s—t—1, and
j€40,...,p°"t"17F — 1} such that u = j + p*'"1"*n. Hence, i +up =i + jp + p*~F*n,
so that i +up & Wy (r +t,s —t). By B, in the form (7.14) and modulo p**'g, s, 1(m)A,
we obtain

X

AT‘ ) s—t Ar s—t—1
Z S, (a, K, t,p,i4up) < +t+1(i + up +mp*) B tro(u+mp ))

i+upEW pr (r+t,5—t) A (1 + up) A iio(u)

s—t—l)

B Z A, io(u+mp

S,(a, K,t,p, 1+ up).
Ar+t+2(u> ( b p)

UEW s (r+t+1,5—t—1)
i+upg W ar(r+t,s—t)

But, by Hypothesis (a1) of Theorem 30 applied with s —¢ — 1 for s and r + ¢ + 1 for r, we
have
. Arpa(iHup+mp*™t)  Appa(u+ mPSt1)> —t
r 1+ u , — ep’'g, m)A.
g +t+1( p) ( Ar+t+1(2 I Up) Ar+t+2(u) p g +S+1< )

Moreover, since t < s and «, holds, we have

S,(a, K, t,p,i+up) € pgriii1(i +up)A (7.16)

and, modulo p*™'g,. . 1(m).A, we obtain

sftfl)

Y= _ Z Arippa(u+mp

S,(a, K,t,p, i+ up). 717
Ao (1) ( p. i+ up) (7.17)

UEW A (r4t+1,5—t—1)
i+upgWar(r+t,s—t)

Finally, when i + up ¢ Wy (r +t,s — t), we can apply Condition (ay) of Theorem 30
with s —t — 1 for s, ¢ for v and r + ¢t + 1 for r, so that

) A—’r‘ U + mp57t71 o

r+t+1(i + up) 22 ) € P ' grrsa(m)A. (7.18)
A, yiio(u)

Using (7.16) and (7.18) in (7.17), we thus have X € p**'g,, . 1(m).A. This completes the

proof of Lemma 34 and consequently that of Theorem 30. O
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8. Proof of Theorem 6

The aim of this section if to prove Theorem 6. We will first prove some elementary
properties of the algebras of functions 4, and A;.

8.1. Algebras of functions taking values into Z,. In the following lemma, we
gather a few properties of the algebras 21, ,, and 20 .

LEMMA 35. We fiz a prime p andn € N, n > 1.
(1) An element f of U, ., respectively of Ay
if and only if f((Z;)") CZy;
(2) the algebra 2, contains the rational functions
I (Z;)n - Zp
(,I'l, . ,Jjn) —>
where P,Q € Zy[Xy, ..., X,] and, for allxy, ... 2, € Z), we have Q(xy, ..., T,) €
ZX .
p7
(3) if f ey, and if €, s > 1, is the function Euler quotient defined by
¢, : Z; — Ly,
r o (20 —1)/p7,
then we have €0 f € A7 .

is invertible in Ay, ,,, respectively in 27

PROOF. Let f € %, ,. For f to be invertible in 2, ,,, we clearly need that f((Z;)") C
Z, and in this case, for all x € (Z;)”, all a € Z; and all m € N, m > 1, we have

1 1 1 11

fx+apm) [+ fE) 1T+ s [(x)

because f(x) € Z), n € Zy, and (14 p™Z,, X) is a group. The case f € A5 being similar,
Assertion (1) is proved.

mod p"'Z,,

To prove Assertion (2), we apply Assertion (1) because any polynomial function f :
X € (Z;)" w P(x), with P € Zy[X,,..., X,] is in 2.

Let us now prove Assertion (3). For all s € N, s > 1, the cardinal of (Z,/p°Z,)* is
¢(p°) because Z,/p°Z, is isomorphic to Z/p*Z. Hence, for all z € Z), we have ) =1
mod p°Z, and the function &, is well defined.

We fix s € N, s > 1. To prove Assertion (3), it is enough to prove that, for all z € Z,
all a € Z, and all m € N, m > 1, we have &,(x + ap™) = &;(z) mod p™'Z,. We have

(p<ps)) a* km .o(p®)
P
— ( k )z

»(p*) (ps> ak
= x‘P(PS) + Z (SD L >Epkm mod pS—i-mZP’
k=1

~—

»(p®

(x + apm)so(ps)
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because z#®°) = 1 mod p°Zy. By a result of Kummer, the p-adic valuation of (“"(,fs)) is
the number of carries in the addition of & and ¢(p®) — k in base p. Let us show that this
number is equal to s — 1 — v, (k).

Indeed, if v,(k) = 0, then this number is s — 1 because p(p*) = (p — )p*~t. If
vp(k) = o > 1, then we write k = k'p® and o(p*) — k = p*((p — 1)p* ™17 — k') with
v,(k") = 0, so that the number of carries of the addition of £ and ¢(p®) — k in base p is the
number of carries in the addition of & and p(p*~*) =k, i. e. s—1—a=s—1—1v,(k).

In particular, we obtain that, for all £ > 1,

s k
Up((s@(p ))%pkm) > s+ m+ (k—1)m—uvy(k) —1>s+m— 1,

k
hence (x + ap™)?®") = 2" mod p**™~17Z,. Consequently, we have & (x + ap™) = €,()
mod p™~1Z,, and the proof of Lemma 35 is complete. O

LEMMA 36. Let v,D € N, D> 1, and b€ {1,...,D}, ged(b, D) = 1.
(1) We have Ay(p”, D) C Ay(p”, D)* and pAy(p”, D)* C Ay(p¥, D);
(2) An element f of Ay(p”, D), respectively of Ay(p¥, D)*, is invertible in Ay(p”, D),
respectively in Ay(p”, D)*, if and only if f(Qu(p”, D)) C Z);
(3) Any constant function from Qu(p”, D) into Z, is in Ay(p”, D) ;
(4) If r € N and o € Q satisfy d(a) = p"D’, with 1 < p < v and D' | D, then the
map t € W (p”, D) — d(a)(ta) is in Ay(p”, D)*;
(5) If a € QNZ, and k € N, then the map t € Q(p”, D) — wr(ta) is in Ay(p”, D);
(6) If n € N, n > 1, fl,...,fn c Ay(p",D)*, g € Appn and h € A3, then g =
go(fi,. .y fn) € A(p”,D) and B/ :== ho (f1,..., fn) € Ay(p”, D)*. Furthermore
if g is invertible in 2, ,,, respectively h is invertible in A . then g' is invertible in
Ay(p¥, D), respectively b/ is invertible in Ay(p¥, D)*;
(7) 17 f € Ay(p", D) and g € Ay(p?, D), then
Y. f)ep'Z, and Y g(t) €',
teQp(p”,D) teQy (p¥,D)

PROOF. Assertions (1) and (3) are obvious. The proof of Assertion (2) is similar to
that of Assertion (2) of Lemma 35.

Let us prove Assertion (4). For all t € ,(p”, D), the number d(a)(t™a) is the numer-
ator of (t) ) and thus it is in Z* because p divides d(c).

Let o = k/d(a), t1,ta € Qp(p”, D) and m € N, m > 1 be such that t; = ¢, mod p™.
Since t; =t, = b mod D, we get £\ = ¢{” mod D.

If m > p, then th) = tgn) mod p" and the chinese remainder theorem gives t§’“> =
7 mod p“D. Since D' | D, we obtain "k = t7?x mod d(a) and thus d(a)(t"a) =
d(o)(t)a), as expected.

On the other hand, if m < p, then £ = ¢
"k mod d(«) for i € {1,2}, we obtain d(c)
Assertion (4).

g> od p™. Since D' | D and d(a){t{"a) =
< ) (a)<t§ )04) mod p™, which proves
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Assertion (5) is obvious and Assertion (6) is a direct consequence of the definitions and
of Assertion (2).

Let us prove Assertion (7) by induction on v in the case f € Ay(p”, D). We denote by

A, the assertion
>, fl)e

tGQb(pl’,D)
Assertion A; trivially holds. Let v € N, v > 1 be such that A, holds.

The set Q(p”™, D) is the set of the t;,,1 € {1,...,p"™ D} such that t;,,; = b
mod D and t,,1 = ¢ mod p*™!, with ¢ € {1,..., ”*1} ged(d,p) = 1. Let £ := u + vp”
with v € {1,...,p"}, ged(u,p) = 1 and v € {0,...,p — 1}. Then, we have t;,11 = u

mod p” and by the chinese remainder theorem, we obtain toy+1 =ty mod p”D, so that
u+1

Z f(t) = Z f(tops1) = Z Zf u—l—vp 1)

teQb(py+17D)
gcd(f p) gcd(u p) 1

p

P Z f(ty,) mod p“Z,
1

ng(u7p):1

=p Z f(t) mod p"Z,
tGQb(pl’,D)
=0 mod p"Z,,

by Assertion A,. Hence, Assertion A, ; holds, which completes the proof of Asssertion (7)
when f € Ay(p”, D). The case f € Ay(p”, D)* is similar. O

8.2. Proof of Theorem 6. In this section, we fix two r-tuples a and 3 of elements

of Q\ Z<o. We assume that (o) and (3) are disjoint and that H, g holds.
We set C' = Clay ), ¢' = Chg, 1 = Nag, M = My g and A, = \y(a, B). We write
dap = p'D with v > 0 and ged(D,p) = 1. For all t € {1,...,dsg} coprime to dy g and
all 7 € N, we recall that () is the unique element in {1,...,dap} coprime to dg g such
that ) =t mod p” and p"t") =¢ mod D.

We fix b € {1,..., D} coprime to D and set €, := Qu(p”, D), Ay := Ap(p”, D), A} :=
Ay(p”, D)*. We recall that, if v = 0, then Q, = {b} and that A, = A; is the algebra of
functions from {b} into Z,.

For all t € , and all r,n € N, we set

" oy
Q,+(n) == (C’)”% and Q,.(n) = (t €O — Qr,t(n)).

Forall ¢ € {1,...,p"} not divisible by p and all ¢ € N, we fix a prime p., such that p., = p
mod D and p., = ¢ mod p”. For all t € ), and all » € N, we set

[N De,0,1
Aﬁt =A tMa), (@)
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Let a, respectively B, be the sequence of elements of (t™a), respectively of (+")3), whose
denominator is not divisible by p. We set Art = Ap £ We gather in the following lemma

a few properties of the sequences Q,.. We set ¢ = 1 1f mis odd and if 8 ¢ Z", and + = 0
otherwise.

