
ON THE COMPOSITIONAL INVERSE OF POLYLOGARITHMS

C. KRATTENTHALER AND T. RIVOAL

We define the polylogarithm (of order s) as

Lis(z) :=
∞∑

m=1

zm

ms

where s ≥ 2 is an integer and |z| < 1. Let ℓs(z) ∈ Q[[z]] denote its compositional inverse,
ie Lis(ℓs(z)) = z. For instance, we have

ℓ2(z) = z − 1

4
z2 +

1

72
z3 − 1

576
z4 − 31

86400
z5 − 149

1036800
z6 − 18037

304819200
x7 − · · · ,

ℓ3(z) = z− 1

8
z2− 5

864
z3− 31

13824
z4− 56039

62208000
z5− 628681

1492992000
z6− 800662417

3687093043200
z7−· · · .

The goal of this note is to prove the following result, where [zm](f) denotes the m-th Taylor
coefficient of a formal power series f ∈ C[[z]].

Theorem 1. As m → +∞, we have

[zm](ℓ2) ∼ − ζ(2)−m

m2 log(m)2

and, for every s ≥ 3,

[zm](ℓs) ∼ −
( ζ(s)

ζ(s− 1)

)s−1

· ζ(s)
−m

ms
.

The difference between both cases is due to the difference of position of the term (1 −
z) log(1− z) in the singular expansions (4) (for s = 2) and (7) (for s ≥ 3) of Lis(z) around
z = 1. For each integer s ≥ 2, the quotients [zm](ℓs)/[z

m+1](ℓs) form a sequence of rational
approximations to ζ(s), but they do not seem to be good enough to imply anything about
the arithmetic nature of ζ(s).

The rest of this note is devoted to the proof of Theorem 1. For ease of reading, we shall
set β(s) := 1/ζ(s) for all s ≥ 2.

We shall need the following fact (cf. [1, p. 745, Theorem B.1]):

1

2iπ

∫
Hankel

(−t)−se−t dt =
1

Γ(s)
=

sin(πs)

π
Γ(1− s).

Here “Hankel” is a countour that starts at ∞ below the real axis, turns around the origin
clockwise, and proceeds towards ∞ above the real axis. In particular, the above integral
vanishes whenever s is a non-positive integer. (This could also be derived from the fact
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that, in that case, the integrand has no singularity in the interior of the Hankel contour.)
As another corollary, by taking the derivative with respect to s on both sides, and then
letting s → −n, where n is a positive integer, we obtain

1

2iπ

∫
Hankel

(−t)n log(−t)e−t dt = (−1)n−1n! . (1)

By Lagrange’s inversion formula (cf. [1, p. 732, Theorem A.2]), we can express the m-th
Taylor coefficient of ℓs in the form

1

2iπm

∫
C

dz

Lis(z)m
, (2)

where C is a sufficiently small contour that encircles the origin once in positive (that is,
counter-clockwise) direction.

The case s = 2. We now deform C to the contour H(m) which consists of four parts. In
the precise description of this contour, we need the function f(m) defined as the (unique)
solution to

ζ(2)f(m)

m
= log(f(m)) + 1

between m and m2 (for large m). It should be observed (this is easily derived by boot-
strapping) that

f(m) = (1/ζ(2))m log(m) +O
(
m log(log(m))

)
(3)

for m → ∞. The precise description of the four parts of the contour then is

H(m) = H◦(m) ∪H+(m) ∪H−(m) ∪H∞(m),

where

H◦(m) = {z = 1− eiθ

f(m)
: θ ∈ [−π

2
, π
2
]},

H+(m) = {z = 1 + i
f(m)

+ w
f(m)

: 0 ≤ w ≤ log2(m)},

H−(m) = {z = 1− i
f(m)

+ w
f(m)

: 0 ≤ w ≤ log2(m)},

and whereH∞(m) connects the end points ofH+(m) andH−(m) (the points corresponding
to w = log2(m)) by a path that stays in the cut plane C\[1,+∞) in such a way that, along
this path, we have always |Li2(z)| ≥ |Li2(1)| + ε = ζ(2) + ε, for some ε > 0. Such a path
exists.

The contribution of H∞(m) is of the order of magnitude

O((ζ(2) + ε)−m) = o((1/ζ(2))mm−2),

and this will turn out to be negligible in comparison to the contributions of the other parts
of the contour.

