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Abstract. We prove new irrationality measures with restricted denominators of the form
ds
bνmcB

m (where B,m ∈ N, ν > 0, s ∈ {0, 1} and dm = lcm{1, 2, . . . , m}) for values of
the logarithm at certain rational numbers r > 0. In particular, we show that such an
irrationality measure of log(r) is arbitrarily close to 1 provided r is sufficiently close to 1.
This implies certain results on the number of non-zero digits in the b–ary expansion of
log(r) and on the structure of the denominators of convergents of log(r). No simple method
for calculating the latter is known. For example, we show that, given integers a, c ≥ 1, for
all large enough b, n, the denominator qn of the n–th convergent of log(1±a/b) cannot be
written under the form ds

bνmc(bc)
m: this is true for a = c = 1, b ≥ 12 when s = 0, resp.

b ≥ 2 when s = 1 and ν = 1. Our method rests on a detailed diophantine analysis of the
upper Padé table ([p/q])p≥q≥0 of the function log(1 − x). Finally, we remark that worse
results (of these form) are currently provable for the exponential function, despite the fact
that the complete Padé table ([p/q])p,q≥0 of exp(x) and the convergents of exp(1/b), for
|b| ≥ 1, are well-known, for example.

1. Introduction and statement of the results

In this article, we address the following question, amongst others: given a rational r > 0,
r 6= 1 and an integer b ≥ 2, what bound can be put on λ(b, r) > 0, defined as the infimum
of the positive λ′s such that, for all integers u and m Àb,r,λ 1, we have

∣∣∣log(r)− u

bm

∣∣∣ ≥ 1

bλm
. (1.1)

Such an irrationality measure with restricted denominators is interesting for itself but it is
also useful for studying normality or, less ambitiously and more pragmatically, bounding
the couting function of non-zero digits in the b–ary expansion

∑∞
j=−k dj(α)/bj (with dj(α) ∈

{0, 1, . . . , b − 1}) of an irrational number α, such as log(r). If we denote by (un/b
n)n the

sequence of rational approximations to α deduced from the b–ary expansion of α, then we
have |bnα− un| ≤ 1, which implies that λ(b, r) ≥ 1.

If α is absolutely normal, as log(r) is believed to be, then there even exists an unbounded
function ϕα(n) such that |bnα−un| ≤ b−ϕα(n), because there are infinitely many arbitrarily
long sequences of zeros in the b–ary expansion of α. In the opposite direction, if α is
normal, there does not exist a δ(α) > 0 such that, for all u ∈ Z and all m Àα,b 1, we have
|bmα − u| ≤ b−δ(α)m and it is likely that λ(b, r) = 1. Hence, if we find a value of λ > 1
satisfying (1.1) close to 1, this gives us evidence for the normality of log(r). Something
like this is true but the result obtained is very weak. Indeed, if we set log(r) =

∑∞
j=1 ηj/b

ej

1
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with ηj ∈ {1, . . . , b−1} and (ej)j a strictly increasing sequence of integers, the bound (1.1)
implies that ej+1 ≤ λej + O(1). Therefore knowing that 1 < λ < +∞ only implies that
ej ¿ λj as N → +∞ or, in other words, that

#
{
j ≤ N : dj

(
log(r)

) 6= 0
} ≥ log(N)/ log(λ) +O(1), (1.2)

whereas one expects that the left hand side of (1.2) should be equivalent to (b − 1)N/b.
Thus, to obtain a better lower bound in (1.2), rather than λ(b, r), one should look for
an explicit function ψr such that ψr(m) = o(m) and for all u ∈ Z and all m Àb,r 1,
| log(r)− u/bm| ≥ 1/bm+ψr(m).

A related result is the following (special case of more general) theorem of Ridout [15]:
for any real irrational algebraic numbers α, all ε > 0, all integers b ≥ 2, all u ∈ Z and all
m ≥ 1, we have |bmα− u| Àε,b b−εm. Infortunately, it is ineffective –the dependence of the
implicit constants on ε is not known– and Ridout’s theorem does not provide something
asymptotically better than (1.2) for #{j ≤ N : dj

(
α
) 6= 0} (1). In order to solve certain

Diophantine equations, Beukers [5], and then Bauer and Bennett [4], proved weaker but
completely effective bounds of Ridout’s type for quadratic numbers: the present work is
partly inspired by Beukers’ original method but is more systematic.

Nevertheless, proving that λ(b, r) < 2 has an interesting consequence. Let (pn/qn)n

denote the sequence of convergents of log(r): we have that |qn log(r)− pn| < q−1
n for all n

and, if λ(b, r) < 2, we can conclude that, for all n Àb,r 1, the denominator qn cannot be
an integral power of b. Although this result does not say what the convergents of log(r)
are, it does at least say something about what they aren’t.

To state our results, we first need to introduce some notations. From now on, we suppose
that a, b ∈ Z, κ, x ∈ R satisfy κ ≥ 1, 0 < |x| < 1, b ≥ 2 and 0 < |a/b| < 1. Let

r0 = r0(κ, x) =
(
(κ− 1)(x− 1) +

√
(κ− 1)2(1− x)2 + 4κ(1− x)

)(
2κ|x|)−1

, (1.3)

t0 = t0(κ, x) =
(
κ(1 + x) + 1− x−

√
(κ(1 + x) + 1− x)2 − 4κ2x

)(
2κx

)−1
. (1.4)

Let also

β = β(κ, x) =
(1 + |x|r0)

κ(1− x + |x|r0)

|x|r0

and ρ = ρ(κ, x) = |x|κ+1 tκ0(1− t0)

1− xt0
, (1.5)

which satisfy bβ(κ, a/b) ≥ 1 (2) and ρ > 0. Let L (a, b) = {κ ≥ 1 : bκeκρ(κ, a/b) < 1};
we do not exclude the possibility that this set might be empty. For any κ ∈ L (a, b), we
necessarily have bρ < 1 and b eκρ < 1, hence log(β/ρ) (= log(bβ/bρ)) and − log(b eκρ) are
positive and the quantity

L(κ, a, b) =
log

(
β(κ, a/b)/ρ(κ, a/b)

)

− log
(
b eκρ(κ, a/b)

) (1.6)

is well-defined and positive.

