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Abstract. It is a well-known and useful fact that Rademacher’s functions (i.e, the binary
bits of a real number x viewed as functions of x) provide a bridge between analysis
and probability theory (sums of Bernoulli random variables). Thanks to a functional
equation for a suitable moment generating function, we provide a simple analytical proof of
Kolmogorov’s famous maximal inequality, a now classical step in the proof of Khintchine’s
law of iterated logarithm. The proof is completely self-contained and does not use any
deep properties of Rademacher’s functions, particularly their independence – in this case,
the proof can hardly be simpler than Kolmogorov’s own proof.

1. Introduction

1.1. Notations. Given any real number x ∈ [0, 1], we denote by bxc and {x} its integer
and fractional parts respectively. We define a function T : [0, 1] → [0, 1] by T (x) = {2x}.
We will note T nx the n-th iterate of x under T , with T 0x = x. Let x = 0.x1x2x3 · · · denote
the binary expansion of x ∈ [0, 1], where xj ∈ {0, 1}. Provided x 6∈ D = {j/2r : j ∈ N, r ∈
Z}, this expansion is unique. If x ∈ D, we choose its finite expansion so that we have
xj = b2T j−1xc for all x ∈ [0, 1] and j ≥ 1.

Our main object of study is the “sum of digits” function Bn defined for x ∈ [0, 1] and
n ≥ 1 by Bn(x) =

∑n−1
j=0 b2T jxc. It is piecewise constant and for all n ≥ 1, we have

Bn+1(x) = Bn

(
Tx

)
+ b2xc. (1)

We will use the “centered” functions Sn = 2Bn−n. The functions (1−2b2T nc)n≥1 coincide
on [0, 1] \ D with Rademacher’s functions [18]. The later are important in analysis and
probability, particularly because they mimic the game of heads or tails. For any predicate
P (x), we note µ(P ) for µ({x ∈ [0, 1] : P (x)}), where µ is Lebesgue measure on R.

1.2. The probabilistic and number theoretic contexts. In this article, we are inter-
ested in the deviations from 0 of Sn and max1≤k≤n Sk but before stating the main result
of this article, it seems more appropriate to present the background. The almost sure
(a.s.) asymptotic behavior of Bn(x) with respect to µ has a long history going back to the
seminal work of Borel [3] who proved in 1909 his law of large numbers:

Bn(x) = n/2 + o(n) a.s. (2)

See [1] for an account of Borel’s proof of (2) and its place in the foundations of probability
theory. In number theoretical terms, (2) says that almost all real numbers are simply
normal in base 2. The more general statement that almost all real numbers are normal in
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base 2 was proved by Borel in [3]: a proof using products of Rademacher’s functions was
given by Mendès-France [16], see also Goodman [7]. It is difficult to give an exhaustive list
of all the more or less elementary different proofs of (2); see for example Rademacher [19],
Kac [10, 11] and, more recently, Nillsen [17].

In 1913, Hausdorff [9] improved (2) and showed that Bn(x) = n/2 + O(n1/2+ε) a.s.
for all ε > 0. Hardy and Littlewood [8] made Hausdorff’s result more precise in 1914:

Bn(x) = n/2+O(
√

n log(n)) a.s. and this was made completely effective by Steinhaus [23]
in 1922:

lim sup
n→+∞

|Bn(x)− n/2|√
1
2
n log(n)

≤ 1 a.s..

The best possible estimate was obtained by Khintchine [12] in 1924:

lim sup
n→+∞

Bn(x)− n/2√
1
2
n log log(n)

= 1, lim inf
n→+∞

Bn(x)− n/2√
1
2
n log log(n)

= −1 a.s.. (3)

Lévy [15] addressed the more general question of the asymptotic expansion of the order of
magnitude of Bn−n/2, a problem solved by Erdös [4] who found an asymptotic expansion
on the scale of iterated logarithms logk(= log(logk−1)).