LEMMA 37. For alln,r € N, there exists Ay (n) € Z,, such that Q,.(n) € 2" Ay, (n)A;,

where
s,(n) A
A A p_ P
o) =35 ({ )t
00 pY
A
S )
~ olp = p—1
gcd( )
If p divides do g, then for all n,r € N, n > 1, we have v, (Abﬂq(n)) >1and if B €Z" then
A
y(aal) = = | 225 .
PROOF. For all ¢t € €, we have Q,(n) = 2"y, (n)R,(n,t) with

. Hﬁiﬁp d(6) ' Halezp“ D))
Aarln) = <CH%‘¢Zp d(o@) Hﬁlezp«t Bi) )n

and
oz, d0)" (¢ ad)n o, Z’é (d(e) (tD ) + kd(y))
sz, B (DB Tlgez, TTizo (d(B) D B:) + kd(5:))

By Assertions (2) and (4) of Lemma 36, we have %r(n,-) € A). Moreover, if « is
a term of the sequences o or 3 whose denominator is not divisible by p, then (t(a)
depends only of the class of t") in Z/DZ which is that of wp(p~"b) when t € . Indeed,
if <a> = 1, then (t"a) = 1 and if (@) = k/N # 1, where N is a divisor of D, then
N{tMa) = N{t({(a)} = wy(t"Ek). For all t € Q, and all r € N, we have p't™") = b
mod D, so that wy (k) = wy(bp™"k). It follows that A, (n) depends only on b, r and
n. By Proposition 29 and Equation 5.10, we have

o) B ()

e (R Pt

gcd(c,p) 1

In the sequel, we assume that p divides dn g. Let us now show that, if n > 1, then
vp(Apr(n)) > 1. Let a be a term of the sequences (¢ ) or (¢ 3) whose denominator
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R, (n,t) =




is divisible by p. By (5.18), the number of elements ©, ,(a), £ > 1, ¢ € {1,...,p"},
ged(e,p) = 1, that satisfy {n/p'} > D,_,(«) is equal to ¢(p*)s,(n )/( 1). In particular,
if n > 1, then there exist at least one ¢ > 1 and one ¢ € {1,...,p"}, ged(c,p) = 1, such
that {n/p’} > D,,_,(a). Thus, there exists one term o/ € (0,1) of the sequence (¢t"cx) or

(t")3) such that Aﬁ:f({n/pe}) = Aﬁf (9., ().

By Lemma 28, we obtain Af,jg({n/p }) = &ma) T>ﬁ>(a,ao/), where a € {1,...,dapg}
satisfies p.ya =1 mod dy . Since o' ¢ Z, we have Min () ><t(r>5>( a) % ad/ < a and by
Lemma 18, Assertion H ;)4 (1) gy holds, so that Ace({n/p }) > 1. Hence, v, (Ap,(n)) > 1.

Moreover, if 3 € Z", then A\, < —1 and the functions Apt are nonnegative on [0,1). It

follows that
sp(n) A A A \
%MmMDE—M{J+n{ p}z_ p+{%ﬁ}2_L¥HJ
This completes the proof of Lemma 37. O

D p—1 p—1

In the sequel, we set K, := A; if p does not divide do g. If p divides dq g, we set
pme/e=DI A, if B e 77,
Ay if B3¢ 7", mis odd and p = 2;
Ayif B¢ 7" and p— 11 A\,;
A} otherwise.
By Lemma 37, for all » € N,
(t S Qb — F<t(r)a>7<t(r)ﬁ>(clz)) cl+ zICb[[zH

is an invertible formal power series in K[[2]]. Hence, to prove Theorem 6, it is enough to
prove that the function

te Qb — G(t(1)a>7<t(1>ﬂ>(C/Zp)F<ta>,<t5>(C/Z) - pG<ta>’<t5>(C/Z) M a), (¢ B) (C Zp) (8.1)
is in pKy][2]]-

Foralla € {0,...,p—1} and all K € N, the (a+ Kp)-th coefficient of the formal power
series (8.1) is

le =

r

te Qs dat Kp)i=> (Pa,ula+ Kp) — Bg,u(a+ Kp)),
i=1

where
Oy i(a+ Kp) : Z Qo.i(a+ jp)Qui(K — J)(Hywey (K — j) — pHiay(a —i—jp)).

It is sufficient to show that, for all terms « of the sequences a and 3, for alla € {0,... , p—1}
and all K € N, we have

®,.(a + Kp) € pKy. (8.2)
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If a+ Kp = 0, then ®,.(0) is obviously the null map. In the sequel, we assume that
a+ Kp # 0, so that, for all j € {0,..., K}, we have a+jp>1lor K —j > 1.

If p divides do g and if a is a term of the sequences a or B whose denominator is
divisible by p, then for all n,r € N and all ¢t € €0}, we have

Higoo Zd t(” )+ k)’

yielding (t € Q — H<t(r)a>(n)) € pA,. By Lemma 37, for all n,» € N, n > 1, we have
Q,.(n) € Apr(n)A, with

-w/(e=Dl7 if B € 7"
Aprm) € 17 o Hpen
pZ, otherwise.
Hence, we have (t €W Dyi(a+ Kp)) € p?Ky, C pKy, as expected.

It remains to deal with the case when the denominator of « is not divisible by p. We
fix an element o € Z, of the sequences o or B in the proof of (8.2). We recall that (t«a)
is independent of ¢ € §, because a € Z,. By [12, Lemma 4.1|, for all j € {0,..., K}, we

have
pla.(ta)

Hyoy(a+ 7p) = pHyoy (Jp) + d pZ,,
PHyay(a + jp) = pH o) (ip) D, (o)) +j Mot rl
where we recall that, for all x € Q N Z,, we have
0ifa < p®,(x) — x;
pla,x) =4 #l?)
lif a > p®,(z) — .
Moreover,
Jp—1 1 1 Jj—1 1 p—1 Jj—1 1
Hu(p) = > ==y 4 —
() (JP) ; (ta) + k pkz:%i)p(@a)) +k Z ; (ta) +i + kp
Z#pﬁ)p« >) (ta)

so that pH ) (jp) = Ho,((tay)(j) mod pZ,. Writing (o) = k/N as an irreducible fraction,

we obtain

wn(Np~Hta))  wn(p'own(bk)  wn(p~'bk)
N B N N

D,((ta)) = = ({tWa). (8.3)

Hence,

pla, (tar))
W mod pZ,. (8.4)

We now use the following fact, to be proved in Section 8.2.1: for all j € {0,..., K}, we
have

PHay(a + jp) = H o) (5) +

pla, {tar)) . .
(t € Qy— WQW(@ +jp) Q1 +(K — j)) € pKy. (8.5)
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Forany f:te€ Qy— f(t) € Qp, any g :t € Q, — g(t) € Q, and any ideal I of Ay, the
notation f(t) = ¢g(t) mod I means that f — g belongs to I. Using (8.4) and (8.5) in the
definition of ®,.(a + Kp), we obtain

M)~

Dop(a+Kp) =D Qoila+jp)Qui(K — j) (Hyway (K —j) — Hywa(5))
~0
’ K
= 3 Hior () Qoela+ p) QuulK — ) — Qoula+ (K — 1)p) Q1))
=0
modulo p/C,.

8.2.1. Proof of Equation (8.5). For this, we prove several results that will be used again
in the proof of Theorem 6.

LEMMA 38. Leta € {0,....p—1}, meNand z € Z,NQN(0,1]. If p(a,x) =1, then
Jor all € € {1,... .1+ v,(Dp(x) +m) }, we have {(a+ mp)/p'} > Di(x).

PROOF. We write m = 7 m;p/ with m; € {0,...,p — 1} and we fix some ¢ in
{1,...,1+v,(Dp(z) + m)}. Then,

{a+mp} _ G+P2] Om]pﬂ

oy P
We have D,(z) + m € p*~'Z, and thus

o0

Dp(z) +m — Z m;p € pz_lzzn

j=t—1
so that
-2
PO, () —|—pijp7 - peﬁf;(x) e p’
=0

because pD,(x) — p'D}(x) € Z. We obtain

D, )+pZJ o m;p’
p*

¢
- D,(z) €Z
Moreover D/ (x) € (0,1] and

Z* .
_ P 4P Y momiy’ _ptp(p' T 1)
Z —

p

so that
( ) +pZ] Om]pj
p

- @f;(as) = 0.

47



We have p(a,x) = 1 hence a > p®,(x) —z i. e. a > pD,(x) —z+ 1 and a > pD,(x). It
follows that " 4
a—+p Zj;o mjpj

o

> @f;(x).
[

For all ¢ € {1,...,p"} not divisible by p and all £, r € N, we define 7(r, ) as the smallest
of the numbers D, _, ((t(T)a>), where o runs through the elements of the sequences a and
B whose denominator is not divisible by p. Since (ta) € Z,, the number D,,_,({(t"a))
does not depend on ¢ and thus 7(r,¢) neither. Moreover, since a@ € Z,, the rational
number (t("a) does not depend on t € €, and thus 7(r, £) neither. We define 1, as the
characteristic function of the interval [T(r, 0), 1). For all m,r € N, we set

> m
pe(m) =Y 1, <{]?}> eN and g, (m):=p™.
=1

Similarly, the function g, does not depend on t € €.

LEMMA 39. Let r,¢,n € N, { > 1, be such that {n/p‘} > 7(r,{). Then for all t €
and all c € {1,...,p"} not divisible by p, we have Aﬁjf({n/pe}) > 1. In particular for all
n € N, we have

A
vp (Ao (n)) > vp(g-(n)) + 1 {p —pl } :
If B € Z", then for alln € N, n > 1, we have
A
0y (hanl) = o) — | 225 .
PROOF. Let r,f,n € N, £ > 1, such that {n/p‘} > 7(r,f). Let ¢ € {1,...,p"} not

divisible by p. There exists an element «. of the sequences a or 3 such that Aﬁf({n /p’ }) =
Ai:f (D, ((tMae))) with D, , (")) < {n/p'} < 1. Hence (t{"a,) < 1. By Lemma 28,

we obtain
c,l n r
B ({ﬁ }) = Euay g (o, aftac)),

where a € {1,...,dqp} satisfies p.ja = 1 mod dog. We also have N (4(r) o), (1) B) (a) =

a(ta,) < a and by Lemma 18, Assertion H y(nay,tn gy holds. Hence, Aﬁzf({n/pg}) > 1.
By Lemma 37, we have

=5 $ si({pf) o)

o(p”)

ged(c,p)=1
so that

vp(Ab,r(n))zvp(gr(n>)+n{ Ay }

p—1
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Let us now assume that 3 € Z". If we have 1 > {n/p’} > 7(r,£), then there exists an el-
ement a of a whose denominator is not divisible by p and such that {n/p‘} > D,_,((t{")a))
for some ¢ € {1,...,p"} not divisible by p. The denominator of (+")a) divides D and p., =
p* mod D hence we have D, ,((t"a)) = DE((t"a)), which yields Ef:f({n/pe}) > 1. By
Lemma 37, for all n € N, n > 1, we have

i) =23 ({5 1) =32 oo {52

> (n) — p)f)l + {p)f)l} > v,(gr(n)) — Lj)flJ :

because A, < 0. This proves Lemma 39. O

We are now in position to prove (8.5).