1An important improvement was recently obtained by Bailey et al in [7]: in base b = 2, we have
#

{
j ≤ N : dj(α) = 1

} À N1/D, where D is the degree of α. It would be very interesting to adapt their
method to other types of real.

2The fact that bβ(κ, a/b) ≥ 1 is not obvious from this definition and is proved in lemma 2 in section 2.
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The best possible upper bound Λ(a, b, c) of λ(bc, 1− a/b) that we prove in this article is
given in theorem 1. A more explicit version is produced in theorem 2. All the constants
involved in the various symbols “À” spread in the text could be given explicitly if really
necessary; we use the notation Àe1,e2,... to indicate that these constants depend at most on
e1, e2, etc.

Theorem 1. Let a, b, c be integers such that 0 < |a/b| < 1, b ≥ 2, c ≥ 1 and L (ac, bc) 6= ∅.
Let ε be any positive real. Then, for any u ∈ Z and any m Àε,a,b,c 1, we have

∣∣∣∣ log
(
1− a

b

)
− u

(bc)m

∣∣∣∣ ≥
1

(bc)(Λ(a,b,c)+ε)m
. (1.7)

with

Λ(a, b, c) = inf
κ∈L (ac,bc)

L(κ, ac, bc).

Remarks. 1) Since Λ(a, b, c) = Λ(ac, bc, 1), it is enough to prove the theorem for c = 1.
2) It is not obvious that Λ(a, b, c) can ever be strictly less than 2. However, Theorem 2

shows that L(κ, ac, bc) takes values arbitrarily close to 1 when b Àa,c 1.
3) Note that L(1, a, b) is the irrationality measure for log(1 − a/b) obtained by Alladi-

Robinson [2]: thus Λ(a, b, 1) is smaller than this classical bound. Furthermore, for a given
κ ∈ L (a, b), κ > 1, L(κ, a, b) is strictly smaller than the general irrationality measure

log
(
β(κ, a/b)/ρ(κ, a/b)

)

− log
(
bκ eκρ(κ, a/b)

)

which can be deduced by the methods of this paper: see the discussion in section 4.

We now state a more explicit (but less precise) form of theorem 1.

Theorem 2. Let a, b, c be integers such that 0 < |a/b| < 1, b ≥ 2, c ≥ 1.

(i) If a < 0 and 1 + 2 log |a|+ log(c) ≤ log(b), then K = log(b/|a|)
1+log |ac| ∈ L (ac, bc) and

1 ≤ L(K, ac, bc) ≤ 1 +
K log(2) + log(2− a/b) + K + log(bc)

log
(
K−K(K + 1)K+1 |b/a|K+1

)−K − log(bc)
.

(ii) If a > 0 and 1+2 log(a)+log(c) ≤ log(b)+log
√

1− a/b, then k =
log(b/a)+log

√
1−a/b

1+log(ac)
∈

L (ac, bc) and

1 ≤ L(k, ac, bc) ≤ 1 +
k log(2) + log(2− a/b) + k + log(bc)

log
(
(2k)−k(2k + 1)k+1/2 (b/a)k+1(1− a/b)1/2

)− k − log(bc)
.

(iii) As b → +∞, we have

1 ≤ Λ(a, b, c) ≤ 1 +
2 + log(2|ac|)

log(bc)
+O

(
1

log2(b)

)
.

Remark. As will be clear from the proof of theorem 2, better bounds could be obtained
but at the cost of more complicated formulas.
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As anticipated, an interesting consequence of point (iii) of theorem 2 is the following
result.

Theorem 3. Let a, b, c be integers such that 0 < |a/b| < 1, b ≥ 2, c ≥ 1. Let (pn/qn)n≥0

denotes the infinite sequence of convergents of log(1− a/b). Then, for all b Àa,c 1 and all
n Àa,b,c 1, the denominator qn is not an integral power of bc.

Remarks. 1) For similar results, see (iii) in theorem 4 and the comments around Eq. (7.1)
in section 7.

2) It is notoriously difficult to compute the convergents of numbers like log(2) efficiently,
i.e, without going back to the definition of a continued fraction and starting with more and
more accurate approximations of log(2) (which is cheating).

3) There exists a simple algorithm, due to Shanks, which enables us to compute the
continued fractions of ` = log(a)/ log(b) for any integers a > b > 1, in which only ratio-
nal numbers intervene and no approximation to ` is ever calculated: see [13] for details.
However, the involved integers become quickly very large and this algorithm seems to be
interesting more from a theoretical than a practical point of view. Furthermore, it does
not give much information about what are or are not the convergents of `. This is also
the case of certain algorithms deviced to compute efficiently the continued fractions of real
algebraic numbers: see [8] for a survey.

In the particular case a = c = 1, we have Λ(1, b, 1) < 2 for |b| ≥ 12: the formulas in
theorem 2 proves this for b ≤ −27 and b ≥ 37, the remaining cases being proved using
theorem 1. Hence, in theorem 3, the condition b Àa,c 1 can be replaced by |b| ≥ 12 when
a = c = 1. The following table presents approximations for values of Λ(a, b, c). In the third
column, when 2 ≤ |a| ≤ 5, the value of b is the smallest such that Λ(a, b, 1) < 2. The
infimum Λ(a, b, c) is generally obtained at a κ > 1, which justifies a posteriori our general
construction. For example, for a = c = 1, b = 4, we have κ ≈ 3.56.

b Λ(1, b, 1) b Λ(1, b, 1) (a, b) Λ(a, b, 1) (a, b, c) Λ(a, b, c)
2 4.622103 −2 3.547470 (2, 61) 1.998995 (1, 31, 1) 1.691777
3 3.528776 −3 3.213106 (−2, 60) 1.999590 (1, 31, 2) 1.993407
4 3.004521 −4 2.901690 (3, 179) 1.998618 (−1, 30, 1) 1.697869
5 2.668440 −5 2.615472 (−3, 177) 1.999242 (−1, 30, 2) 1.999590
6 2.466102 −6 2.432070 (4, 394) 1.999762 (1, 60, 1) 1.568451
7 2.329062 −7 2.305190 (−4, 392) 1.999493 (1, 60, 2) 1.808927
8 2.229102 −8 2.211331 (5, 737) 1.999820 (1, 60, 3) 1.996930
9 2.152376 −9 2.138568 (−5, 734) 1.999774 (−1, 59, 1) 1.570603
10 2.091255 −10 2.080174 (1, 28) 1.407106 (−1, 59, 2) 1.811195
11 2.041170 −11 2.032051 (1, 39) 1.218421 (−1, 59, 3) 1.999242
12 1.999208 −12 1.991551 (−1, 57) 1.190198 (2, 197, 2) 1.999762
13 1.963420 −13 1.956882 (1, 107) 1.130565 (−3, 3493, 5) 1.999995