The singular expansion of Li2(z) at z = 1 is given by

Li2(z) = ζ(2) + (1− z) log(1− z)− (1− z) + 1
2
(1− z)2 log(1− z) +O

(
(1− z)2

)
. (4)
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Hence,

Lim2 (z) = ζ(2)m exp
(
mβ(2)(1− z) log(1− z)−mβ(2)(1− z)

+O
(
m(1− z)2 log(1− z)

))
.

(We recall that β(2) := 1/ζ(2).) We substitute this in (2). Writing H̃(m) for H−(m) ∪
H◦(m) ∪H+(m), we obtain that the m-th Taylor coefficient of ℓ2(z) is given by

β(2)m

2iπm

∫
H̃(m)

exp
(
−mβ(2)(1− z) log(1− z) +m(β(2)(1− z)

+O
(
m(1− z)2 log(1− z)

))
dz + o

(
β(2)mm−3

)
As a next step we perform the substitution z = 1 + t

f(m)
. Taking into account (3), we

obtain

β(2)m

2iπmf(m)

∫
Ĥ(m)

exp
(
−t− 1

log(f(m))+1
(−t) log(−t) +O

(
m−1

))
dt+ o

(
β(2)mm−3

)
,

where Ĥ(m) is a Hankel contour around 0 restricted to ℜ(z) ≤ log2(m) (and the latter
condition is the only dependence on m). By expanding the exponential, this becomes

β(2)m

2iπmf(m)

∫
Ĥ(m)

e−t
(
1− 1

log(f(m))+1
(−t) log(−t) +O

(
(−t)2 log2(−t)
(log(f(m))+1)2

))
dt+ o

(
β(2)mm−3

)
=

β(2)m

2iπmf(m)

∫
Ĥ(m)

e−t dt− β(2)m

2iπmf(m)

∫
Ĥ(m)

e−t 1
log(f(m))+1

(−t) log(−t) dt

+
β(2)m

2iπm2 log3(m)

∫
Ĥ(m)

O
(
e−t(−t)2 log2(−t)

)
dt+ o

(
β(2)mm−3

)
, (5)

In the last expression, the integral∫
Ĥ(m)

O
(
e−t(−t)2 log2(−t)

)
dt

can be bounded as follows: we cut the Hankel contour into the part turning around the
origin, say the part with ℜ(t) ≤ 1, and the remaining two horizontal lines, for which we
have 1 ≤ ℜ(t) ≤ log2(m). The first part contributes a constant to the integral, while for
the latter parts we have log(−t) = O(t). Putting this together, we obtain∫

Ĥ(m)

O
(
e−t(−t)2 log2(−t)

)
dt = O(1) +

∫
Ĥ(m)

O
(
e−tt4

)
dt

= O(1) +

∫ ∞

0

O
(
e−tt4

)
dt

= O(1).



4

If we use this in (5), then we arrive at

β(2)m

2iπmf(m)

∫
Ĥ(m)

e−t dt− β(2)m

2iπmf(m)

∫
Ĥ(m)

e−t 1
log(f(m))+1

(−t) log(−t) dt

+ o
(
β(2)mm−2 log−3(m)

)
,

Now we may extend Ĥ(m) to a full Hankel contour around 0 at the cost of making a
negligible error. Thus, we obtain

β(2)m

2iπmf(m)

∫
Hankel

e−t dt− β(2)m

2iπmf(m)

∫
Hankel

e−t 1
log(f(m))+1

(−t) log(−t) dt

+ o
(
β(2)mm−2 log−3(m)

)
= 0− β(2)m

mf(m)(log(f(m)) + 1)
+ o

(
β(2)mm−2 log−3(m)

)
= − β(2)m

m2 log2(m)

(
1 + o

(
log(log(m))

log(m)

))
,

where we used (1), and again (3).

The case s ≥ 3. By Lagrange’s inversion formula again, we can express the m-th Taylor
coefficient of ℓs(z) in the form

1

2iπm

∫
C

dz

Lis(z)m
, (6)

where C is a sufficiently small contour that encircles the origin once in positive direction.
We now deform C to the contour H(m) which consists of four parts. To be precise,

H(m) = H◦(m) ∪H+(m) ∪H−(m) ∪H∞(m),

where

H◦(m) = {z = 1− eiθ

m
: θ ∈ [−π

2
, π
2
]},

H+(m) = {z = 1 + i
m
+ w

m
: 0 ≤ w ≤ log2(m)},

H−(m) = {z = 1− i
m
+ w

m
: 0 ≤ w ≤ log2(m)},

and whereH∞(m) connects the end points ofH+(m) andH−(m) (the points corresponding
to w = log2(m)) by a path that stays in the cut plane C\[1,+∞) in such a way that, along
this path, we have always |Lis(z)| ≥ |Lis(1)| + ε = ζ(s) + ε, for some ε > 0. Such a path
exists.

