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1 Introduction

In 1978, Apéry [2] proved the irrationality of ζ(3) by constructing two explicit sequences of
integers (un)n and (vn)n such that 0 6= unζ(3)− vn → 0 and un → +∞, both at geometric
rates. He also deduced from this an upper bound for the irrationality exponent µ(ζ(3)) of
ζ(3). In general, the irrationality exponent µ(ξ) of an irrational number ξ is defined as the
infimum of all real numbers µ such that the inequality

∣∣∣∣ξ −
p

q

∣∣∣∣ >
1

qµ

holds for all integers p, q, with q sufficiently large. It is well-known that µ(ξ) ≥ 2 for any
irrational number ξ and that it equals 2 for almost all irrational numbers. After Apéry,
the following lemma has often been used to bound µ(ξ) from above, for example for the
numbers log(2) and ζ(2). (Other lemmas can be used to bound the irrationality exponent
of numbers of a different nature, like exp(1).)

Lemma 1. Let ξ ∈ R \ Q, and α, β be real numbers such that 0 < α < 1 and β > 1.
Assume there exist integer sequences (un)n≥1 and (vn)n≥1 such that

lim
n→+∞

|unξ − vn|1/n = α and lim sup
n→+∞

|un|1/n ≤ β. (1.1)

Then we have µ(ξ) ≤ 1− log β
log α

.

The proof of Lemma 1 is not difficult. Many variants of this result exist; a slightly
more general version of Lemma 1 will be proved in §4.1. Another variant, proved in [6]
(Proposition 3.1), asserts that Lemma 1 holds when (1.1) is replaced with

lim sup
n→+∞

|un+1ξ − vn+1|
|unξ − vn| ≤ α and lim sup

n→+∞

un+1

un

≤ β.

In this text, we prove that Lemma 1 and these variants are best possible, by obtaining
a very precise converse result:
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Theorem 1. Let ξ ∈ R \ Q, and α, β be real numbers such that 0 < α < 1, β > 1 and
µ(ξ) < 1− log β

log α
. Then there exist integer sequences (un)n≥1 and (vn)n≥1 such that

lim
n→+∞

unξ − vn

αn
= lim

n→+∞
un

βn
= 1

and, consequently,

lim
n→+∞

|un+1ξ − vn+1|
|unξ − vn| = lim

n→+∞
|unξ − vn|1/n = α and lim

n→+∞
un+1

un

= lim
n→+∞

|un|1/n = β.

Theorem 1 answers completely all questions asked in [6], where the density exponent is
defined (see §3 below).

An essential feature of Lemma 1, and all its variants, is that the sequences (un) and
(unξ − vn) are assumed to have essentially geometrical behaviour. An assumption of this
kind is necessary, since the convergents of the continued fraction expansion of ξ (for in-
stance) always make up a sequence of approximants to ξ that are far more precise, but
they don’t have (in general) geometrical behaviour.

However, a geometrical behaviour is not necessary in Theorem 1, as the following
generalization shows.

Theorem 2. Let ξ ∈ R \ Q, and let (Qn) and (εn) be sequences of positive real numbers
with

lim
n→+∞

Qn = +∞, lim
n→+∞

εn = 0 and εn ≥ Q
− 1

µ−1
+o(1)

n ,

where µ is a real number such that µ > µ(ξ).
Then there exist integer sequences (un) and (vn) such that

lim
n→+∞

un

Qn

= lim
n→+∞

unξ − vn

εn

= 1.

The important point in this theorem is that our only assumption is that εn is not too
small, namely

lim sup
n→+∞

− log εn

log Qn

<
1

µ(ξ)− 1
.

Theorem 2 answers the questions asked in §8 of [6].

The structure of this text is as follows. In Section 2, we prove Theorem 2 (and therefore,
as a special case, Theorem 1). Then we recall (in §3) the definition [6] of the density
exponent, and deduce from Theorem 1 that it is always 0 or ∞. In §4 we prove a slight
generalization of Lemma 1 which enables us to prove a general statement (containing
Lemma 1, Theorem 1 and Theorem 2) consisting in the equality of several exponents of
Diophantine approximation.