The proof of theorem 1, 2 will be given in sections 3 and 5, respectively. Baker’s theory of
linear form of logarithms is not sharp enough to prove any of these results, even assuming
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such general conjectures as Lang-Waldschmidt [20, p. 11]. Instead, we resort to the less
general but much sharper theory of Padé approximants of log(1 − x), which we recall
in details in the lemmas 1 and 2 in section 2. The irrationality measures of logarithm
found in the litterature are proved using diagonal Padé approximants [n/n] (Baker, Alladi
and Robinson [2]) or slightlly modified versions of the same (Rukhadze [17], Hata [12],
Heimonen et al [19]); none deals with irrationality measures with restricted denominators.
To treat this case, we will use Padé approximants [pn/qn] with p = κq substantially larger
than q in order to get a crucial asymmetrical term b(p−q)n in the estimates for log(1− a/b).
This trick was apparently first used by Beukers [5].

Another noteworthy feature of the Padé approximants [pn/qn] of log(1−x) is the presence
of a factor dpn, where dm = lcm(1, 2, . . . , m). It is fundamentally different from b(p−q)n but
it also intervenes in an asymmetrical way (see eq. (2.1) of lemma 1 in section 2) and
provides some non-trivial diophantine information which we summarise in the following
result, whose proof in section 6 will only be sketched since it is very similar to those of
theorem 1, 2 and 3.

Theorem 4. Let a, b, c be integers such that b, c ≥ 1 and 0 < |a/b| < 1.
(i) If ebρ(1, a/b) < 1, then for all u ∈ Z and m ∈ N, we have

∣∣∣∣ log
(
1− a

b

)
− u

dm

∣∣∣∣ Àa,b
1

d
2− 2 log |a|

log(bρ(1,a/b))
m

. (1.8)

(ii) Let ν ∈ R, ν > 0, and suppose that

D(a, b, ν) =
{
κ ≥ 1 : eκbκ/ν+1ρ(κ, a/b) < 1 and e(κ−1)νbκρ(κ, a/b) < 1

} 6= ∅.
Then, for all ε > 0, u ∈ Z and m Àε,ν,a,b,c 1, we have

∣∣∣∣ log
(
1− a

b

)
− u

dbνmc(bc)m

∣∣∣∣ ≥
1(

dbνmc(bc)
m

)D(ac,bc,ν)+ε
. (1.9)

where D(a, b, ν) = inf
κ∈D(a,b,ν)

log
(
β(κ, a/b)/ρ(κ, a/b)

)

− log
(
bρ(κ, a/b)

) → 1 as b → +∞.

(iii) For all b Àa,c,ν 1, n Àa,b,c,ν 1 and m ∈ N, we have that qn 6= dbνmc(bc)m, where qn

is the denominator of the n–th convergent of log(1− a/b).

Remarks. 1) In (i), we could have stated a result for κ ≥ 1 but numerically it seems that
the best value is always attained at κ = 1. The particular case when a = ±1 of (1.8) reads
| log(1 − 1/b) − u/dm| Àb 1/d2

m for all |b| ≥ 2. However, it is difficult to compute the
implicit constant accurately and a rough estimate gives a value smaller than 1; for this
reason, we cannot deduce from (1.8) a result similar to (iii) in this case.

2) With a = c = ν = 1 in (1.9) for instance, we obtain that, for all u ∈ Z and m À 1,
∣∣∣∣ log(2)− u

dm2m

∣∣∣∣ ≥
1(

dm2m
)1.948967 .
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Finally, it is easy to see why it is possible to improve irrationality measures when consid-
ering special denominators rather than arbitrary ones: (bm)m≥0 and (dm)m≥1 are examples
of sequences (um)m satisfying um|un for m ≤ n. More precisely, to estimate the difference
log(1−a/b)−u/v using the methods of this article, we need to find a lower bound of a certain
difference D = |u/v−U/(dmbkV )| between two distinct rationals (m, k ∈ N, u, v, U, V ∈ Z).
When v could be anything, the best we can say is that, trivially, D ≥ (dmbkV v)−1; how-
ever, if we know in advance that v = dMbK then we can improve our trivial bound to
D ≥ (dmax(M,m)b

max(K,k)V )−1 and we save a crucial factor of dmin(M,m)b
min(K,k) in the pro-

cess.

2. The upper Padé table of the logarithm

Let p, q be integers such that p ≥ q ≥ 0. There exist non-zero polynomials Ap,q(X) and
Bp,q(X) in Q[X] of degree at most p and q respectively such that the order at x = 0 of
the (entire or formal) series Rp,q(X) = Bp,q(X) log(1−X)− Ap,q(X) is at least p + q + 1.
These polynomials, which are unique (3) up to a multiplicative constant, define the Padé
approximant Ap,q/Bp,q = [p/q] of log(1 − X) and we summarize their properties in the
following lemma (which belongs to folklore).

Lemma 1. (i) In the above conditions, when p ≥ q, we can choose the multiplicative
constant such that the following conditions are satisfied:

dp Ap,q(x) ∈ Z[x], Bp,q(x) ∈ Z[x], (2.1)

xqBp,q(1/x) = xq−p
(
xp(1− x)q

)(q)
/q! (2.2)

and

Rp,q(x) = xp+q+1

∫ 1

0

tp(1− t)q

(xt− 1)q+1
dt. (2.3)

(ii) There exists a non-zero constant cp,q such that

Ap+1,q+1(x)Bp,q(x)− Ap,q(x)Bp+1,q+1(x) = cp,qx
p+q+1. (2.4)

(iii) For all x ∈ (−1, 1), Bp,q(x) 6= 0.

Remark. Unfortunately, no such formulas are known when p < q. This rules out the
possibility of proving results like theorems 1, 2, 3 and 4 for the function 1/ log(1 − x) by
similar methods.