1.3. Rényi’s approach to large deviations inequalities. Steinhaus and Khintchine’s
theorems rest on sharp bounds of the measure of the deviations from 0 of Sn (eq. (5))
and max1≤k≤n Sk (eq. (6)) respectively. The proof of such bounds are more or less simple,
according to what is assumed, in particular independence. Our main goal is to simplify an
elementary proof of (6) given by Rényi.

Consider the moment generating function of Sn(x) defined by Rn(q) =
∫ 1

0
qSn(x)dx for

q > 0. As noticed by Rényi in [21], Hardy and Littlewood’s theorem (and in fact also
Steinhaus’ theorem) is a consequence of the identity (where q > 0)

Rn(q) =
(q + 1/q

2

)n

, (4)

because the later implies Bernstein’s large deviations inequality [2]: for α ≥ 0, n ≥ 1, we
have

µ(|Sn| ≥ α) ≤ 2e−α2/(2n). (5)

Steinhaus’ theorem follows by the Borel-Cantelli lemma. In probabilistic terms, (4) is
obvious because the sequence (xj)j≥1 is a i.i.d. Bernoulli process. It can also be proved
analytically by mean of the Kac-Steinhaus’ theory of independent functions [11], of which
Rademacher’s functions are a classical example. But Rényi found that (4) follows “by a
simple combinatorial argument” (sic) without the use of any probability concepts. Since
it is not clear to us what he meant, we provide a simple proof of (4) by an induction that
uses no more than the recursive equation (1).

A different idea is needed to get the law of the iterated logarithm. Kolmogorov simplifed
Khintchine’s proof of (3) by introducing S∗n = max1≤k≤n Sk, for which he (essentially)
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proved the following maximal inequality: for α ≥ 0 and n ≥ 1, we have

µ(|S∗n| ≥ α) ≤ 4e−α2/(2n). (6)

That inequality then implies (3) with = 1 replaced by ≤ 1 and = −1 replaced by ≥ 1.
Rényi showed that it was possible to deduce (6) using the explicit computation of the

moment generating function of S∗n. Setting R∗
n(q) =

∫ 1

0
qS∗n(x)dx for n ≥ 1 and q > 0, he

proved that

R∗
2n(q) =

1

22n

(
1 +

1

q

)[ n−1∑

k=0

(
2n

k

)
q2n−2k +

(
2n− 1

n− 1

)]
, (7)

R∗
2n+1(q) =

1

22n+1

[(
1 +

1

q

) n−1∑

k=0

(
2n + 1

k

)
q2n+1−2k

+

(
2n + 1

n

)
q +

(
2n

n− 1

)
+

(
2n

n

)
1

q

]
. (8)

1.4. The result. Our main theorem is a simple analytical proof of the following identity,
which simplifies part of Rényi’s approach.

Theorem 1. For all n ≥ 1 and q > 0, we have

R∗
n(q) +

1

q
R∗

n

(1

q

)
= Rn(q) +

1

q
Rn

(1

q

)
. (9)

Remarks. Since Rn(q) = Rn(1/q) and Rn(q) is known explicitely, we could simplify the
right hand side of (9). But we find it aesthetic under this form.

In a sense, this identity is not new because it is equivalent to (7) and (8) (note that
since S∗n(x) takes values in {−1, 0, 1, . . . , n}, the function qR∗

n(q) is a polynomial in q of
degree n + 1). Furthermore, equating the coefficients of like powers on both sides of (9),
we obtain

µ(S∗n = k) + µ(S∗n = −k − 1) = µ(Sn = k) + µ(Sn = k + 1)

for all n ≥ 1 and all k ∈ Z. For any integer N , summing over k ≥ N , we get that

µ(S∗n ≥ N) + µ(S∗n ≤ −N − 1) = 2µ(Sn > N) + µ(Sn = N).

Since µ(S∗n ≤ −N − 1) = 0 for N ≥ 1, we recover in this case an identity mentioned by
Lévy in [15, Lemme V].