2



Finally we partially generalize (in §4.3) this statement to the multivariate setting, where
we consider simultaneously several real numbers ξ0, . . . , ξr instead of just one ξ. We then
explain the connection between Lemma 1 and Nesterenko’s linear independence criterion
[10], used in particular in the proof ([3], [11]) that ζ(s) is irrational for infinitely many odd
integers s ≥ 3. This enables us to write down in a simple and elegant way the new proof
of Nesterenko’s criterion obtained in [7].

2 Proof of Theorem 2

The proof of Theorem 2 is based on the following lemma, which is proved inside the proof
of Lemma 7.3 of [6] (p. 39) and is the main step in the proof [6] that almost all ξ (with
respect to Lebesgue measure) have density exponent zero.

Lemma 2. Let c, c′, ε, Q be real numbers such that 1 < c < c′ < 2, 0 < ε < 1, and Q > 1.
Let ξ be an irrational number with 0 < ξ < 1. Then (at least) one of the following

assertions hold:

(i) There exist coprime integers u ≥ 1 and v ∈ {0, . . . , u} such that

u <
2c2

(c− 1)(c′ − c)

1

ε

and ∣∣∣ξ − v

u

∣∣∣ ≤ 2

c− 1

(
1 +

c2

c′ − c

)
1

uQ
.

(ii) There exist integers p and q such that

Q ≤ q ≤ cQ and
ε

q
≤ ξ − p

q
≤ c′ε

q
.

This lemma is interesting when ε is much bigger than 1/Q. It means that, unless ξ is
very close to a real number with denominator essentially bounded by 1/ε, it is possible to
find a fraction p/q (which may not be in its lowest terms) such that q has essentially the
size of Q, and qξ − p that of ε. The interesting part, in proving Theorem 2, is that we
obtain Q ≤ q ≤ cQ and ε ≤ qξ − p ≤ c′ε where c and c′ are constants that can be chosen
arbitrarily close to 1. A variant of this lemma, in which one obtains only Q ≤ q ≤ 2Q and
ε ≤ qξ − p ≤ 3ε, is proved in [5] (Lemma 5). The proof uses the same ideas as the one of
Lemma 2, but is fairly less complicated.

The proof [6] of Lemma 2 makes use of Farey fractions. We did not try to prove this
lemma using continued fractions.

Let us deduce Theorem 2 now.
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Proof. We may assume 0 < ξ < 1. Let (ηn) be a sequence of positive real numbers such

that limn→+∞ ηn = 0 and ηn = ε
o(1)
n . We let λn = 1 + ηn, µn = 1 + 2ηn, Q′

n = Qn√
λn

and

ε′n = εn√
µn

. For n sufficiently large, Lemma 2 applies with c = λn, c′ = µn, ε = ε′n, and

Q = Q′
n. If (i) holds in this lemma and n is sufficiently large, then we obtain integers un

and vn such that ∣∣∣ξ − vn

un

∣∣∣ ≤ 2

ηn

(
1 +

λ2
n

ηn

) 1

unQ′
n

≤ 20

η2
nunQn

and

un <
2λ2

n

η2
n

1

ε′n
≤ 16

η2
nεn

.

Since we have ηn = ε
o(1)
n and εn ≥ Q

− 1
µ−1

+o(1)
n , these inequalities yield

∣∣∣ξ − vn

un

∣∣∣ ≤ 20

η2
nunQn

≤ 1

un

(εnη
2
n

16

)µ−1+o(1)

≤ 1

u
µ+o(1)
n

which is possible only for finitely many values of n since µ > µ(ξ). Therefore, as soon as n
is sufficiently large, Assertion (ii) of Lemma 2 holds and provides integers pn and qn such
that

Qn√
λn

≤ qn ≤ Qn

√
λn and

εn√
µn

≤ qnξ − pn ≤ εn
√

µn.

This concludes the proof of Theorem 2.

3 Consequences for the density exponent

Let ξ ∈ R\Q. For any non-decreasing sequence u = (un)n of positive integers, let us define

αξ(u) := lim sup
n

|un+1ξ − vn+1|
|unξ − vn| , β(u) := lim sup

n

un+1

un

,

where vn is the nearest integer to unξ. We defined in [6] the density exponent ν(ξ) of ξ as
the infimum of the quantity log

√
αξ(u)β(u) when u ranges through the non-decreasing

sequences such that αξ(u) < 1 and β(u) < +∞ (with the convention ν(ξ) = +∞ if there
is no such u).