Proof. (i) We define the Pocchammer symbol by (u)n = u(u + 1) · · · (u + n− 1) and start
with the hypergeometric series

R̂p,q(x) = (−1)q+1

∞∑

k=1

(k − q)q

(k + p− q)q+1

xp+k =
(−1)q+1 xp+q+1

(
p+q

p

)
(p + q + 1)

2F1

[
p + 1, q + 1
p + q + 2

; x

]
,

3This is not always true for other power series F . However the fraction [p/q]F is unique: see [3] for the
theory of Padé approximants.



7

which converges for |x| ≤ 1, x 6= 1 and has a zero of order p + q + 1 at x = 0. From the
partial fractions expansion

(k − q)q

(k + p− q)q+1

=

q∑
j=0

(−1)j+q

(
q

j

)(
p + j

q

)
1

k + j + p− q
,

we obtain that

R̂p,q(x) =

q∑
j=0

(−1)j+1

(
q

j

)(
p + j

q

) ∞∑

k=1

xp+k

k + p− q + j

=

q∑
j=0

(−1)j+1

(
q

j

)(
p + j

q

)(
xq−j

∞∑

k=1

xk

k
−

j+p−q∑

k=1

xk+q−j

k

)

= B̂p,q(x) log(1− x)− Âp,q(x),

where

B̂p,q(x) =

q∑
j=0

(−1)j

(
q

j

)(
p + j

q

)
xq−j ∈ Z[x]

is of degree q and

Âp,q(x) =

q∑
j=0

j+p−q∑

k=1

(−1)j+1

(
q

j

)(
p + j

q

)
1

k
xk+q−j ∈ d−1

p Z[x]

is of degree p. Thus, we can define Ap,q(x), Bp,q(x) and Rp,q(x) as Âp,q(x), B̂p,q(x) and

R̂p,q(x) respectively. Classical computations can be used to prove the expected formulas
for Bp,q(x) and Rp,q(x): see [12, p. 100] and [19, pp. 186-187] for similar transformations.

(ii) We now turn our attention to the polynomial Cp,q = Ap+1,q+1Bp,q − Ap,qBp+1,q+1,
whose degree is obviously at most p + q + 1. Since Ap,q = Bp,q log(1 − x) − Rp,q, we also
have the identity Cp,q = Bp+1,q+1Rp,q−Bp,qRp+1,q+1, which implies that the order at zero of
Cp,q is at least p + q + 1. Hence there exists a constant cp,q such that Cp,q(x) = cp,qx

p+q+1.
Explicit formulas for Bp,q and Rp,q yield the coefficients needed to compute cp,q: we have
that

(−1)q+1cp,q =

(
p+1
q+1

)
(

p+q
p

)
(p + q + 1)

+

(
p
q

)
(

p+q+2
p+1

)
(p + q + 3)

6= 0.

(iii) We will prove something more, i.e. that the zeros of Bp,q are all in (1, +∞). It
follows from the expression (2.2) for Bp,q(x) that this is equivalent to proving that the

zeros of the polynomial xq−p
(
xp(1 − x)q

)(q)
/q! are all in (0, 1). We consider the function

Fr(x) = (xp(1− x)q)(r), r ∈ {0, . . . , q}, and show by induction on r that Fr admits at least
r distinct zeros in (0, 1), a zero of order p− r at 0 and a zero of order q − r at 1. This is
trivially true for r = 0. Assume this is true for r. Thus, the function Fr admits at least
r + 2 distinct zeros and Rolle’s theorem implies that between two consecutive such zeros

(strictly), there is one zero of F
(1)
r = Fr+1. Therefore, Fr+1 has at least r + 1 distinct zeros
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in (0, 1) and, obviously, a zero of order p− r− 1 at 0 and a zero of order q− r− 1 at 1. As

a result, when r = q, we find that the polynomial xq−pFq(x)/q! = xq−p
(
xp(1 − x)q

)(q)
/q!

has at least q zeros in (0, 1), which is the maximum number of zeros for this polynomial of
degree q. ¤

The proofs of our theorems are based on the asymptotic behaviour of the approximants
[pn + η/qn + η], η ∈ {0, 1}, when the integer n tends to infinity. We use the functions β
and ρ defined by (1.5) in the introduction.

Lemma 2. (i) Let x such that |x| ≤ 1, x 6= 1. Let η denotes either 0 or 1. We have

lim
n→+∞

∣∣Rpn+η,qn+η(x)
∣∣1/qn

= ρ(p/q, x) (2.5)

and

lim sup
n→+∞

∣∣Bpn+η,qn+η(x)
∣∣1/qn ≤ β(p/q, x). (2.6)

(ii) If a, b ∈ Z such that |a/b| < 1 and b ≥ 1, we have bβ(κ, a/b) ≥ 1 for all κ ≥ 1.

Proof. (i) We will give a detailed proof of the case η = 0 and explain what must be changed
when η = 1. To simplify, we temporarily define κ to be p/q.

From (2.3) in lemma 1, we have

Rpn,qn(x) = x(p+q)n+1

∫ 1

0

tpn(1− t)qn

(xt− 1)qn+1
dt

and it follows that

lim
n→+∞

∣∣Rpn,qn(x)
∣∣1/n

= |x|p+q max
t∈[0,1]

tp(1− t)q

(1− xt)q
.

This maximum is obtained at t̂0 (which depends on p, q, x), defined to be the unique root
in (0, 1) of the equation

d

dt

(
tp(1− t)q

(1− xt)q

)
= 0.

It turns out that t̂0 is solution of the quadratic equation

κxt2 − (
κ(1 + x) + 1− x

)
t + κ = 0,

which means that t̂0 depends only on the quotient κ = p/q: this is exactly the number t0
defined in (1.4). Finally, we have

lim
n→+∞

∣∣Rpn,qn(x)
∣∣1/qn

= |x|κ+1 tκ0(1− t0)

1− xt0
= ρ(κ, x) > 0.

Using Cauchy’s integral formula and some straightforward simplifications, we trans-
form (2.2) in lemma 1 for Bpn,qn(x) in the following way:

Bpn,qn(x) =
x(p+q)n+1

2iπ

∫

C1/x,r

zpn(1− z)qn

(xz − 1)qn+1
dz =

(−x)−qn

2iπ

∫

C0,r

(1 + xz)pn(1− x + xz)qn

zqn+1
dz,
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where CM,r denotes the circle of center M and radius r. Thus, we have

lim sup
n→+∞

|Bpn,qn(x)|1/n ≤ 1

|x|q min
r>0

(1 + |x|r)p(1− x + |x|r)q

rq
.