The contribution of H∞(m) is of the order of magnitude

O((ζ(s) + ε)−m) = o((1/ζ(s))mm−s),

and this will turn out to be negligible in comparison to the contributions of the other parts
of the contour.
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The singular expansion of Lis(z) at z = 1 is given by

Lis(z) = ζ(s)− ζ(s− 1)(1− z) + · · ·+ (−1)s

(s− 1)!
(1− z)s−1 log(1− z)

+O
(
(1− z)s−1

)
. (7)

Notice the presence in (7) of the term ζ(s − 1)(1 − z) which in (4) (for s = 2) becomes
(1 − z) log(1 − z) − (1 − z). This explain the different Hankel contours of integration for
s = 2 and s ≥ 3.

Hence,

Lis(z)
m = ζ(s)m exp

(
−m ζ(s−1)

ζ(s)
(1− z) + · · ·+m (−1)s

ζ(s) (s−1)!
(1− z)s−1 log(1− z)

+O
(
m(1− z)s−1

))
.

We substitute this in (6). Writing H̃(m) for H−(m)∪H◦(m)∪H+(m), we obtain that the
m-th Taylor coefficient of ℓs(z) is given by

β(s)m

2iπm

∫
H̃(m)

exp
(
m ζ(s−1)

ζ(s)
(1− z) + · · · −m (−1)s

ζ(s) (s−1)!
(1− z)s−1 log(1− z)

+O
(
m(1− z)s

))
dz + o

(
β(s)mm−s−1

)
.

(We recall that β(s) := 1/ζ(s).)

As a next step we perform the substitution z = 1 + ζ(s)
ζ(s−1)

t
m
. In this manner, we obtain

ζ(s)1−m

2iπζ(s− 1)m2

∫
Ĥ(m)

exp
(
− t+ · · · − 1

ms−2

(−1)s

(s−1)!
ζ(s)s−2

ζ(s−1)s−1 (−t)s−1 log(−t)

+O
(
m1−s

))
dt+ o

(
β(s)mm−s−1

)
,

where Ĥ(m) is a Hankel contour around 0 restricted to ℜ(z) ≤ O
(
log2(m)

)
(and the latter

condition is the only dependence on m). By expanding the exponential, this becomes

ζ(s)1−m

2iπm2

∫
Ĥ(m)

e−t
(
1 + c2

m
(−t)2 + · · · − 1

ms−2

(−1)s

(s−1)!
ζ(s)s−2

ζ(s−1)s−1 (−t)s−1 log(−t)

+O
(
m1−s

))
dt+ o

(
β(s)mm−s−1

)
=

ζ(s)1−m

2iπm2

∫
Ĥ(m)

e−t
(
1 + c2

m
(−t)2 + · · · − 1

ms−2

(−1)s

(s−1)!
ζ(s)s−2

ζ(s−1)s−1 (−t)s−1 log(−t)
)
dt

+O
(
β(s)mm−s−1 log2(m)

)
,

since the length of the truncated Hankel contour Ĥ(m) is of order of magnitudeO(log2(m)).

Now we may extend Ĥ(m) to a full Hankel contour around 0 at the cost of making a
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negligible error. Thus, we obtain

ζ(s)1−m

2iπm2

∫
Hankel

e−t
(
1 + c2

m
(−t)2 + · · · − 1

ms−2

(−1)s

(s−1)!
ζ(s)s−2

ζ(s−1)s−1 (−t)s−1 log(−t)
)
dt

+O
(
(1/ζ(s))mm−2 log−s−1(m) log2(m)

)
=

ζ(s)1−m

m2

(
0 + 0 + · · · − 1

ms−2

ζ(s)s−2

ζ(s−1)s−1

)
+O

(
β(s)mm−s−1 log2(m)

)
= − ζ(s)s−1

ζ(s− 1)s−1

β(s)m

ms

(
1 +O

(
log2(m)

m

))
,

where we used again (1). This completes the proof of Theorem 1.
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