We proved in [6] that ν(ξ) = +∞ when ξ is a Liouville number, i.e., when µ(ξ) = +∞
(that is, when for any µ > 0, there exists a rational number p/q such that |ξ−p/q| < 1/qµ).
Theorem 2 implies the converse statement, in a more precise form:

Theorem 3. If ξ ∈ R \Q is not a Liouville number, then ν(ξ) = 0.

Indeed, we may choose in Theorem 1 values of α and β arbitrarily close to 1, so that
the product αβ is also arbitrarily close to 1. In a sense, this annihilates the interest of
ν(ξ), since it takes only two values (0 and +∞) and distinguishes only Liouville numbers
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from the other irrational numbers. However, the ideas of [6] are at the base of the results
presented in the present paper.

Let us precise here what we expected in [6]. In fact, we hoped to define a quantity that
would enable us to distinguish between periods (in the sense of [8]) and other numbers. In
particular, we computed upper bounds for ν(ξ), for many examples of ξ which are periods
(see also [1]). But we did not really take into account another property of the approxi-
mations used for this: they all satisfy a linear recursion of finite order with polynomial
coefficients of a special kind. Indeed, in all the examples of [6], the sequences (un)n as
well as (vn)n are such that the power series

∑
n≥0 unz

n and
∑

n≥0 vnzn are G-functions (1)
satisfying the same minimal differential equation. This is a very strong property that is not
satisfied (in general) by the sequences (un)n and (vn)n constructed (by means of Lemma 2)
to prove Theorem 1.

4 Exponents of Diophantine Approximation

In this section, we state the results of this paper in terms of exponents of Diophantine
approximation. This enables us to explain the connection with Nesterenko’s linear inde-
pendence criterion [10] (and especially its new proof given in [7]), and ask some questions
about multivariate generalizations of our results.

4.1 A generalization of Lemma 1

We start with a generalization of the usual Lemma 1. We do not write down the proof
of this Proposition because it is a special case of the upper bound τr(ξ) ≤ 1

ω0(ξ)
proved in

Theorem 5 below (see §4.3).

Proposition 1. Let ξ ∈ R \Q and τ > 0. Assume there exist integer sequences (un) and
(vn) with un 6= 0 for any n, and

unξ − vn → 0, |un+1ξ − vn+1| = |unξ − vn|1+o(1), and |unξ − vn| ≤ |un|−τ+o(1).

Then we have µ(ξ) ≤ 1 + 1
τ
.

4.2 The univariate case

Let ξ be an irrational real number. Let us consider the following sets (in the definition of
which we denote by o(1) any sequence that tends to 0 as n tends to infinity):

• T (ξ) is the set of all τ > 0 for which there exist integer sequences (un) and (vn) with
un 6= 0 for any n, and

unξ−vn → 0, |un+1ξ−vn+1| = |unξ−vn|1+o(1), and |unξ−vn| ≤ |un|−τ+o(1).

1A power series
∑

n≥0 anzn ∈ Q[[z]] is a G-function when: 1) it satisfies a linear differential equation,
2) it has a finite positive radius of convergence, 3) the least commun multiple of the denominators of
a0, a1, . . . , an is bounded by Cn for some C > 0.
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• T ′(ξ) is the set of all τ > 0 for which there exist integer sequences (un) and (vn),
and 0 < α < 1 < β, with

|unξ − vn|1/n → α, lim sup
n→+∞

|un|1/n ≤ β, and τ =
− log α

log β
.

• T ′′(ξ) is the set of all τ > 0 such that, for any increasing sequence (Qn) of positive
integers there exist integer sequences (un) and (vn) with

|un| ≤ Q1+o(1)
n and |unξ − vn| = Q−τ+o(1)

n .

• T ′′′(ξ) is the set of all τ > 0 such that, for any sequences (Qn) and (εn) of positive
real numbers with

lim
n→+∞

Qn = +∞, lim
n→+∞

εn = 0 and εn ≥ Q−τ+o(1)
n ,

there exist integer sequences (un) and (vn) with

lim
n→+∞

un

Qn

= lim
n→+∞

unξ − vn

εn

= 1.