PROOF OF (8.5). If p(a, (tar)) = 0 then (8.5) holds. We may thus assume that p(a, (ta)) =
1, i. e. that a > p®,((ta)) — (ter). In particular, we have (ta) < 1 and @ > 1. For all
j€10,...,K}, we have a + jp > 1 hence by Lemma 39,
QO’.(CL + jp) S gg(a + jp)/Cb.
It follows that it is sufficient to show that

%go(a + Jp) € pZy. (8.6)

By Lemma 38 with (t«) instead of x and j instead m, we obtain, for all j € {0,..., K}
and all £ € {1,...,1+ v,(D,((ta)) + j)}, that {(a + jp)/p‘} > DL((ta)) = D, ((ta))
because (to) € Z,. We obtain {(a + jp)/p‘} > 7(0,¢), thus

vp(go(a + jp)) ere ({a+‘7p}> > v, (Dp((tar)) +7) + 1,

and this completes the proof of (8.6) and also that of (8.5). O

8.2.2. A combinatorial lemma. We now use a combinatorial identity due to Dwork (see
[12, Lemma 4.2, p. 308|) that enables us to write

ZHM )(Qosla+ )il = ) = Qui)Qos(a+ (K = j)p))

Wt(a7 K787p7 m)7

where r is such that K < p",

Wt(a7 K7 S, Ds m) = (H<t(1)a> (mps) - H{t(Ua)(Lm/pJpSJrl))St(aa K7 S, D, m)
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and
(m+1)p*—1

Sila, Kosopom) = > (Qoala+ jp)QuilK = 5) = Quii)Quula+ (K = )p) ).
j=mp?®
where, for all 7 € N, we set Q,+(n) = 0 if n < 0. Thus, to complete the proof, it is enough
to show that, for all s, m € N, we have (t € — Wi(a, K, s, p, m)) € pky. If m =0, this
is obvious. We now assume that m > 1.

We write m = k + gp with k € {0,...,p — 1} and ¢ € N, so that mp® = kp*® + qp*™!
and |m/p|p*™ = qp*™. By [12, Lemma 4.1|, we obtain

1) 1 p(k,D5((tWay))
PO ((ta)) 4+ q

Let us show that, for all s, m € N, m > 1, we have

p(k, D (V)

D (((0a)) +q

If p(k,D5((tMa))) = 0, this is clear. Let us assume that p(k, D35((tMa))) = 1. Since

(tWa) € Z,, Bq. (8.3) yields D5((tMa)) = (¢ a) and D57 ((tWa)) = D, (" a)).
Using Lemma 38 with (t¢*1a) for z, k for a and ¢ for m, we get that, for all ¢ €

(L 1+ 0, (D,((00)) + @)}, we have {m/pf} > DL((HE+Da)) = D, (1))

because (t+Va) € Z,. We obtain {m/p‘} > 7(s +1,£) and

o (gon(m) = i s ({2 2 0@, 0 4001

which finishes the proof of (8.7).
By (8.7), for all s,m € N, m > 1, we have
(H<t(1)a> (mps) - H<t(1)a>(Lm/pjps+1)>ps+lgs+l (m) S pr‘

Hence, to complete the proof of Theorem 6, it is enough to show that, for all s, m € N,
m > 1, we have

1
H oy (mp®) — Hywoy (Lm/plp mod EZP'

gs+1(m) (87)

(t € Q= Si(a, K, s,p,m)) € p goy1(m) Ky (8.8)
We do this in the next section.
8.2.3. Application of Theorem 30. To prove (8.8), we will use Theorem 30 with the ring
Z, for Z and the Z,-algebra A defined as follows:
e A=A, if (B€Z orp—11A,) orif (p=2and mis odd);
o A= A; otherwise.
A map f € A} is regular if and only if, for all ¢ € 2, we have f(t) # 0. Moreover, we have
.Ab C AZ
In particular, by Lemma 37 and Assertion (2) of Lemma 36, for all »,m € N, the map
Q,.(m) is a regular element of A,. In the sequel, for all r,m € N, we set A, (m) := Q,.(m)
and we define a function g, as follows:
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o If B€Z and p| dag, then g,(0) =1 and g,(m) = %Ab,r(m) for m > 1,
e If B¢ 7" or ptdag, then g, = g,.

We recall that, if m > 1 and if p | do g, then for all r € N, we have Ay, (m) € pZ,. Hence,

the maps g, take their values in Z,.

We will show in the next sections that the sequences (AT)r>o and (g,),>o satisfy Hy-
pothesis (7), (i) and (i7i) of Theorem 30. Thus, for all m,s € N, m > 1, we will obtain
that
P°Apsr1(m) Ay if B € Z" and p | do g;

P gsa(m) Ay if B¢ Z" and p — 11 \p;
p*Tlge i (m)A, if B¢ Z7, p=2 and m is odd;
P gsi1(m)A; otherwise.

S(a,K,s,p,m) €

because, if p { do g, then A, = A;.
Proceeding in this way, we will obtain (8.8). Indeed, the only nonobvious case is the
one for which 3 € Z" and p | do . But in this case, by Lemma 39, we have

1|2
P My (m) Ay € ptp L5 g m) Ay = g0 ()G

In the next sections, we check the various hypotheses of Theorem 30.
8.2.4. Verification of Conditions (i) and (it) of Theorem 30. For all » > 0, the map
Q,.(0) is constant on €2, with value 1, and thus it is invertible in A,.

By Lemmas 37 and 39, for all m € N, we have Q,.(m) € g,(m)A, and Q,.(m) €
Ay (m)Ap so that in all these cases we have Q,..(m) € g,.(m)A,. This shows that Condi-
tions (¢) and (i¢) of Theorem 30 hold.

8.2.5. Verification of Condition (iii) of Theorem 30. For all r € N, we set

N, = <{n e {0,...p =1y Ve l,... t} {n/p'} > T(r,e)} x {t}).
t>1
We apply Theorem 30 with the sequence N := (N,),>0. We observe that, for all r,/ € N,
we have 7(r,£) > 0 and hence, if (n,t) € N,, then n > 1. Moreover, in the sequel, we will
often use the fact that, for all h € N, all ¢ € {1,...,p"} not divisible by p and all ¢ € ),
we have

T(r 04+ h) = 1(r +h,t), AT = AP!

c,l+h c,l
ringe and Ar,t+ = Al (8.9)
Indeed, let @ be a term of the sequences o or B. Writing (o) = k/N as an irreducible
fraction, we obtain
N (Porintk) @ (peet"E)

Epc,(’.+h<<t(r)a>) = N - N = gpc,€(<t(r+h)a>)’

so that 7(r, ¢ + h) = 7(r + h,{) and Af«:f+h = Aifh,t'
(8.3), we have

Furthermore, if o € Z,, then, by

D, (7 0)) = D3, (D5 (7)) = D" Ma)),
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which yields A2y ™" = APY, .
8.2.6 Vemﬁcatzon of Condition (b) of Theorem 30. Let r,m € N and (n,u) € N,. We

want to show that g,(n +mp") € p'g,1u(m)Z,. We need to distinguish two cases

o If B €7 and p | do g, then

u =N~ n + mp" Sp(n + mp* u A
Up(Ab,r(n+mp )) = ZAf:f ({T}) —)\pp(fl) + (n+mp ){p—pl}

=1
n—+ mp" }) s,(m) { Ap }
> ST AP A7 I e L
i ((y) - 2 () il
because A\, < —1 and n > 1. Since (n,u) € N,, for all £ € {1,...,u}, we have {n/p‘} >
7(r,¢) and thus
vp (Apr(n 4+ mp")) > u+ i APt ({LZWL}) - APM —i—m{—p}.
Pl p p—1 p—1
We set m = Y oo myp®, where my € {0,...,p — 1} is 0 for all but a finite number of k’s.

For all £ > u+1,
u l—u—1 u l—u—1
n4mpt| P <Zk:0 kP k) b (Zk:o TP k) m
o o > o - piu |

Moreover, since (3) = (1,...,1), the map Apt is nondecreasing on [0,1) and we obtain

that
U(A (n+mp > u+ E AM —AsP( )+m Ay
PATDT Pp—1 p—1J°

l=u+1

But we have

> = ({7

> m () - () - ()

which yields v, (Ab ~(n + mp* ) >u+v, (Abmﬂ(m)) and thus
Up (Ab r(n + mpu)) Z u+ Up (Ab,r+u(m)) + 1.

Since n > 1, we have g,(n +mp") = %Ab,T(n + mp*) and we obtain

up (& (n +mp*)) > u+ vy (Apyra(m)) > u+ vy (griu(m)),

as expected.
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o If B¢ Z" or ptdag, then we have to show that g,.(n + mp*) € p“giu(m)Z,. We

have
ot o) =S ({5})

1

el 2 ()

o () 510

l=u+1

<
~

\Y
~ ~
I 2 |

v

because (n,u) € N,. Hence, for all £ € {1,...,u}, we have {n/p‘} > 7(r, (). Furthermore,
for all h € N, we have 7(r,{ 4+ h) = 7(r 4+ h,{) and consequently

é;l 1 ({%W}) = Zgrl Lt ({pzn“}) - g Lt ({g}) = Up(9r+u(m))-

Together with (8.10), we obtain g,(n + mp") € p“g,4.(m)Z,.
8.2.7. Verification of Condition (as) of Theorem 30. Let r,s,m € N, u € Uxr(r, s) and
v €{0,...,p— 1} be such that v +up ¢ War(r — 1,5+ 1). It is enough to show that
Q1. (u+ mp®)
Qr+1,~(u)

We will first provide a few important properties concerning the set Wy (7, s).

S ps+1gr+s+1<m)~Ab~ (811)

g (v + up)

LEMMA 40. Let r € Z, r > —1 and s € N. Then VU (r,s) is the set of the u €
{0,...,p° =1} such that {u/p*} < T(r+1,s). Moreover, for allu € VU (r,s) and all £ > s,
we have {u/p*} < 7(r + 1,£) and, for all m € N, we have

QrJrl,- (U, + mps)
Qr+1,- (u)

By Lemma 40, to show (8.11) and thus to complete the verification of Condition (as),
it is enough to show that v, (gr(v + up)) > s+ 1.

A s
c 2mesp{r_p1}m(17 I)Ab,r—ks-&-l(m)Ab'

We have v+ up ¢ Wpr(r — 1,5+ 1), hence there exist (n,t) € Noys 441, t < s+ 1 and
j €1{0,...,p*™ 7t — 1} such that v + up = j + p*™'"'n. Since u € U (r, s), we necessarily
have s +1 —¢ = 0, so that (v+up,s +1) € N,, i. e, forall £ € {1,...,s+ 1}, we have
{(v+up)/p'} > 7(r, () and thus g,(v+up) € p**'Z,. Furthermore, if 3 € Z" and p | da g,
then, since v +up > 1, we have g, (v +up) = %Ab,,‘(v +up)Z, and by Lemma 39, we obtain

Up(gr<v +up>) Z Up(Qr(U +up)) —1- \‘p/\_le Z s+ 17

because A, < —1. This completes the verification modulo Lemma 40.
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PROOF OF LEMMA 40. We first show that W (7, s) is the set of the u € {0,...,p*—1}
such that {u/p°} <7(r+1,s). If s =0, then Wx(r,0) = {0} and 7(r+1,0) > 0, thus this
is obvious. We may then assume that s > 1. Let u € {0,...,p* — 1}, u = > i_ ugp¥, with
ug € {0,...,p— 1}. It is sufficient to prove that the following assertions are equivalent.

(1) We have {u/p°} > 7(r + 1, s).
(2) There exist (n,t) € Nyjs_t11,t < s and j € {0,...,p°" — 1} such that u =
J+p¥n.

Proof of (2) = (1): we have

{u}_u_j+ps_tn>n_{n}
P p* pr T pt pt]

Moreover, by definition of the sequence ', we have {n/p'} > 7(r+s—t+1,t) = 7(r+1,s)
and hence {u/p*} > 7(r + 1, s).