This minimum is obtained for r̂0 (depending a priori on p, q, x) defined as the positive
solution of the quadratic equation

κ|x|2r2 + (κ− 1)(1− x)|x|r − (1− x) = 0.

It follows that r̂0 depends only on the quotient κ = p/q and is exactly the number r0

defined in (1.3). Finally, we obtain that

lim sup
n→+∞

|Bpn,qn(x)|1/qn ≤ (1 + |x|r0)
κ(1− x + |x|r0)

|x|r0

= β(κ, x).

When η = 1, we use the formulas

Rpn+1,qn+1(x) = x(p+q)n+3

∫ 1

0

tpn+1(1− t)qn+1

(xt− 1)qn+2
dt

Bpn+1,qn+1(x) =
x(p+q)n+3

2iπ

∫

C1/x,r

zpn+1(1− z)qn+1

(xz − 1)qn+2
dz

and the proof follows in a similar way.
(ii) We know from (2.1) and (iii) in lemma 1 that |bqnBpn,qn(a/b)| is a non-zero integer,

hence that |bqnBpn,qn(a/b)|1/qn ≥ 1: letting n → +∞ proves that bβ(p/q, a/b) ≥ 1 for all
rational p/q ≥ 1. Since the function κ 7→ β(κ, a/b) is continuous on [1, +∞), we have
bβ(κ, a/b) ≥ 1 for all real κ ≥ 1. ¤

3. Proof of theorem 1

Since the set L (a, b) is non-empty, its contains a rational κ = p/q: we may sup-
pose that p ≥ 1 and q ≥ 1 are coprime, so we may use parameters depending on
H = H(κ) = max(p, q). Throughout this section, we simplify β(κ, a/b) and ρ(κ, a/b)
as β and ρ, respectively.

Since a/b ∈ (−1, 1), the last statement of lemma 1 implies that Bpn+η,qn+η(a/b) 6= 0 and
we can consider the fraction (Apn+η,qn+η/Bpn+η,qn+η)(a/b). Now, let u ∈ Z and m ∈ N. We
will have to compare the fractions u/bm and (Apn,qn/Bpn,qn)(a/b): they might be equal, in
which case equation (2.4) in lemma 1 ensures that u/bm 6= (Apn+1,qn+1/Bpn+1,qn+1)(a/b)
(because a/b 6= 0). Thus for any given a, b, m, n, p, q, u, there exists η ∈ {0, 1} (depending
on these seven parameters) such that

u

bm
6= Apn+η,qn+η(a/b)

Bpn+η,qn+η(a/b)
. (3.1)

According to lemma 2, the value of η has no asymptotic influence : since our results are
proved for large enough n, there is no loss of generality in supposing that we always have
η = 0 in (3.1) in order to simplify the notations.
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From lemma 1, we deduce that

Apn,qn(a/b) =
Un

dpn bpn
and Bpn,qn(a/b) =

Vn

dpn bqn
,

with Un, Vn ∈ Z, and ∣∣∣∣log
(
1− a

b

)
− Un

b(p−q)n Vn

∣∣∣∣ =

∣∣∣∣
Rpn,qn(a/b)

Bpn,qn(a/b)

∣∣∣∣.

The definition of Vn and (2.6) imply that

lim sup
n→+∞

∣∣Vn

∣∣1/qn
= bδ, with δ =

κ + log(b) + log(β)

log(b)
. (3.2)

We now distinguish two cases: (p− q)n ≥ m or (p− q)n < m.
First case. Suppose that (p− q)n ≥ m; in particular, we necessarily have κ > 1.
Since

u

bm
6= Un

b(p−q)n Vn

,

we have ∣∣∣log
(
1− a

b

)
− u

bm

∣∣∣ ≥
∣∣∣∣

u

bm
− Un

b(p−q)n Vn

∣∣∣∣−
∣∣∣∣log

(
1− a

b

)
− Un

b(p−q)n Vn

∣∣∣∣

≥ 1

b(p−q)n |Vn| −
∣∣∣∣
Rpn,qn(a/b)

Bpn,qn(a/b)

∣∣∣∣.

Hence, provided that

|2b(p−q)n VnRpn,qn(a/b)| ≤ |Bpn,qn(a/b)|, (3.3)

we have ∣∣∣log
(
1− a

b

)
− u

bm

∣∣∣ ≥ 1

2 b(p−q)n |Vn| . (3.4)

Since b(p−q)nVn is an (essentially) increasing function of n, it is natural to choose n to be
as small as possible subject to the constraint that (p− q)n ≥ m, i.e. we set

n =

⌊
m

p− q

⌋
+ 1 =

⌊
m

q(κ− 1)

⌋
+ 1. (3.5)

We now verify that with this definition of n, the condition (3.3) is also satisfied for large
m. Indeed, we can rewrite (3.3) as

2bκnd1/qn
pn

∣∣Rpn,qn(a/b)
∣∣1/qn ≤ 1

and it follows from (2.5) in lemma 2, the relation dpn = epn+o(n) and to (3.5) that this last
inequality is satified for all m Àa,b,κ,H 1 because it is implied by the stronger inequality
bκeκρ < 1, which holds by hypothesis. Hence, (3.4) holds with our choice of n for large m.

We define

L̂(κ, a, b) =
κ + κ log(b) + log(β)

(κ− 1) log(b)
.
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Let us fix ε > 0. We deduce from (3.4) and (3.2) that, for all m ≥ M1(ε, κ, H, a, b) (it
would in fact be possible to give an explicit bound), we have

− logb

∣∣∣log
(
1− a

b

)
− u

bm

∣∣∣ ≤ m +
(
δ +

κ− 1

2
ε
) (⌊

m

q(κ− 1)

⌋
+ 1

)
q

≤
(

1 +
δ

κ− 1
+

ε

2

)
m +

(
δ +

κ− 1

2
ε

)
q =

(
L̂(κ, a, b) + ε

)
m (3.6)

where the last equality holds provided that

m ≥ max

(
M1(ε, κ,H, a, b),

2δ + κ− 1

ε
q

)
= M2

(
ε, κ, H, a, b

)
.

Second case. We now turn our attention to the case (p − q)n < m, which may happen
in particular when p = q.