What we hope to be new is our proof of (9). It is based on the function

Rn(σ, q) =

∫ 1

0

qmax(σ,S∗n(x))dx,

defined for σ ∈ R and q > 0 and which satisfies Rn(−1, q) = R∗
n(q) and the functional-

recursive relation

Rn+1(σ, q) =
q

2
Rn

(
max(0, σ − 1), q

)
+

q−1

2
Rn

(
max(0, σ + 1), q

)
,

which is the heart of our argument.
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2. The proofs

As a warmup, we first present a simple proof of (4) and (5), we will then prove Theorem 1,
from which Kolmogorov’s inequality (6) (and then Khintchine’s theorem) follows.

2.1. Proof of Bernstein’s large deviations inequality (5). For completeness, we first
prove (4). We proceed by induction on n ≥ 1. The result is true for n = 1 because

R1(q) =

∫ 1

0

q2b2xc−1dx =

∫ 1/2

0

q−1dx +

∫ 1

1/2

q1dx =
q + 1/q

2
.

Suppose now that (4) is true for n. Since Tx = 2x on [0, 1/2] and Tx = 2x− 1 on [1/2, 1],
we have

Rn+1(q) =

∫ 1

0

qSn(Tx)+2b2xc−1dx =

∫ 1/2

0

qSn(2x)−1dx +

∫ 1

1/2

qSn(2x−1)+1dx

=
q−1

2

∫ 1

0

qSn(u)du +
q

2

∫ 1

0

qSn(v)dv =
q + 1/q

2
Rn(q)

which proves (4) for n + 1 by the induction hypothesis. The last line follows from the
changes of variable u = 2x and v = 2x− 1.

A classical proof of Bernstein’s large deviation inequality (5) is the following. For any

real number u, we have (eu + e−u)/2 ≤ eu2/2 and hence (4) implies that Rn(eu) ≤ enu2/2.
Now, for any real number α, consider the set E(n, α) = {x ∈ [0, 1] : Sn(x) ≥ α}. For
u ≥ 0, we obviously have

Rn(eu) ≥
∫

E(n,α)

euSn(x)dx ≥ euαµ(E(n, α)).

Hence, the inequality µ(E(n, α)) ≤ exp(nu2/2 − αu) holds for any u ≥ 0 and any α.
Provided that α ≥ 0, the minimum with respect to u is attained at u = α/(2n), yielding
µ(Sn ≥ α) ≤ exp (−α2/2n) for all α ≥ 0. The inequality µ(Sn ≤ α) ≤ exp (−α2/2n) for
all α ≤ 0 follows from the symmetry Sn(−x) = −Sn(x) for x ∈ [0, 1] \D and n ≥ 1, which
itself follows from the identity b2T j(1− x)c = 1− b2T j(x)c for x ∈ [0, 1] \ D and j ≥ 1.

2.2. Proof of Theorem 1. Since the function S∗n(x) takes values in the set {−1, 0, . . . , n},
we have ∫ 1

0

qmax(σ,S∗n(x))dx =
n∑

k=−1

µ(S∗n = k) qmax(σ,k)

for all σ ∈ R and q > 0: the sequence of coefficients of the power expansion on the right
hand side is unique 1). For simplicity, we set ak,n = 2nµ(S∗n = k), so that

Rn(σ, q) =
1

2n

n∑

k=−1

ak,n qmax(σ,k).

1If two finite expansions of this type are equal, starting at k1 and k2 say, then for α = min(k1, k2), these
expansions are Laurent polynomials in q.
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(From now on, we drop the variable q in Rn(σ, q).) We want to find a recursive way to
compute the ak,n’s. This will be achieved thanks to the following lemma.

Lemma 1. For all α ∈ R, q > 0 and n ≥ 1, we have R1(σ) = 1
2

(
qmax(σ,−1) + qmax(σ,1)

)
and

Rn+1(σ) =
q

2
Rn

(
max(0, σ − 1)

)
+

q−1

2
Rn

(
max(0, σ + 1)

)
. (10)

Proof. Like for R1(q), the assertion for R1(σ) is straightforward.
To prove (10), we first make the trivial but crucial observation that

S∗n+1(x) = 2b2xc − 1 + max
(
0, S∗n(Tx)

)
(11)

because

max
1≤k≤n+1

Sk(x) = max
(
S1(x), max

1≤k≤n
Sk+1(x)

)

= max
(
S1(x), max

1≤k≤n

(
Sk(Tx) + S1(x)

))

= S1(x) + max
(
0, max

1≤k≤n
Sk(Tx)

)
.