Proof of (1) = (2): for all s > 1, we denote by B, the assertion: “For all uw € {0,...,p*—
1} and all » € Z, r > —1, such that {u/p*} > 7(r + 1, s), there exists i € {0,...,s — 1}

such that (35—, wkp*~, s — i) € Nyyi1.” It is enough to show by induction on s that, for

all s > 1, B, holds.

If s =1, then, for all w € {0,...,p — 1} and all » € Z, r > —1, such that {u/p} >
7(r+1,1), we have (u,1) € N,41. Hence, B; holds.

Let s > 2 be such that By,...,Bs_1 hold, let uw € {0,...,p° =1} and r € Z, r > —1, be
such that {u/p*} > 7(r + 1, s). We further assume that (u, s) ¢ N,,1. Hence, there exists
e {l1,...,s} such that

/—1 k
o 2uk=0 UYKD" {U}
qp = k=0 J UL 10,
Pt p*

We necessarily have £ € {1,...,s — 1}. We write

{g} _u_Patp S wn™ e S wet

ps ps ps ps—é ps—é

Since {u/p*} > 7(r + 1, s), we obtain that
s—1
Zukpkfé >pir(r+1,8) —ap > p*ir(r +1,8) — 7(r + 1,0),
k=t

so that
s—1
Zukpk’K >p r(r 0+ 1,5 —0) —7(r+£+1,0).
k=0
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Let o be an element of the sequences & or 3 such that 7(r+/(+1,s—{) = D57 (¢ a)).
Then, we have 7(r + £+ 1,0) < (t+%Yq) and thus

Zukpk—é > ps—Zgz—Z«t(r—i—Z—i—l)a)) o <t(r+ﬂ+1)a>' (8.12)

Both sides of inequality (8.12) are integers, so that

s—1
Zukpk—f Z ps—fgz—ﬁ(<t(7”+£+1)a>) _ <t('f‘+€+1)a> _I_ 1 2 p8—€©;—€(<t(r+é+1)a>)‘
k={

It follows that
s—1
Ukp s— r
Rt W () = rir + L4 1,5 - ),

By B,_y, there exists i € {0, ..., s—¢—1} such that (ZZ;}ZH uppt s — 00— i) € Nogeris-
Hence there exists j € {/, ..., s—1} such that <ZZ;§ uppt I, s — j) € N,;4j+1, which proves
Assertion B, and finishes the induction on s.
The equivalence of Assertions (1) and (2) is now proved and we have
Upr(r,s) ={ue{0,....p° =1} : {u/p’} <7(r+1,s)}.
Let u € W (r,s). Let us prove that, for all £ > s, we have {u/p‘} < 7(r + 1,¢).

To get a contradiction, let us assume that there exists ¢ > s such that {u/p‘} >

7(r+1,0). Let o be an element of the sequences & or 3 such that 7(r+1, () = DLt a)).
We obtain that

G o (2w

> p D, ({7 Va)) — D a)) + Dy (" Va))
> D, (" Vay))
>71(r+1,s),

which is a contradiction. Hence, for all £ > s, we have {u/p‘} < 7(r + 1,£).

To complete the proof of Lemma 40, it remains to prove that, for all u € W (r, s) and
all m € N, we have

QTJrl,- (u + mps)
Qr+17-(u)

By Lemma 37, we have

>‘P m(ps—
€ 2me5p{pj} (p I)Ab7r+5+1(m)¢4b. (813)

Qr+l,-(u + mps> 2me Ab T+1<u +mp )AX
Qr+1,~(u) Ay r+1( )
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with

v (Ab,r+1 (u + mp?®) )
P Ab,r—H (u)

=3 (A ({5 )) - den ({5))) - {2

<~ u + mp® s,(m s A
- 30w ({(F5)) v e {2 s

l=s+1

because, for all £ € {1,...,s}, we have {u/p‘} = {(u+mp*)/p'} and, for all £ > s+ 1, we
have {u/p‘} < 7(r +1,¢), thus Af’fl,t({u/pﬁ}) = 0. Let us show that, for all £ > s+ 1, we

have
p u + mp® ~pid—s m
Affl,t <{T}) = A%sﬂ,t ({F}) : (8~15)

Let o be an element of the sequences a or 3 whose denominator is not divisible by p. To
prove (8.15), it is enough to show that, for all £ > s+ 1, we have

{%Tps} > DL () a)) <= { m } > DL ((Hr++ay). (8.16)

pf—s

We write m = 22 mgp® with my, € {0,...,p — 1}. Then, we have

u + mp® u—}—zg S phts m
¢ - ¢ :_+ i—s [
p p P’ p

We observe that D5 ((t ) a)) = DL((tHVa)), so that

{5 2 ey — {5 > o)),

pts p

Moreover, we have

{iﬂ@%zﬁmwm>ﬁ$“+{

pf

’B

ZZ}>@%<”WM

3

e sl (($r+D) u
@ a)) — —
)) e

g
{?Z}>ésw (17 a)) — D3((t+ V)
{}

@

{—s

’E

3 %

S (I a)) - D)) + 1

TIJ

p

2

Vv

s r+5+1) >)

{



Equivalence (8.16) is thus proved and we have (8.15). Using (8.15) in (8.14), we obtain

1
Ap i1 (u+ mp®) > o~ m s,(m) A
Ap s o o p s /4
Up ( Ab,r+1< ) Z r+s+1,t pg_s )‘pp 1 + mp p— 1

l=s+1

St ({3)) i o )

= 0y (Aprpsrr(m)) +m(p® — 1) {p)fl } :

This completes the proof of Lemma 40. U

8.2.8. Verification of Conditions (a) and (a1) of Theorem 30. Let us fix r € N. For all
se N, allve {0,...,p— 1} and all u € Uy (r,s), we set 0, 4(v + up) := Q,.(v + up) if
v4up & Ua(r —1,s+ 1), and 6, (v + up) := g, (v + up) otherwise.

The aim of this section is to prove the following fact: for all s, m € N, allv € {0,...,p—
1} and all uw € Uy (r, s), we have

Q,.(v+up+mp*tt)  Qupy (u+mp®) s+1
0.0+ up) ( o ) S ) € P g (M)A (8.17)

This will prove Conditions (a) and (ay) of Theorem 30. Indeed, by Lemmas 37 and 39, for
all v € {0,...,p—1} and all u € U (r, s), we have
Q,.(v+up) € Ay, (v +up)A C g(v+up)A.

Hence, Congruence (8.17) implies Condition (a) of Theorem 30. Moreover, by definition
of 0,5, when v+ up € Up(r — 1,5 4+ 1), Congruence (8.17) implies Condition (a;) of
Theorem 30.

If m = 0, then we have (8.17). In the sequel, we write ¥ for W, we assume that m > 1
and we split the proof of (8.17) into four cases.

e Case 1: we assume that v +up ¢ U(r —1,s +1).
We then have 0, ;(v+up) = Q,.(v+up) € Ay, (v+up)Ap. Let us show that A, . (v+up) €

p*t7Z,. We have
v+ up A
Ac,@ D .
t({ P’ })+(U+W>{p—1}
gcd(c p)

Since v+up ¢ ¥(r—1,s+1) and u € V(r, s), we obtain that (v +up,s+1) € N, and, for
all £ € {1,...,s+ 1}, we have {(v + up)/p‘} > 7(r,¢). Tt follows that

s+1 p
p

gcd(c p) 1

0y (Ao (0 + up)
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and v, (A, (v + up)) > s+ 1 because the functions Aﬁzf are nonnegative on [0, 1).
Since u € U(r,s), Lemma 40 yields

QrJrl,- (u + mps)

Q. (v +up) 0,1 (1) S ps+lAb,r+s+1(m)-’4b - ps+1gr+s+1(m)~’4b-

Thus, to show (8.17), it is enough to show

Q.. .(v+up +mp*™) € plg, ci1(m) Ay (8.18)

By Lemma 37, we have

. 1 o= = et [ fv+up+mp?
vp (Apr (v + up + mp™™)) = Aﬂf ({ o
c=1

A
+(v+up+mps+1){—p },
p—1

hence

> P s+1
Up(Apr(v+up +mp*™)) > s+ 1+ ! Z Z Ai:f({v+up+mp })

w(”) Q= o P’

ged(e,p)=1
Ap
+m {p 1 } .

If B € Z", then the functions Aﬁzf are nondecreasing on [0,1) and, by (8.9), for all
¢ > s+ 2, we obtain

oo p” s+1 0 p” s+1
Z el U+ up +mp Z ee [ ) mp
Ar’t <{ P’ }> = Ar’t <{ }>
1 1

pé
l=s+2 = l=s5+2 c=
ged(e,p)=1 ged(e,p)=1
00 pY m
cl+s+1
>y > s ({5
/=1 c=1
ged(c,p)=1
) pY m
c,t
>3 % s ({F}):
/=1 c=1
ged(e,p)=1

Consequently, if 3 € Z", then
Up (Apr (v 4+ up+mp™h)) > s+ 1+ 0, (Apypsri(m)) > s+ 1+ vy (grrss1(m)),
as expected.
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On the other hand, if 8 ¢ 7", then we observe that, for all £ € N, ¢ > 1, we have
s+1

{Zlzressino—={Tg) 2o

s+1
— {v+up+mp }ZT(T,€+S+1)

p€+s+1
1 Z etrst1 ([ v+ up+mp*t!
— ( V) Z Arﬂt (+s+1 > 1,
e(p) = p
ged(e,p)=1
so that
- 4 v+ up + mp*T!
axt ({ > 0y (greas (m)
a2, 2 ST P(orsraa(m)
ged(e,p)=1

and thus v, (A, (v 4+ up + mp**1)) > s+ 14 v,(gr4s41(m)), as expected. Hence (8.18) is
proved, which finishes the proof of (8.17) when v +up ¢ ¥(r — 1,5+ 1).

e Case 2: we assume that v +up € ¥(r — 1,5+ 1) and that p— 11 \,.
We have 0, (v + up) = g, (v + up), A = Ay, and we have to show that

Q,.(v+up+mp™) Q.. (u+ mp
g0+ up) (2 ) Lrenludt mp)N  pang () A

Qr,-(v + Up) Qr+1,-(u)
By Lemma 40,
Qri1,.(u+ mp?) {Lp}m(ps—l)
: € plet Aprisi1(m)A
Qr+17.(u) p b,r+ +1( ) b
and

Q,.(v+ up + mp**!
Q.. (v + up)
Since p — 11 A\, and m > 1, we have
{ Ay }m(ps—l) Zmps_l > s and { Ay }m(ps+1—1) > s+ 1.
p—1 p—1 p—1
Thus, we obtain

A s+l
) € P{Fpl}m(p " 1)Ab,r+s+1(m)Ab'

Q,.(v+ up + mp*tt)
Q,.(v+ up)
because g, (v + up) € Z,. It remains to show that
Qri1,.(u + mp®)
Qr+1,~(u)

gr (U + up) € ps+lAb,r+s+1(m)~Ab C p8+1gr+s+1 (m)Ab>

g (v + up) € ptlg a1 (m) Ay, (8.19)

By Lemma 39,

Up (Abrtsrt(m)) > vp(grissi(m)) +m {p? 1 }
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and thus, since p — 14 A, and m > 1, we obtain that Ay, s11(m) € pg,ysi1(m)Z,. Hence,
we have Ay, y511(m) € pgrisi1(m)Z,, as well as (8.19) because g, (v + up) € Z,.

e Case 3: we assume that v+up € V(r—1,s+1), 3¢ Z", p = 2, and that m is odd.
We have 0, (v + up) = g, (v + up) = g.(v + up), A = A, and we have to show

Q. (vHup +mp™) Qi (u+mp®)
Q,.(v+ up) Qi1 (u)

By Lemma 40, we have

gr(v + up) ( ) € P lga(m)A,.  (8.20)

Q’r‘-l—l,' (’LL + mps)

€ 2™ Ny risr1(m)A
O e () brtst1(m) Ay

and
Q,.(v+ up + mp*) o1
Q,.(v+up)
Moreover, we have m2° > s + 1 and m2°t! > s 4+ 1 because m > 1. Since Aprisii(m) €
Gris+1(m)Z, and g.(v + up) € Z,, we get (8.20).

e2mp

Ab,r—i—s-{—l (m)Ab

e Case 4: we assume that v +up € ¥(r —1,s + 1), p — 1 divides A, and that, if p = 2
and 3 ¢ 7", then m is even.