We have
∣∣∣log

(
1− a

b

)
− u

bm

∣∣∣ ≥
∣∣∣∣

u

bm
− Un

b(p−q)n Vn

∣∣∣∣−
∣∣∣∣log

(
1− a

b

)
− Un

b(p−q)n Vn

∣∣∣∣

≥ 1

bm |Vn| −
∣∣∣∣
Rpn,qn(a/b)

Bpn,qn(a/b)

∣∣∣∣.

Hence, provided that

|2bm VnRpn,qn(a/b)| ≤ |Bpn,qn(a/b)|, (3.7)

we have ∣∣∣log
(
1− a

b

)
− u

bm

∣∣∣ ≥ 1

2 bm |Vn| . (3.8)

As in the first case, since Vn → +∞, we need to choose n as small as possible satisfying
(p− q)n < m and (3.7). We rewrite (3.7) as

2bm/qnb d1/qn
pn

∣∣Rpn,qn(a/b)
∣∣1/qn ≤ 1. (3.9)

To find an optimal value of n satisfying (3.9), we note that the condition bκeκρ < 1
implies that

− log(beκρ) > (κ− 1) log(b) ≥ 0

and therefore, for all m ≥ 1,

m

q(κ− 1)
> N =

m log(b)

−q log(beκρ)
≥ 0. (3.10)

We note that we have that bm/qNb eκρ = 1. Hence, the integer n defined by

n = bNc+ 1 =

⌊
m log(b)

−q log(beκρ)

⌋
+ 1 (3.11)

satisfies bm/qnb eκρ < 1 and also (p− q)n < m if m Àκ,H,a,b 1 (from to (3.10)). Thus (3.9)
is also satified for large enough m Àκ,H,a,b 1 and with the definition (3.11) of n, the lower
bound (3.8) holds.
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Let us fix ε > 0. We deduce from (3.2) and (3.8) that for all m ≥ M3(ε, κ, H, a, b), we
have that

− logb

∣∣∣log
(
1− a

b

)
− u

bm

∣∣∣ ≤ m +

(
δ − log(beκρ)

log(b)

ε

2

)(⌊
m log(b)

−q log(beκρ)

⌋
+ 1

)
q.

≤
(

1− δ log(b)

log(beκρ)
+

ε

2

)
m +

(
δ − log(beκρ)

log(b)

ε

2

)
q =

(
L(κ, a, b) + ε

)
m, (3.12)

where the last equality holds provided that

m ≥ max

(
M3(ε, κ, H, a, b),

2δ − log(beκρ)
log(b)

ε

ε
q

)
= M4(ε, κ, H, a, b).

Comparison of the two cases. We now prove that we always have L̂(κ, a, b) ≥ L(κ, a, b)
for any given κ ∈ L (a, b), κ > 1. For simplicity, we define X = β/ρ, Y = bκ−1 and
Z = (bκeκρ)−1. We note that, for any κ ∈ L (a, b), κ > 1, we have X > 1, Y > 1, Z > 1
and

L̂(κ, a, b)− L(κ, a, b) =
log(bκeκβ)

log(bκ−1)
− log(β/ρ)

log((beκρ)−1)

=
log(X/Z)

log(Y )
− log(X)

log(Y Z)
=

log(Y Z) log(X/Z)− log(X) log(Y )

log(Y ) log(Y Z)
.

The denominator of the right hand side is clearly positive and it remains to prove that this
also the case of the numerator. Let x, y, z be any reals ≥ 1: by calculus, we prove that

log(yz) log(x/z) − log(x) log(y) ≥ 0 if z ∈ [1, x/y]. To prove that L̂(κ, a, b) ≥ L(κ, a, b), it
is therefore enough to check that 1 ≤ Z ≤ X/Y and, indeed, this is true because 1) we
already know that Z > 1 and 2) we have X/(Y Z) = b eκβ > 1 since bβ ≥ 1.

Thus, for all m ≥ M5 = max(M2,M4)(ε, κ, H, a, b), we have

− logb

∣∣∣log
(
1− a

b

)
− u

bm

∣∣∣ ≤
(
L(κ, a, b) + ε

)
m.

We can find κ0 ∈ L (a, b) ∩ Q (depending on ε, a, b) such that L(κ0, a, b) ≤ Λ(a, b, 1) + ε
and finally obtain

− logb

∣∣∣log
(
1− a

b

)
− u

bm

∣∣∣ ≤
(
Λ(a, b, 1) + 2ε

)
m

for all m ≥ M5(ε, κ0, H(κ0), a, b)) = M6(ε, a, b).
Since Λ(a, b, c) = Λ(ac, bc, 1), the proof of theorem 1 is complete.
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4. Comparison with previous bounds

It is interesting to compare the bound L(κ, ac, bc) (which really depends on the special
shape of bm) with the general irrationality measure obtained using the same approxima-
tions: the linear form

dpnb
pnRpn,qn(a/b)

= dpnb
pnBpn,qn(a/b) log

(
1− a

b

)
− dpnb

pnApn,qn(a/b) ∈ Z log
(
1− a

b

)
+ Z

tends to 0 as n → +∞ exactly under the condition bκeκρ < 1, i.e. κ ∈ L (a, b). We then
use a classical criterion (see [2, Lemma 3] for example) to obtain

− logv

∣∣∣log
(
1− a

b

)
− u

v

∣∣∣ ≤ − log(β/ρ)

log(bκeκρ)
+ ε = µ(κ, a, b) + ε

for all ε > 0, all u ∈ Z and v Àε,κ,a,b 1. Let µ(a, b) denote the infimum of µ(κ, a, b) over
L (a, b), which is greater than 2 because of the convergents of log(1− a/b). It seems that
µ(a, b) is always attained at κ = 1 but we did not try to prove this.

Obviously, for all κ ∈ L (a, b), we have L(κ, a, b) ≤ µ(κ, a, b) and therefore, for c = 1,
we have Λ(a, b, 1) ≤ µ(a, b). For c ≥ 2, we cannot rule out the possibility that Λ(a, b, c) >
µ(a, b) since this inequality holds if c Àa,b 1 and hence in applications, it will be necessary
to check which is the smallest of the two.

5. Proof of theorem 2

We first need a simple upper bound for ρ(κ, x) when 0 < |x| < 1 and for this, we consider
two separate cases.