The rest of the proof is now similar in principle to that of (4): we deduce from (11) that

Rn+1(σ) =

∫ 1

0

qmax
(

σ,2b2xc−1+max(0,S∗n(Tx))
)
dx

= q−1

∫ 1/2

0

qmax(σ+1,0,S∗n(2x))dx + q

∫ 1

1/2

qmax(σ−1,0,S∗n(2x−1))dx

=
q−1

2

∫ 1

0

qmax(σ+1,0,S∗n(u))du +
q

2

∫ 1

0

qmax(σ−1,0,S∗n(v))dv (12)

=
q−1

2

∫ 1

0

qmax(σ+1,0,S∗n(u))du +
q

2

∫ 1

0

qmax(σ−1,0,S∗n(v))dv

=
q−1

2
Rn

(
max(0, σ + 1)

)
+

q

2
Rn

(
max(0, σ − 1)

)
.

In (12), we made the changes of variable u = 2x and v = 2x− 1. ¤
We can now state the recursions satisfied by the ak,n’s.

Lemma 2. The coefficients ak,n can be computed from the following recursions: for any
n ≥ 1, 




a−1,n+1 = a−1,n + a0,n

a0,n+1 = a1,n

a1,n+1 = a−1,n + a0,n + a2,n

ak,n+1 = ak−1,n + ak+1,n for k ≥ 2

(13)

where by convention ak,n = 0 for k ≥ n + 1 and the initial values are a−1,1 = a1,1 = 1,
ak,1 = 0 for other k’s.
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Proof. We apply (10) with σ = −1: after simplification of the powers of 2, we obtain

n+1∑

k=−1

ak,n+1 qk =
n∑

k=−1

ak,n qmax(0,k)+1 +
n∑

k=−1

ak,n qmax(1,k)−1

= a−1,nq +
n∑

k=0

ak,n qk+1 + a−1,nq
−1 + a0,nq

−1 +
n∑

k=1

ak,n qk−1

= a−1,nq−1 + a0,nq−1 + a−1,nq +
n+1∑

k=1

ak−1,n qk +
n−1∑

k=0

ak+1,n qk.

The recursions (13) readily follow by polynomial identification. ¤

Remark. The recursions (13) were obtained by Rényi by a different method. He then
verified identities (7) and (8) from (13) by induction. I am still not sure that I would have
been able to guess the binomial expressions for the ak,n’s just by looking at (13). Instead,
I tried to solved them by “generating-functionology” and finally found (9), whose proof is
given below.

We are now ready to conclude. We want to show that, for any n ≥ 1, we have

R∗
n(q) +

1

q
R∗

n

(1

q

)
=

(
1 +

1

q

)(q + 1/q

2

)n

.

We will proceed by induction on n. Since R∗
1(q) = R1(−1, q) = (q + q−1)/2, this is true

for n = 1. Let us suppose that this is true for some n and let Ak = ak,n+1 and ak = ak,n.
Using recursions (13), we have by straightforward formal manipulations:

2n+1
(
R∗

n+1(q) + q−1R∗
n+1(q

−1)
)

=
∞∑

k=−1

Akq
k +

∞∑

k=0

Ak−1q
−k

=
A−1

q
+ A0 + A1q +

∞∑

k=2

Akq
k + A−1 +

A0

q
+

A1

q2
+

∞∑

k=3

Ak−1q
−k

=
∞∑

k=2

(
ak−1 + ak+1

)
qk +

∞∑

k=3

(
ak−2 + ak

)
q−k

+A−1(1 + q−1) + A0(1 + q−1) + A1(q + q−2)

= 2n(q + q−1)
(
R∗

n(q) + q−1R∗
n(q−1)

)
+ ρn(q),

where

ρn(q) = −
1∑

k=0

ak−1q
k −

1∑

k=−2

ak+1q
k −

2∑

k=1

ak−2q
−k −

2∑

k=−1

akq
−k

+ A−1(1 + q−1) + A0(1 + q−1) + A1(q + q−2).
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In this expression for ρn(q), thanks to (13), we can replace A−1 by a−1 + a0, A0 by a1 and
A1 by a−1 + a0 + a2: after simplifications, we find that ρn(q) is identically 0. This finishes
the proof of Theorem 1.