We set

X’r,s(v,u, m) — QT‘,-(U + U/p) QT+17.('LL + mp ) _
Assertion (8.17) is satisfied if and only if, for all s,m € N, all v € {0,...,p — 1} and all
u € Wy(r, s), we have

Q,.(v+ up + mp)
Q,.(v+ up)

The following lemma will give the conclusion.

g-(v + up) (X, 5(v,u,m) — 1) cptleg, o1 (m)A. (8.21)

LEMMA 41. We assume that p — 1 divides A\, and that, if p=2 and B ¢ Z", then m is
even. Then,

(1) Forallr,s € N, allv € {0,...,p—1}, all u € Up(r,s) and all m € N, there exists
Y, s(v,u,m) € Z, independent of t € Qy such that

Yis(v,uym)(1+p*Ap) it BE€Z" and p | dag ;
Y, s(v,u,m)(1+ p*ttAF) otherwise;

X, s(v,u,m) € {

(2) If there exists j € {1,...,s+ 1} such that {(v+up)/p’} < 7(r,j), then we have
Y, s(v,u,m) € 14+ p* 727,
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Since v +up € U(r — 1, s + 1), Lemma 40 implies that {(v + up)/p**'} < 7(r,s + 1).
Let jo be the smallest j € {1,...,s+ 1} such that {(v - up)/p]} < 7(r,j). By Lemma 41
applied with jo, we obtain that Y, ¢(v,u,m) € 1 + p*90*27Z,, and that

1+ poH Ay if B € Z" and p | da s
14+ ps—j0+2AZ otherwise.

X, s(v,u,m) € {

Hence, Lemma 40 yields

Ay if 3 € 7Z" and p ‘ da”@;
Aj otherwise.

Q,..(v+ up + mp*+t)

(Xns (0, ,m)=1) =25 =22

€ ps_j0+2gr+s+1 (m) x {

Therefore to prove (8.21), it is enough to show that g,.(v + up) € p~'Z,. If v +up = 0,
then we have jo = 1 and the conclusion is clear. We may thus assume that v+up > 1. But
for all j € {1,...,jo — 1}, we have {(v+up)/p’} > 7(r,j), hence v, (g, (v +up)) > jo — 1.
Furthermore, if 8 € Z" and if p | do g, we have A\, < —1 and, by Lemma 39, we have

Ay (v + up)

g, (v +up) = € g.(v+up)Z, C p°'Z,,

as expected.
To complete the proof of (8.21) and that of Theorem 6, it remains to prove Lemma 41.

Proor or LEMMA 41. We will show that Lemma 41 holds with
)p(l},<t(r)ﬁi>)

mp®
ez, (1 + gy

mp*
Haiezp (1 + <t(r+1)ai>+u

By Lemma 1 of |13], if « is an element of the sequences a or 3 whose denominator is
not divisible by p, then for all v € {0,...,p— 1}, all s,m € Nand all u € {0,...,p°* — 1},
we have

(a>v+up+mps+1 (Qp(a))u
(QP(O‘))HWOS () vtup
where ¢, = —1 if £k = 2, and ¢, = 1 otherwise.
Similarly, using Dwork’s method, we will show that if « is an element of the sequences

a or 3 whose denominator is divisible by p, then for all v € {0,...,p — 1}, all r,s,m € N
and all uw € {0,...,p° — 1}, we have

Y;‘,s (Ua U, m) : >p(v,(t(’“)ai>) ’

mp

. . s p(v,a)
(e (1t 51m) G4z 62)

s+1 t(r)a v+up+mps+1 t(rJrl)a u / m s *
s e M) oy

where €} (o) = e if v,(d(a)) = 1 and €}(«) = 1 otherwise.
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We first show that (8.22) and (8.23) imply the validity of Assertion (1) of Lemma 41.
Indeed, by (8.22), we obtain

Ap (v 4+ up + mp Ay i1 (w)
Apy1(u+ mp*) Ay, (v + up)

c (cff= dm)w(”

s+1)

((=p)"eps)™™ (1+p*'Z,). (8.24)

HaigéZp d(a2> }/;7S<Uv u, m)
We write
d 7 v P
ooz, WB) | 2n) e

[L¢z, d(s)
with o € Z;, so that

mep(p*

[0, 48\ o

(C% e p (LT,
o ¢y 7

We thus have
15,42, A(5:)

mep(p
’ mAp mp*Xp MAp s+1 mAp 1
(Cm) ((—p)p €ps) S (—1) p Eps (1—|—p + Zp) C €ps (1+p + Zp),
(8.25)

bﬁcause —1€Z; and o(p*™") = p*(p — 1) divides mp®),. Using (8.25) in (8.24), we obtain
that

s+1)

mAp

Ap i1 () Ay, (v + up + mp™t) Eps
Ab,r (U + up)Ab,r—i-l (U + mps) Yr,s(vv Uu, m)
By (8.23), we also obtain

(1+p*t'Z,). (8.26)

SR?"Jrl(u + mp”, ')?}‘tr(?} + up, ) e (Hﬁzﬁézp 6;75 (ﬁl)

1+ s+1A* )
R, (v +up + mps*tL )R, (u, ) oz, 525(0"')) A

If p* # 2, then, for any element o ¢ Z,, of a or 3, we have ¢, (o) = ¢, = 1. If p* = 2 and
if the number of elements o of a and 3 that satisfy vy (d(a ) > 2 is even, then, since «
and B have the same length, we have

Hﬁigzp &ps (5i)
ez, 2 (@)
Moreover, we have p Ay C Ay and €ps, €, () € 1+ p°Z,,. It follows that we obtain

= (-1 =ap

(8.27)

R, 1 (u+ mp’, )R, (v + up, ) {1 +p Ay if B € Z and p | dag;
19

R, (v +up + mps+ IR, (u, ) (] p LAY otherwise.

pS
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By (8.26) and (8.27), we obtain

(1+p°Ay) if B € Z and p | dog;

XT S Y 9 G }/;’ S J ? >< .
o0 u,m) slv,u,m) {(1 + p* T A;) otherwise.
To finish the proof of Assertion (1) of Lemma 41, we have to prove (8.23).

Let a be an element of a or B whose denominator is divisible by p. For all s,m € N
and all v € {0,...,p* — 1}, we set

) (r)a mp mp®—1 )
qr(u, s,m) ==t € QO — d(a)mpé% = H (d(a)(t( Ja) + d(a)u + d(a)k).
“ k=0

Hence, proving (8.23) amounts to proving that
qr-(v +up, s+ 1,m)

e e (a)™(1 + p*TtAY).
dlwsm) < @TIHTTAD

p

As functions of t, we have

S
|
A
3
L

qr(u, s,m)(t) (d(a)(t(r)oO +d(a)u+ d(a)i + d(a)jps)

@
Il
o
.
I
o

o

bS]
|
—

(d(a)(t(r)oz) +d(a)u+d(a)i)”™ mod p*t'A4,

1
—

Y, o
ool
HO

(d(a)(t(r)a) +d(a)i)™  mod p*t' A,

o

Since d(«) is divisible by p, we obtain that, for all i € {0,...,p* — 1}, the map t € ), —
d(a)(t™a) + d(a)i is invertible in A, and thus

q.(u, s,m) € q,(0,5,1)™(1 + p T A).
Hence proving (8.23) amounts to proving that, for all s € N, we have

q-(0,5 +1,1)

/ s+1 g
r(0.5.1) € eps()(1+p* A). (8.28)

e Case 1: we assume that s = 0.

As functions of ¢, we have
q-(0,1,1)(¢) . (d(a)(t™a))”
041(0,0,1)(t) ~ d(a)(t*+Da)

t b
) = Wy <5) D+ wp < >p” mod p”D.

(1+pAy)

and




Hence, with (a) := k/d(«), we obtain the existence of n(r,t) € Z such that

() (M) = w0 (tl’;) D+ wp (pbﬁ) o+ d(a)n(r1).

Moreover, by Assertions (2), (4) and (5) of Lemma 36, the maps t € Q, + d(a){t™a)
and f :t € Q — wp(tk/D)D are in A;. Thus t € Q, — d(a)n(r,t) is in A, and
t € Qy— d(a)n(r,t)/pis in A; because p divides d(«). It follows that

(t € Q= d(@)(tTa)) € f(1+ pAy). (8.29)

We obtain
q-(0,1,1)
qr+1(0,0,1)
as expected, where the final inclusion is obtained wvia Assertion (3) of Lemma 35.

€ 714+ pA;)) C (1 +p(€ro f))(L+pA;) C1+pA;,

e Case 2: we assume that s > 1.

If s> 1, then
H a)(tMa) + d(a)i ) = | T (d(a)(t(’")a> +d(a)j + d(a)ap®™") (8.30)
= 1_[_ (d(@){ta) + d(a)j)”  mod p*A,. (8.31)

Using (8.31) with s+ 1 for s, we obtain
q-(0,s +1,1) € q,(0, s, 1)?(1 + p**' 4,)

and thus "
00,5+ 1,1) € (d(a) (M a))” (1 +p ™ A). (8.32)

We set P(x) := 2P —x € Zy[z]. For all a € {0,...,p — 1}, we have a» —a = 0
mod pZ,. Since P'(x) = pzP~t — 1, for all a € {0,...,p — 1}, we have vp(P’(a)) = 0 and,
by Hensel’s lemma (see [30]), there exists a root w, of P in Z, such that w, = a mod pZ,.
Consequently, for all z € Z, and all s € N, s > 1, we have

p—1 p—l
H (x + d(a)aps_l) = a)w;p’ 1) mod p**Z,
a=0 7,:0
= 2P — (d(a)ps_l)p_lx mod p**'Z,. (8.33)

If p # 2, then (d(a)p*!)" "'z € p**'Z, thus, by (8.30), for all s € N, s > 1, we obtain
s 1_1

4r+1(0,s,1) € H a)(t"Va) +d(a)j)" (1 +p™*A4),
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hence q,41(0,5,1) € q,41(0,s — 1,1)P(1 + p**1 A4,) and
0r11(0,5,1) € (d(@) (" Va)) (1 + p14,).