Assume that −1 < x < 0. Then, for all t ∈ (0, 1),
tκ(1− t)

1− xt
≤ tκ(1 − t), which implies

that

ρ(κ, x) ≤ κκ

(κ + 1)κ+1
|x|κ+1.

Assume that 0 < x < 1. For all t ∈ (0, 1), we have (1− xt)2 ≥ (1− x)(1− t) and hence

tκ(1− t)

1− xt
≤ tκ(1− t)1/2

(1− x)1/2
,

which implies that

ρ(κ, x) ≤ (2κ)κ

(2κ + 1)κ+1/2

|x|κ+1

(1− x)1/2
.

We shall use the simpler strict bounds: ρ(κ, x) < |x|κ+1 if −1 < x < 0 and ρ(κ, x) <
|x|κ+1(1− x)−1/2 if 0 < x < 1.

We also need an upper bound for β(κ, x): by definition, we have

β(κ, x) =
1

|x|
(

min
r>0

(1 + |x|r)p(1− x + |x|r)q

rq

)1/q

≤ 2κ(2− x). (5.1)
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We get the last inequality by using the special value r = 1/|x|.
We are now ready to prove the theorem.
Let us suppose first that −1 < a/b < 0 and set K = log(b/|a|)/(1+log |a|): the condition

1 + 2 log |a| ≤ log(b) ensures that K ≥ 1 and we have bKeKρ(K, a/b) < bKeK |a/b|K+1 = 1.
Thus K ∈ L (a, b).

Let us now suppose that 0 < a/b < 1 and let

k =
log(b/a) + log

√
1− a/b

1 + log(a)
.

The condition 1 + 2 log(a) ≤ log(b) + log
√

1− a/b ensures that k ≥ 1 and we have

bkekρ(k, a/b) < bkek(a/b)k+1(1− a/b)−1/2 = 1. Thus, once more, k ∈ L (a, b).
Clearly,

Λ(a, b, 1) = inf
κ∈L (a,b)

L(κ, a, b) ≤
{

L(K, a, b) if a < 0

L(k, a, b) if a > 0.

When a < 0, we have

L(K, a, b) = 1 +
log β(K, a/b) + K + log(b)

−(
log ρ(K, a/b) + K + log(b)

)

≤ 1− log
(
2K(2− a/b)

)
+ K + log(b)

log
(
KK(K + 1)−K−1 |a/b|K+1

)
+ K + log(b)

as desired, provided that the denominator of the right hand side is positive, i.e. that

KK

(K + 1)K+1

∣∣∣a
b

∣∣∣
K+1

eKb < 1.

But, independently of the definition of K, this inequality is just a consequence of the
hypothesis that 1 + 2 log |a| < log(b):

∣∣∣a
b

∣∣∣
K+1

eKb = |a|
∣∣∣ae

b

∣∣∣
K

<
1

|a|K−1
< 1.

(The factor KK(K + 1)−K−1 < 1 has been removed for clarity.) When a > 0, we have

L(k, a, b) = 1 +
log β(k, a/b) + k + log(b)

−(
log ρ(k, a/b) + k + log(b)

)

≤ 1− log
(
2k(2− a/b)

)
+ k + log(b)

log
(
(2k)k(2k + 1)−k−1/2 (a/b)k+1(1− a/b)−1/2

)
+ k + log(b)

again provided that the denominator of the right hand side is positive, i.e. that

(2k)k

(2k + 1)k+1/2

(a

b

)k+1

(1− a/b)−1/2ekb < 1.
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This inequality is now a consequence of the hypothesis that 1 + 2 log(a) < log(b) +

log
√

1− a/b:

(a/b)k+1ekb(1− a/b)−1/2 = a(1− a/b)k−1/2

(
ae

b(1− a/b)1/2

)k

<
(1− a/b)k−1/2

ak−1
< 1.

(The factor (2k)k(2k + 1)−k−1/2 < 1 has been removed for clarity.) The asymptotic expan-
sions of these upper bounds for Λ(a, b, 1) is a tedious exercice which can be done using a
computer algebra. Finally, the theorem follows on replacing a by ac and b by bc.

6. Proof of theorem 4

In this section, we provide a sketch of the proof of theorem 4 because it is very similar
to that of theorem 1.

(i) We consider the approximations provided by lemma 1 with p = q = 1 and κ = 1. We
define vn = bnBn,n(a/b) ∈ Z and un = dnb

nAn,n(a/b) ∈ Z. By the procedure described in
the proof of theorem 1, we can assume that u/dm 6= un/(dnvn) and we have

∣∣∣∣log
(
1− a

b

)
− u

dm

∣∣∣∣ ≥
∣∣∣∣

u

dm

− un

dnyn

∣∣∣∣ −
∣∣∣∣log

(
1− a

b

)
− un

dnvn

∣∣∣∣ ≥
1

dm|vn| −
∣∣∣∣
Rn,n(a/b)

Bn,n(a/b)

∣∣∣∣
for all m ≥ n. Hence, if

2dmbnRn,n(a/b) ≤ 1, (6.1)

we have ∣∣∣∣log
(
1− a

b

)
− u

dm

∣∣∣∣ ≥
1

2dm|vn| . (6.2)

We now remark that the proof of lemma 2 yields the following results: there exist two
constants c1 = c1(a, b) and c2 = c2(a, b) such that, for all n ≥ 0,

|Rn(a/b)| ≤ c1ρ(1, a/b)n and |Bn(a/b)| ≤ c2β(1, a/b)n

Condition (6.1) is satisfied if the stronger inequality 2c1dmbnρn ≤ 1 holds: the smallest
integer N which satisfies this is

N =

⌊
log(2c1dm)

− log(bρ)

⌋
+ 1.

Since we have supposed that ebρ < 1, we also have − log(bρ) > 1 and therefore 0 < N ≤ m
for large m.

Hence (6.2) holds with n = N and we have
∣∣∣∣log

(
1− a

b

)
− u

dm

∣∣∣∣ ≥
1

2dm|vN | ≥
1

2c2dmβN
≥ (2c1β)1/ log(bρ)

2c2

1

d− log(β/ρ)/ log(bρ)
m

.

It remains to note that β(1, a/b)ρ(1, a/b) = |a/b|2.
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(ii) To simplify, let ` = bνmc, xn = dnb
nApn,qn(a/b) ∈ Z and yn = bnBpn,qn(a/b) ∈ Z.