2.3. Proof of Kolmogorov’s maximal inequality (6). Since Rn(1/q) > 0 for q > 0,
we deduce from (9) that R∗

n(q) ≤ (1 + 1/q)Rn(q) for q > 0. Therefore, with q = eu and
u ≥ 0, we have R∗

n(eu) ≤ 2Rn(eu) ≤ 2 exp(u2/2) and the argument given in section 2.1

implies Kolmogorov’s inequality µ(S∗n ≥ α) ≤ 2e−α2/(2n) for all α ≥ 0.

3. Conclusion

We conclude this note with a few comments.
Classically, the proof of Steinhaus’ theorem follows from Bernstein’s bound for µ(Sn ≥ α)

by the Borel-Cantelli lemma. The proof of Khintchine’s theorem follows from Kolmogorov’s
bound for µ(S∗n ≥ α) (or at least this is true of the proof of (3) with ≤ 1 instead of
= 1 and ≥ −1 instead of = −1). The optimality in Khintchine’s theorem (i.e, the fact

that (3) is holds) uses the estimate µ(Sn ≥ α) À e−α2/(2n) (for α ≥ 0, n ≥ 1), which
essentially amounts to proving the de Moivre-Laplace theorem (see [14, p. 18]). It also
uses the converse of the Borel-Cantelli lemma which holds for independent events, a typical
probability notion. The method presented here does not yield any simplifications of these
two aspects. All this is very classical and we refer the reader to any one of the books [5, 6, 22]
for example.

We also note that (9) with q = eit (t ∈ R) provides a functional equation for the
characteristic function of the sequence (S∗n)n≥1. We can apply Lévy’s theorem to this
function and, since qR∗

n is a polynomial in q, we obtain easily the following well-known
convergence in law: as n → +∞,

µ(S∗n ≤ α
√

n) →





0 if α ≤ 0,

√
2/π

∫ α

0

e−t2/2 dt if α ≥ 0.

The recursion method can be used to “compute” the integrals

Sn(α, β) =

∫ 1

0

qmax(α,max1≤k≤n |Sk+β|)dx,

An(α) =

∫ 1

0

q
Pn

k=1 1{α}(Sk)dx,

where 1A denotes the indicator function of a given set A. The reader will easily check that

2Sn+1(α, β) = Sn(max(α, β − 1), β − 1) + Sn(max(α, β + 1), β + 1),

2An+1(α) = qδα,−1An(α + 1) + qδα,1An(α− 1),

where δ is Kronecker’s delta. These recursions enable us to compute easily (at least with
a computer) the laws of the random variables max1≤k≤n |Sk| and #{1 ≤ k ≤ n : Sk = 0}
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for small values of n. However, finding explicit expressions for these integrals does not
seem easy by this method. In fact, apparently, the law of max1≤k≤n |Sk| is not even known
explicitly.

Finally, the method can be easily extended to prove, for example, that
∫ 1

0

∫ 1

0

q4
Pn−1

j=0 b2T jxcb2T jyc−n dxdy =
(q3 + 3/q

4

)n

. (14)

Like Borel’s theorem, this equation has number theoretic consequences which are relevant
to the notion of independent sequences (see [20] for definitions). Equation (14) can be
extended to higher dimensions.
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Math. 20 (1967), 1–56.
[17] R. Nillsen, Normal numbers without measure theory, Amer. Math. Monthly 107 (2000), no. 7, 639–644.
[18] H. Rademacher, Einig Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87

(1922), 112–138.
[19] H. Rademacher, Zu dem Borelschen Satz über die asymptotische Verteilung der Ziffern Dez-
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