By (8.32) and (8.29), we obtain the existence of fi, fo € Aj such that

q-(0,5 +1,1)
qT+1(07 S, 1)

s+1) (1 —|—pf1)ps+l

o(p
</ (1+pfo)r

(1 + ps+1Ab)

C(L+p (€0 f))L+p™ A C 1+ p A,
which proves (8.28) when p # 2 because in this case we have . (a) = 1.

Let us now assume p = 2. Then by (8.30) and (8.33), for all s € N, s > 1, we obtain

2s—1_1

q-+1(0,8,1) € H (d(a)<t(r+1)a> + d(a)j)2 (1 - d()25~

(@)t Da) + d(a)j

) (1+2°14,).

Since 2 divides d(«), we have

r d(a)25! e d(a)25~!
]-11) (1 B ()t a) + d(a)j) N iy (1 14 2¢, (d(a)(t(r+1)a> + d(a)j))
= T (1 —d(a)2°"") mod 2°7 A;

=1-d(a)2*? mod 25" 4;,

with 1—d(@)2*72 =1 mod 2°7!if s > 2 or va(d(er)) > 2, and 1 —d(a)2*72 = —1 mod 4
if s =vy(d(a)) = 1. Tt follows that

2s-1_1

Gr+1(0;5,1) € €s(a) | (d(@)(t7Va) +d(a)j) (1 + 277 4),

7=0
i. e. qr41(0,8,1) € eha()qrr1(0,s — 1,1)%(1 + 2571 A%) and thus

0r11(0,5,1) € eh () (d(@) (tVa))* (1 + 271 47).

By (8.32) and (8.29), we obtain the existence of fi, fo € Aj such that

4-(0, s+ 1,1) 1 ooy (L 2f)%"

Y 7
e (051 Ca(@)) (2R
C eha(a) (14 25T (Eopr 0 f)) (14 25T A4;) C eha(a)(1+ 25T 4;),

(1425 A7)

which proves (8.28) and completes the proof of (1) of Lemma 41.
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Let us now prove Assertion (2) of Lemma 41. We have

e\ P
B Hﬁiezp (1 + <t(f'+l)p5i>+u)

mp*
HaZEZp <1 + (t("'+1)ai>+u

Let j € {1,...,s+ 1} be such that {(v+up)/p’} < 7(r,5). We set u = > 72 upp*. For
all elements o € Z,, of the sequences o or 3, we have

Y;,s (U> u, m) >p(v,(t(”ai>) ’

-2
{U +.UP} <7(r,j) = +pZukpk < pjﬁDg((t(r)o&)
k=0

p]
j—2
= v+p Y wpt <PDI(7a)) — (t7a)
];fg j—1
— v+p Y wp® <Y P EDET (M) — D5((7a)))
k=0 k=0
j—2
— (ﬂ(% (tWa)) =0 or Y wuph < p'DI((t"a)) — @p(@(r)@»)
k=0

= (p(?), <t(r)04>) =0 or Z_:Ukpk < pjflgifl«t(wrl)a» B <t(r+1)a>>

= (p(v, (t"a)) =0 or vp{u + (" a)) < j—2)

(v, (tMa))
mps P itz
— (1+—<t(7“+1)a> +u) cel+p Ly,

as expected. This completes the proof of Lemma 41 and that of Theorem 6. O

9. Proof of Theorem 9

We shall prove the following more precise statement.

PROPOSITION 42. Let a and B be tuples of parameters in Q \ Z<o such that (o) and
(B) are disjoint. Let a € {1,...,dag} be coprime to do g such that, for all x € R, we have
§apla,x) > 0. Then, all the Taylor coefficients at the origin of qaay,@p)(2) are positive
but its constant term, which is 0.

To prove Proposition 42, we follow the method used by Delaygue in |11, Section 10.3],
itself inspired by the work of Krattenthaler and Rivoal in [21]. We state three lemmas
which enable us to prove Proposition 42.

LEMMA 43 (Lemma 2.1 in [21]). Let a(z) = Y 2 a,2" € R[[Z]], ap = 1, be such
that all Taylor coefficients at the origin of a(z) = 1 — 1/a(z) are nonnegative. Let
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b(z) = > 0" g anhn2™ where (hy)n>o is a nondecreasing sequence of nonnegative real num-
bers. Then, all Taylor coefficients at the origin of b(z)/a(z) are nonnegative.

Furthermore, if all Taylor coefficients of a(z) and a(z) are positive (excepted the con-
stant term of a(z)) and if (hp)n>o0 is an increasing sequence, then all Taylor coefficients at
the origin of b(2)/a(z) are positive, except its constant term if ho = 0.

The following lemma is a refined version of Kaluza’s Theorem [15, Satz 3|. Initially,
Satz 3 did not cover the case a, 1a, 1 > a2.

LEMMA 44 (Lemma 2.2 in [21]). Let a(z) = >~ a,2" € R[[2]], ap = 1, be such that
a; > 0 and apy1a,_1 > a2 for all positive integers n. Then, all Taylor coefficients of
a(z) =1—1/a(z) are nonnegative.

Furthermore, if we have a, 1a,_1 > a2 for all positive integers n, then all Taylor
coefficients of a(z) are positive (except its constant term,).

For all n € N, we set
L (al)n e (ar)n
Qesl) = ) B

By Lemmas 43 and 44, to prove Proposition 42, it suffices to prove the following result.

LEMMA 45. Let a = (aq,...,0p) and B = (B1,...,0s) be tuples of parameters in
Q\ Z<o such that (o) and (B) are disjoint. Let a € {1,...,dag} be coprime to do g such
that, for all x € R, we have £ g(a,x) > 0. Then, for all positive integers n, we have

Qe (a8) (1 + 1) Qe (a8) (" = 1) > Quaa) (a) (7)”
Furthermore, (> ;_, Has(n) — > i Hiap,y(n)) ., is an increasing sequence.

To prove Lemma 45, we first prove the following lemma that we also use in the proof
of Theorem 8.

LEMMA 46. Let o = (v, ..., ) and B = (B, ..., Bs) be tuples of parameters in Q\Z<
such that () and (B3) are disjoint. Let a € {1,...,dag} be coprime to dag. Let y1,...,m
be rational numbers such that (ay1) < --- < {(ay) and such that {{am),...,{av)} is the
set of the numbers (a7y) when v describes all the elements of o and 3. For alli € {1,... t},
we define m; = #{1<j <1 : (aa) = (a9)} — #{1 <5 <5 : (o) = (a3)).

Assume that, for all x € R, we have {n g(a,x) > 0. Then, for alli € {1,...,t} and all
beR, b>0, we have

% )

mg 1 Mk
— >0 and 1+ —) > 1.
Z (avi) +b kl:[l ( (ayk) +b

k=1

PROOF OF LEMMA 46. First, observe that by Proposition 16, for all j € {1,...,t}, we
have
J
> M0 = Eaay (o) (1, (a75)) > 0.
i=1
67



Furthermore, since (aax) and (a8) are disjoint, for all ¢ € {1,...,t}, we have m; # 0. In
particular, we obtain that m; > 1. It follows that we have

my

1 m
— >0 d 14+ —— > 1.
oy +o < (ay1) + b>

Now assume that t > 2. We shall prove by induction on i that, for all i € {2,...,t}, we
have

i

S w0 I ) > (i)

k=1

22:1 Mk

(9.1)
We have (av,) < (ay2) and my > 0, thus we get

mq 4 mo > mi + Mo
(ay1) +b  (avys) +b~ (avy) +b

(vmm) (rmm) - (rmm)

so that (9.1) holds for ¢ = 2. We now assume that ¢ > 3, and let i € {2,...,¢ — 1} be such
1)

and

that (9.1) holds. We obtain that
i+1 i
Z My > Zk:1 My i Mt (9.2)
(k) +b (avi) +b  (aviq1) +0

k=1

and

’i+1 1 mp 1 22:1 mi 1 mit+1
1+ +—— > 1+—) (1—1——) . 9.3
H ( {am) + b) ( (avi) +b (@7it1) + 0 (5:3)

Since (ay;) < (avi11) and 3%, my, > 0, we obtain that

i i 2221 mg 22:1 Mk
D k1 Mk > > ket M and (1 i 1 ) > (1 n 1 ) ’
(avi) +b ~ (ayip1) +0 {(avi) +b (aviz1) + b

which, together with (9.2) and (9.3), finishes the induction on i. By (9.1) together with
22:1 my, > 0, this completes the proof of Lemma 46. O

We can now prove Lemma 45 and hence complete the proof of Proposition 42 and
Theorem 9.
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PROOF OF LEMMA 45. Throughout this proof, we use the notations defined in Lemma
46. For all nonnegative integers n, we have

Qaa) @) (n+1) 1 i (acs) +n)
Q(aa,(8) (1) Luaay (a8 (M) Lacy,(as) (1) T2 ((aBs) + 1)
_ ITiea (2 +n/(acs))
[[oi(T+n/(aB)))

1@(” <a:k>>mk‘

We deduce that, for all positive integers n, we obtain

Qaa),(ap) (N + 1) Qlaay (apy (R — 1) ﬁ ( 14 n/(an) )mk
Qaa),(ap) (1)? 1+ (n—1)/{ay)

k=1

t 1 my
= 14+ — > 1,
g( (a%>+n—1)

where the last inequality is obtained by Lemma 46 with n — 1 instead of b.

Furthermore, for all n € N, we have

D Hiay(n+1) =Y Higy(n+1) - (Z Higagy(n) =) H<aﬁj>(n>>
=1 j=1 i=1 j=1

<

where the last inequality is obtained by Lemma 46 with n instead of b. It follows that
(Xoisy Hay(n) = 3251 Hg;(n)), ., is an increasing sequence and Lemma 45 is proved. [

10. Proof of Theorem 12

Throughout this section, we fix two tuples a and 3 of parameters in Q\ Z<( of the same
length such that (a) and (3) are disjoint. Furthermore, we assume that H, g holds, that
is, for all @ € {1,...,dqag} coprime to do g and all z € R satisfying ming g(a) < = < a, we
have o g(a,x) > 1. We will also use the notations defined at the beginning of Section 8.2.

10.1. A p-adic reformulation of Theorem 12. To prove Theorem 12, we have to

prove that

S 5(C".

exp (M) e Z[[]). (10.1)
naﬂ
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A classical method to prove the integrality of the Taylor coefficients of exponential of a
power series is to reduce the problem to a p-adic one for all primes p and to use Dieudonné-
Dwork’s lemma as follows. Assertion (10.1) holds if and only if, for all primes p, we have

Sa8(Cap?) )
exp (—naﬂ ) e Z,[2]. (10.2)

Let us recall that we have
d

) = Glaa) @) (2) g
Sap(2)= Y Fr ) (2) © Ql=]],

a=1
ged(a,d)=1

with d = dn g. By Proposition 2 applied to (10.2), we obtain that (10.1) holds if and only
if, for all primes p, we have
5a,8(Ca,p?") = PSap(Ca,p?) € Pha,psZy[[2]]. (10.3)

The map t — t is a permutation of the elements of {1,...,dsg} coprime to du .
Hence, we have

d
Gl Gt
Sa,B<C/Zp) - pSa,@(C"z) = Z <M(C’Zp) i pF<t ),(tB) (C/Z)> ’
t=1 (tWea), D B) (ta),(tB)
ged(t,d)=1

with d = da g and C' = C, 5. By Theorem 6, we obtain

Saﬂ(ola,ﬂzp) - pSa,B(Cla,ﬂZ) =p Z Z Z Rk,b(t)zk

ged(b,D)=1
D ')
S (sz,b<t>)z,
b=1 k=0 \te
ged(b,D)=1

with Ry, € A; and, moreover if p divides dqo g, then we have
pime/e=D] A, if B e 77,
Ripe A B¢ 7Z and p— 11\
Ay if B¢ 7Z", mgpis odd and p = 2.
By point (7) of Lemma 36, we have

Z th(t) S na,BZp. (104)

Indeed, if p does not divide dq g, then p does not divide ny g and Ry () € Z,. Let us
now assume that p divides dq g so that v > 1.