Like the proof of theorem 1, we can assume that u/(d`b
m) 6= xn/(dnb

(p−q)nyn) and we have

∣∣∣∣log
(
1− a

b

)
− u

d` bm

∣∣∣∣ ≥
∣∣∣∣∣

u

d` bm
− xn

dnb
(p−q)n
n yn

∣∣∣∣∣

−
∣∣∣∣log

(
1− a

b

)
− xn

dnb(p−q)nyn

∣∣∣∣ ≥
1

d` bm|yn| −
∣∣∣∣
Rpn,qn(a/b)

Bpn,qn(a/b)

∣∣∣∣
provided that ` ≥ pn and m ≥ (p− q)n. Hence, under these two assumptions and with

2d` bmbqnRpn,qn(a/b) ≤ 1, (6.3)

we have ∣∣∣∣log
(
1− a

b

)
− u

d` bm

∣∣∣∣ ≥
1

2d` bm|yn| . (6.4)

The integer

n =

⌊
(ν + log(b))m

−q log(bρ)

⌋
+ 1

satisfies (6.3) for large enough m. Since p/q ∈ D(a, b, ν), we have 1) necessarily − log(bρ) >
0 and therefore n > 0 and 2) the conditions ` ≥ pn and m ≥ (p − q)n are also satisfied.
We conclude exactly as in the second case of the proof of theorem 1.

To prove that D(ac, bc, ν) → 1 as b → +∞, we use the same method as in theorem 2.
Finally, (iii) is a consequence of (ii).

7. Further results

For values of a/b close to 1, the value of Λ(a, b, 1) may be greater than certain refined
irrationality measures for log(1 − a/b): this is the case for log(2) whose best irrationality
measure, due to Rukhadze [17], is:∣∣∣∣ log(2)− p

q

∣∣∣∣ ≥
1

q3.891310
, p ∈ Z, q À 1.

A list of such improvements is available in [19, p. 186]. In order to extend theorem 3, it
would be interesting to see if, using Rukhadze’s method (in the generalised form of [12, 19]
or (which in this case amounts to the same thing here) using the “group structure” integral
method of Rhin-Viola [14]), it is possible to greatly improve our bounds and obtain, for
example, Λ(1, b, 1) < 2 for smaller values of b.

There exist many examples of formal power series F for which we can compute part of
the Padé table

(
[p/q]F

)
p,q≥0

, or even sometimes the complete table. For example, let us

consider the Lerch function

Φ(x, 1, α) =
∞∑

k=0

xk

k + α
,

for any rational α ≥ 0. As in the case of log(1 − x) = −xΦ(x, 1, 0), the upper part(
[p/q]

)
p≥q≥0

of the Padé table of Φ(x, 1, α) is known (the proof is a simple adaptation of
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lemma 1, see also [11]) and one obtains results similar to our theorems 1, 2 and 3. We
will state these results only in the particular case α = 1/2 which is of interest because the
function

xΦ(x2, 1, 1/2) = log

(
1 + x

1− x

)
,

evaluated at x = a/(2b + a), produces an irrationality measure which complements theo-
rem 1: for all ε > 0, all u ∈ Z and all m Àε,a,b,c 1,

∣∣∣∣ log
(
1− a

b

)
− u

(2bc + ac)2m

∣∣∣∣ ≥
1

(2bc + ac)2m(N(ac,bc)+ε)
,

where

N(a, b) = inf
κ∈T (A,B)

log
(
β(κ,A/B)/ρ(κ,A/B)

)

− log
(
4B e2κρ(κ,A/B)

) ,

with A = a2, B = (2b + a)2 and T (A,B) = {κ ≥ 1 : 4 Bκe2κρ(κ,A/B) < 1}. Clearly,
N(a, b) = N(a− 2, b + 1). We have for example

∣∣∣∣ log(12/13)− u

729m

∣∣∣∣ ≥
1

7291.969329m
.

The function xΦ(−x2, 1, 1/2) = 2 arctan(x) is also an interesting special case because of
its connexion with the number π; however, the author found no measure of the shape
|π − u/bm| ≥ b−µ(π)m with µ(π) < 2 for at least one value of b ≥ 2.

Alternatively, we could also obtain improved lower bounds like
∣∣∣∣ log

(
1− a

b

)
− u

bqnBpn,qn(a/b)

∣∣∣∣ ≥
1

(bqnBpn,qn(a/b))V (a,b)
(7.1)

with V (a, b) ≥ 1, and similar results for bpmBpm,qm(a/b), dpmbqmBpm,qm(a/b), etc, where
Bpn,qn(X) is the Padé polynomial given in (2.2). Such sequences could be modified endlessly
and are not usually expressible in a closed and attractive form. It would be also interesting
to generalise the simultaneous type II Padé approximants for the familly log(1 − a1x),
log(1 − a2x), . . . , log(1 − akx) considered by Rhin and Toffin in [16], in order to obtain a
result similar to theorem 1 for certain rational linear forms in logarithms.

Finally, we conclude this article by mentioning an example of a completely different
nature. The complete Padé table of the exponential function is known explicitely (it
was Padé’s case-study [18]). The diagonal Padé approximants [n/n]exp contains a lot of
diophantine information for it is well-known that [n/n]exp (or small variations around the
diagonal case) evaluated at a rational of the form 1/b provide the convergents of exp(1/b)
and a very precise irrationality measure of exp(1/b): see [1, 9, 10]. Hence it would be natural
to expect that [p/q]exp could be used to obtain irrationality measures with denominators
of the shape bm. However, very surprisingly, this is not the case and we can not obtain
something better: the growth of the denominator and remainder of [pn/qn]exp behave like
C1(p, q)

n(pn!) and C2(p, q)
n/((p+q)n)! respectively, which completely annihilates the effect

of the term b(p−q)n, which was crucial in the proof of theorem 1.
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bers, J. Théor. Nombres Bordeaux 16 (2004), no. 3, 487–518.
[8] R. Brent, A. van der Poorten and H. J.J. te Riele, A comparative study of algorithms for comput-

ing continued fractions of algebraic numbers, Algorithmic number theory (Talence, 1996), 35–47, Lec-
ture Notes in Comput. Sci. 1122, Springer, Berlin, 1996.
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