If 3 € Z", then we have v,(ngg) =v—2—|A\,/(p—1)]. U B ¢ Z" and if p—11 )\, then
we have p # 2 and v,(neg) = v — 1. Let us now assume that 3 ¢ Z" and that p — 1 | A,.
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If p # 2 then v,(na,g) = 0 or ¥ — 2. On the other hand, if p = 2, then either m, g is even
and vy(ngg) =0 or v — 2, or my g is odd and va(ngg) = v — 1.
It follows that, in all cases, we have (10.3) and Theorem 12 is proved.

11. Proof of Theorem 8

Let o and B be tuples of parameters in Q \ Z<, such that (a) and (B) are disjoint
(this is equivalent to the irreducibility of L, g) and such that F, g is N-integral. Theorem
12 implies Assertion (iii) = (i) of Theorem 8. Indeed, if (iii) holds, then we have

1~ _ de,
5 1qa,ﬁ(2): (z 1qaﬁ(2))s@( 8)

and, according to Theorem 12, z27'G, g(z) is N-integral. Hence, it suffices to prove the
following result.

PROPOSITION 47. Let f(z) € 1+ 2Q[[z]] be an N-integral power series and let a be a
positive integer. Then f(z)Y/ is an N-integral power series.

PROOF. We write f(z) =1+ zg(z) with g(z) Q[[z]]. Thus, we obtain that
—1
1/a_1+2 /Cl) A/, g(z)n

Since f(z) is N-integral, there exists C € N such that g(Cz) € Z[[z]]. Furthermore, by
Theorem 3 applied with @ = (—1/a) and 3 = (1), we obtain that there exists K € N such
that, for all n € N, we have
g0 g
n!
It follows that f(CKz)'* € Z[[2]], i. e. f(2)"/*is N-integral. O

Furthermore, by definition, we have (i) = (i) of Theorem 8. Thus, we only have to
prove that (i) = (i), (i) = (ii) and that, if (¢) holds, then we have elther a = (1/2) and
B = (1) or there are at least two elements equal to 1 in (3). Throughout this section, we
assume that (i) holds, i. e. that ¢o g is N-integral.

11.1. Proof of Assertion (iii) of Theorem 8. The aim of this section is to prove
that r = s, that H, g holds and that, for all @ € {1,...,da g} coprime to dn g, we have
da,8(2) = Qlaa),ap)(2). Since Fy g and qo g are N-integral, there exists C' € Q \ {0} such
that o

Fop(Cz) € Z[[z]] and ¢ap(Cz) =Czexp (#((O;)) € Z[[z])-

Thus, for almost all primes p, we have

Fop(2) €Z,[z]] and exp ((;;“T"((g) e Z,[2]]. (11.1)

We shall use Dieudonné-Dwork’s lemma in order to get rid of the exponential map in
(11.1).
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Let p be a prime such that (11.1) holds. By Proposition 2 applied to (11.1), we obtain
that

Gop(2")  Capl2)
Fap(?) " Fap(2)

Since Fy (%) € Zy[[2]], we get

Gap(2") Fap(2) = PGap(2)Fap(2") € p2ZLy[[2]]. (11.2)

In the sequel of the proof of Theorem 8, we use several times that (11.2) holds for almost
all primes p.

11.1.1. Proof of r = s. We give a proof by contradiction assuming that r # s. Since
Fo p is N-integral, Christol’s criterion ensures that, for all a € {1,...,dag} coprime to
dap and all x € R, we have £, g(a, ) > 0. In particular, since r— s is the limit of £, g(1,n)
when n € Z tends to —oo, we obtain that » — s > 1. For all n € N, we write A,, for the

assertion
> Ha(n) =Y Hg(n)=
i=1 j=1

First, we prove by induction on n that A, is true for all n € N.

€ pzLy[|2]).

Assertion Ag holds. Let n be a positive integer such that, for all integers k, 0 < k < n,
Ay, holds. The coefficient ®,(np) of 2™ in (11.2) belongs to pZ, and is equal to

> Qaplip)Qaps(n — j) (Z (Ha,(n = j) = pHa, (jp)) = > _ (Hps,(n — j) — pHj, (jp>>) .

=0 i=1 i=1

By induction, we obtain that

000) = Quto 3 o) 3 1)
—pZQa,@Jan,an— (ZHQZJP ZHﬂi(J’p))

Furthermore, according to Lemma 26, there exists a constant M, g > 0 such that, for
all z € [0,1/Mg,g], all primes p not dividing d, g and all ¢ € N, ¢ > 1, we have Af;’fﬁ(x) =0.
Hence, for almost all primes p and all j € {1,...,n}, we have

p(Qa,s(ip)) ZA ( ) AL (] ZAP‘“(—) A% (i) = j(r—s). (11.3)

According to Lemma 23, for almost all primes p and all the elements « in « or 3, we
have ©,(a) = D,((a)), so that ®,(a) = (wa) where w € {1,...,dn g} satisfies wp = 1
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mod dq g. Thus we get

p—1 j—1 ]
Ha(jp) = —
PHalip) = Za—l—k—i—ip
k=0 =0
p-1 -1 1
= Ho,)(j) +p Z Zm € Hiwa)(J) + P2y,
k=0 1=0 p
k#pDp(a)—or

which leads to
p (Z Ha,(jp) — Z Hp, (jp)> = Z Hiwoy () =D Huwsy(j) mod pZ,.  (11.4)
i=1 i=1 i=1 '
Furthermore, for almost all primes p, we have
{iH(wm Zﬂwﬁ 1 1<j<n 1<w< dag, ged(w, daﬁ)—l} cz,
=1

which, together with (11.3) and (11.4), gives us that

~PQas(jp)Qap(n = j) (Z Ho,(jp) ZH&UP)> € p Ly,
i=1

for almost all primes p and all j € {1,...,n}. In addition, for almost all primes p, we have

Qap(n (Z H,.(n Z ng.(ﬂ)) €Z, U{0} and Qap(n)#0.

Since ®,(np) € pZ, and r — s > 1, we obtain that A, holds, which finishes the induction
on n.
It follows that, for all n € N, we obtain that

T S T S

S = (Halnt D)= Ha) = D (Hafn+ 1) — Han)) =0

=1

contradicting that a and 3 are disjoint since

r

1 ® 1
;Oﬁ—i—X—;@#—XGQ(X)

must be a nontrivial rational fraction in this case. Thus we have r = s as expected. ]
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11.1.2. Proof of Ho . Let usrecall that, since F, g is N-integral, foralla € {1,...,dn g}
coprime to do g and all z € R, we have &, g(a,z) > 0. We give a proof of H, g by contra-
diction, assuming that there exist a € {1,...,dqg} coprime to do g and zy € R such that
ming g(a) < zp < a and &, g(a, xo) = 0. Let o and § be such that

aﬁ:max({cw cay = g, v is in aorﬁ},j)
and
aq = min ({cw : xp < a7y, vy equals 1 or is in a or B}, = )
It follows that, for all = € R satisfying a8 < = < aa, we have £, g(a,z) = 0. Observe that,

since (a) and (3) are disjoint, (acx) and (a3) are also disjoint, thus § is a component of
B and « equals 1 or is an element of a because &, g(a, -) is nonnegative on R.

Let us write P g(a) for the set of all primes p such that ap =1 mod dg g. For all large
enough p € P, g(a), Lemma 23 gives us that D,(a) = D,((a)) = (aa) and D,(8) = (af).
On the one hand, if (af) < (a«), then, for almost all p € P, g(a), we obtain that
1o 1Bl 1 li-a] =gl 1

—9,(8) — > >
p () p dap p p p

On the other hand, if (af) = (ac) and § > «, then we have () = (a) so > 1+ « and

D,(a) +

[1—af 1-p6] [-aof [1-5]_1
D,(a) + ——= —9,(8) — = — > —.
p(@) 5 »(B) p 5 p p
In both cases, we obtain that, for almost all p € B, g(a), there exists v, € {0,...,p—1}
such that
[1-B] _ [1—af
D,(6) + <= <®,(a)+ ,
»(B) 5 " p(@) p

which, together with Lemma 28, gives us that AI;’}B(UP/p) = 0 for all large enough p €
PBas(a). Furthermore, by Lemma 26, for almost all p € Py g(a) and all £ € N, £ > 1,
Aﬁfﬁ vanishes on [0, 1/p] so that

> v v
Up(Qa,ﬁ(Up)) = ZAZ,KE (ZTZ) = Ag,l,@ (f) =0,

=1
i. e. Qap(vp) € Zy. Now looking at the coefficient of 2 in (11.2), one obtains that

T

—PQa,8(tp) Z (Hozi(vp) — Hp, (Up)) € py.

=1

To get a contradiction, we shall prove that, for all large enough p € Py g(a), we have

p (Z Ho, (vp) — Z Hyp, (%)) €Z,. (11.5)
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Indeed, for all elements v of & or B and all large enough p € P, g(a), we have

vp—1
— 1 _ p(v,7)
pH. (v,) =p = mod pZ
P % v+ k gp(7> g
_ pvp,7)
= mod pZ,.
(a7) g

Furthermore, we have

p(vp,7) =1 <= v, > pD,(y) =7+ 1 <= v, > pD,(y) + [1 — 7]

1 —
R =]

because p®,(v)—v € Z which leads to v, > p®,(v)+[1—7] = v, > pD,+[1—7]+{1—-7}.
Thus, by Lemma 28, for all large enough p € P, g(a), we have p(v,,v) =1 if ay < af and
p(v,,v) = 0 otherwise.

Now, let 71, -+, be rational numbers such that (avy;) < -+ < (ay;) and such that
{{ay1),...,{av,)} is the set of the numbers (ay) when ~ describes all the elements of a
and 3 satisfying ay < af. For all i € {1,...,t}, we define

m; = #{1 <j<r:{aq;) = (a”m} — #{1 <j<r:{ap;) = <a*yi>}.
Then, we obtain that

P (ET: H,, (v,) — ZT: Hﬁj(vp)> = pi?;p—(;f;i) — z’”: p(&p—/éfj) mod pZ,

For almost all primes p, we have >_'_, (m;/(av;)) € 7y J{0}. Thus, to prove (11.5), it
suffices to prove that
t

> A0,
i—1 (@)
which follows by Lemma 46 applied with b = 0. This finishes the proof of Hy, g. (]
11.1.3. Last step in the proof of Assertion (iit) of Theorem 8. To finish the proof of
Assertion (iii) of Theorem 8, it remains to prove that, for all @ € {1,...,dq g} coprime
to da,g, We have o 3(2) = Qa),(@p)(2). For that purpose, we shall use Dwork’s results
presented in [12]| on the integrality of Taylor coefficients at the origin of power series
similar to ¢o 3. We remind the reader that, by Sections 11.1.1 and 11.1.2, we have r = s
and Hq g holds.
More precisely, we prove the following lemma which shows that, under these assump-
tions, we can apply Dwork’s result {12, Theorem 4.1] for almost all primes.
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LEMMA 48. Let o and B be two tuples of parameters in Q\ Z<o with the same numbers
of elements. If (o) and (B) are disjoint (this is equivalent to the irreducibility of Lo )
and if Ho g holds, then for almost all primes p not dividing do g, we have

Go, ()0, (2 Gasl(z
Op(a),D (f@)( )_p 7,3( ) eprHZH'

Fo, (2,8 (2") = Fap(?)

REMARK 49. Lemma 48 in combination with Lemma 18 gives us that o g(2) € Zy|[7]]
for almost all primes p.

PROOF. If p is a prime not dividing dq g, then the elements of o and 3 lie in Z, and
GDP(O‘)?@P(/B)(ZP) . GG,B(Z)

ng(a)pp(g)(zp) Faﬂ(Z) - Qp[[ZH

Furthermore, o and 3 have the same number of elements so that Lemma 48 follows from
the conclusion of Dwork’s theorem [12, Theorem 4.1|. In the sequel of this proof, we check
that a and 3 satisfy the hypotheses of [12, Theorem 4.1| for almost all primes p. We use
the notations defined in Section 4.2.1. For a given fixed prime p not dividing dq g, the
hypotheses of [12, Theorem 4.1] read

(v) for all i € {1,...,7'} and all k € N, we have D}(5;) € Z;

(vi) for all a € [0,p) and all k € N, we have either N} (a) = N}g(a+) = 0 or

Nj o (a) = Njgla+) > 1.

If p is a large enough prime, then, by Lemma 23, for all i € {1,...,r'}, we have
Dp(Bi) = Dp((Bi)) so that
1 dap—1

@ZJ(ﬁz) c {daﬂ,...,

Thus, for all large enough primes p, 3 satisfies Assertion (v).

1 7x. 11.6
2= }c > (11.6)

Let o and 3 be elements of o and 3. First, we prove that, for all large enough primes
p, we have
PO,(a) —a < pD, (L) — f = wa < wf, (11.7)
where w € {1,...,dq g} satisfies wp =1 mod dn g. Assume that p is large enough so that,
by Lemma 23, we get ©,(«) = (wa) and D,(5) = (wp). In particular, we obtain that

1
D,(a) =9,(8) or |©p(a) — Qp(ﬁ)‘ > _ﬁ
Thus, for all large enough primes p, we have
o —
PDya) — a < pD,(9) - 6 4= Dyla) - By(3) < © 0

— <@p(a) <D,(B) or (Dp(@) =D,(8) and «a> 5))
= wa <X wp,
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as expected. Now, we observe that, if Nllf,ﬁ(a—i-) = 0, then Assertion (vi) is trivial, so
we may assume that Nﬁﬁ(a—l—) > 1. Weset 3 := (B1,...,8~). Let us write (9;;(95) for
POy (z) — D)(x), and let v be the component of o or 3’ such that 6%(v) is the largest
element, of

{Qﬁ(ai) S1<i<r, 08 () < a} U {9;;(5]-) 1<j<r, 05(8;) < a}.

Since (o) and (B) are disjoint, D} (c) and D%(B') are also disjoint and, according to
(11.7), 6%(cx) and 05(3') are disjoint. Tt follows that Ny, (a) — N} g(a+) is equal to

#{1<i<r o 08(a) <O} —#{1<i < 05(8) <)}
=#{l<i<r: WD) 2wDp()} - #{1 <P <0 wDS(B)) 2 WD)}

If k = 0, then we obtain that w®}(a) < wDj(7) & wa < wy with ming g(w) < wy < w
since v # 1. Indeed, if v is an element of 3 then v # 1, else v is an element of o and
0%(v) < a so that v # 1. Thus we have N (a) — N) g(a+) = &ap(w, wy) and, by Hqapg,
we get N (a) — N g(a+) > 1 as expected.

If £ > 1, then, for all elements o of a and @', we have @’;( ) = (w*a) and <w®k «)
(wlwFa)) = (Wa). We deduce that we have wDk(a) = wDE(y) & (Wa) < (W
because

)
) == {a) = (1) = (Wa) = (Wh).
If (v) < 1, then (w*™'v) < 1 and we obtain that

Nyala) = Nyglat) = Eap(w, (W) +) > 1.

On the other hand, if (y) = 1, then we get N}, (a) — N} g(a+) = r — r’. Note that " <r

since there is at least one element of B equal to 1. Indeed, according to Hy g, if x € R

satisfies ming g(1) < = < 1, then we have £, g(1,z) > 1. Since (o) and (3) are disjoint,

we have (ming g(1)) < 1 so that min, g(1) <2 <1 and
1<&ap(l,2)=#{1<i<r:o#1} —#{1<j<r: p;#1}

We deduce that there is at least one j € {1,...,r} such that ; = 1 and we obtain that

NF. (@) = Niglat+) =r—r" > 1,

P,

k+1 k+1

(W a) = (w

as expected. Thus Assertion (vi) holds and Lemma 48 is proved. U

Now we fix a € {1,...,dq g} coprime to dn g. For all large enough primes p € B, g(a)
and all the elements o of @ or B, we have ©,(«) = (aa). By Lemma 48, we obtain that,
for almost all primes p € P, g(a), we have

Glaa),a8)(7")  Gap(?)
Flaay,(ap) (2P)




Furthermore, since gq g(z) is N-integral, for almost all primes p, we have

Gaslz) _ Gapl) . o
el PRy i)

Thus, for almost all primes p € Lo g(a), we obtain that

Gaavaﬂ (Zp) Ga, (Zp)
PPl — 2P € )]
(ace),(aB) (27) a,8(27)

which leads to
Glaa),ap)(2)  Gap(?)

Flaay.(8)(2)  Fap(2)
By Dirichlet’s theorem, there are infinitely many primes in B, g(a) so that we have

Clac),(ap)(2) _ Gap(2)
Flaay,@py(2)  Fap(2)

which implies that ¢a8(2) = G(aa),(a8)(2) as expected. This finishes the proof of Asser-
tion (7ii) of Theorem 8.

€ pp([2])

11.2. Proof of Assertion (ii) of Theorem 8. We have to prove that (Cy, 32) ' ¢a,8(C}, 52)
is in Z[[z]]. By Section 11.1, Assertion (zii) of Theorem 8 holds, i. e. we have r = s, Ho g
holds and, for all a € {1,...,dag} coprime to dug, We have quay,(08)(2) = ¢a,8(2) so that

Clac).(ap)(2) _ Gap(2)
Flaay(ap)(2) ~ Fap(2)’
By Theorem 6 in combination with (11.8), we obtain that
Gap Gap
Fap Fap

(11.8)

( ;,gzp) —p (Cclx,ﬁz) € pZy[[2]],

so that, according to Proposition 2, we have (Cy, 32) "' qa,8(Cl, g2) € Zy[[2]]. Since p is an

« (a7

arbitrary prime; we get (C, 32) "' qa,8(Ch g2) € Z[[2]], as expected.

a

11.3. Last step in the proof of Theorem 8. To complete the proof of Theorem 8§,
we have to prove that we have either a = (1/2) and 8 = (1), or r > 2 and there are at
least two 1’s in 3. We shall distinguish two cases.

e Case 1: We assume that r = 1.

As already proved at the end of the proof of Lemma 48, there is at least one el-
ement of B equal to 1. Thus we obtain that 8 = (1). We write & = («). Since
Assertion (ii7) of Theorem 8 holds, for all @ € {1,...,d(«a)} coprime to d(«), we have

G laa) (ap) (2)/ Flaay,ap)(2) = Gap(2)/Fap(2), i e

Fo5(2)Glaay (08) (2) = Flaa),(ap)(2)Ga,p(2)- (11.9)
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Now looking at the coefficient of z in the power series involved in (11.9), one obtains that

(-4 -2(2)

We deduce that, for all a € {1,...,d(«)} coprime to d(«), we have (aa) = . Thus we get
that

{L 1 1<k <d(a), ged (k,d(a) = } = {{a) : 1 <a < d(), ged (a,d(a)) =1}
= {Oz},
which implies that a = 1/2 as expected.
e Case 2: We assume that r > 2.

We already know that there is at least one element of 3 equal to 1. Since (o) and
(B) are disjoint, for all the elements a of a, we have (a) < 1. Furthermore, for all
a€{l,...,dop} coprime to do g, we have

Lo (a,1=) =#{1<i<r () #1} —#{1<i<r: (B) #1}
=r—#{1<i<r: () #1}.

It follows that we have to prove that £y, (a, 1—) > 2.

Let v be an element of a or 3 with the largest exact denominator. Then, there exists
a€{l,...,dag} coprime to du g such that (ay) = 1/d(y). By Hap in combination with
Lemma 18, we obtain that Hay (g holds. In addition, we have (a(y)) = (ay) = 1/d(y) so
that &ay(8) (@, 1/d(v) +) > 1. Since (acx) and (aB) are disjoint and have elements larger
than or equal to 1/d(vy), we obtain that -y is a component of a.

Furthermore, there exists a € {1,...,dag} coprime to d, g such that

Cdy) -1
(av) = W =

Thus k is the largest element distinct from 1 in (aa) and (aB3), and we obtain that
Elay ) (a, K+) = &y (@, 1=). If (mingy gy(a)) = k, then all the elements of (3) are
equal to 1 and the result is proved. Otherwise, we have (minsg, g (a)) < k so that
Elaypy(a, k—) > 1. Since v is an element of o, we obtain that &y g (a,k+) > 2 as
expected. This finishes the proof of Theorem 8.

12. Proof of Theorem 10
According to Dieudonné-Dwork’s lemma, we have to prove that, for all primes p,

Gap(Clp?®)  GaplChs?)
B M aB e pnl, o, [[2]].
Faﬂ(caﬂz ) Faﬁ(Ca,ﬁZ)
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Note that Theorem 8 ensures that the hypotheses of Theorem 6 are satisfied. According to
Theorem 6, for any prime p, there exists a € {1, ...,do g} (with the notations of Theorem 6,
one may take a = t(!) with ¢ = 1) such that ged(a, dag) = 1 and
G(aa),(aﬂ) (Ctlx,ﬁzp) _ pG(a>7<IB> (Céx,ﬁz) c pn/ 7, HZ]]
Flaa).(a8)(Cap?®) " Flap)(Capz) 7"
The conclusion follows from assertion (iii) of Theorem 8, which ensures that
Glac) a8)(Cap?) _ Gap(Cap?’)
Flao () (Cap7?)  Fap(Cq 52P)

and
Glay(5)(2)  Gap(?)

Flays)(2)  Fap(z)
13. Proof of Corollary 14

According to Theorem 8, for all a € {1,...,da g} such that ged(a,dsg) = 1, we have

4a8(2) = Qlaa)ap) (). Therefore, we have z7'qn g(z) = (2 qap(2))?"? . Now, the
result follows from Theorem 12.
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