Theorem 4 below shows that τ ≤ 1 for any τ in T (ξ) (resp. T ′(ξ), T ′′(ξ), T ′′′(ξ)).
We let

τ(ξ) = sup T (ξ),

and in the same way τ ′(ξ) = sup T ′(ξ), τ ′′(ξ) = sup T ′′(ξ), τ ′′′(ξ) = sup T ′′′(ξ), with the
convention sup ∅ = 0, so that each of τ(ξ), τ ′(ξ), τ ′′(ξ), τ ′′′(ξ) belongs to [0, 1].

If we have 0 < τ < τ ′ and τ ′ ∈ T (ξ), then τ ∈ T (ξ) so that T (ξ) is ∅, (0, τ(ξ)] or
(0, τ(ξ)). The same holds for T ′(ξ), T ′′(ξ), T ′′′(ξ).

Moreover the inclusions T ′′′(ξ) ⊂ T ′′(ξ) ⊂ T ′(ξ) ⊂ T (ξ) hold trivially, so that we have

τ ′′′(ξ) ≤ τ ′′(ξ) ≤ τ ′(ξ) ≤ τ(ξ). (4.1)

The main result of this section is the following equality, which summarizes Lemma 1,
Theorem 1 and Theorem 2.

Theorem 4. For any ξ ∈ R \Q we have

τ ′′′(ξ) = τ ′′(ξ) = τ ′(ξ) = τ(ξ) =
1

µ(ξ)− 1
∈ [0, 1].

In particular the following assertions are equivalent: τ ′′′(ξ) = 0; τ ′′(ξ) = 0; τ ′(ξ) = 0;
τ(ξ) = 0; ξ is a Liouville number.
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As a corollary, we have τ ′′′(ξ) = τ ′′(ξ) = τ ′(ξ) = τ(ξ) = 1 for almost all ξ with respect
to Lebesgue measure.

Proof: Since 2 ≤ µ(ξ) ≤ +∞ for any ξ ∈ R \Q, we have 1
µ(ξ)−1

∈ [0, 1].

For any τ ∈ T (ξ), Proposition 1 yields µ(ξ) ≤ 1 + 1
τ
, that is τ ≤ 1

µ(ξ)−1
. If T (ξ) 6= ∅

this gives µ(ξ) < ∞ and τ(ξ) ≤ 1
µ(ξ)−1

; this upper bound holds trivially if T (ξ) = ∅.
Thanks to Eq. (4.1), we just have to prove that 1

µ(ξ)−1
≤ τ ′′′(ξ) in order to conclude the

proof of Theorem 4. This is trivial if µ(ξ) = +∞. Otherwise, for any µ > µ(ξ), Theorem
2 gives 1

µ−1
∈ T ′′′(ξ) so that 1

µ(ξ)−1
≤ τ ′′′(ξ). This concludes the proof of Theorem 4.

4.3 The multivariate case

Let ξ0, . . . , ξr be real numbers, with r ≥ 1. Throughout this section we assume

dimQ SpanQ(ξ0, . . . , ξr) ≥ 2

so that non-vanishing linear forms in ξ0, . . . , ξr with integer coefficients can be arbitrarily
small. We consider linear forms L = `0X0 + . . . + `rXr with integer coefficients `i, and
we let H(L) = max0≤i≤r |`i| and L(ξ) = `0ξ0 + . . . + `rξr, where ξ stands for the point
(ξ0, . . . , ξr) in Rr+1.

Let us define the following sets:

• Tr(ξ) is the set of all τ > 0 for which there exists a sequence (Ln) of linear forms
with Ln(ξ) 6= 0 for any n, and

Ln(ξ) → 0, |Ln+1(ξ)| = |Ln(ξ)|1+o(1), and |Ln(ξ)| ≤ H(Ln)−τ+o(1).

• T ′
r (ξ) is the set of all τ > 0 for which there exists a sequence (Ln) of linear forms,

and 0 < α < 1 < β, with

|Ln(ξ)|1/n → α, lim sup
n→+∞

H(Ln)1/n ≤ β, and τ =
− log α

log β
.

• T ′′
r (ξ) is the set of all τ > 0 such that, for any increasing sequence (Qn) of positive

integers, there exists a sequence (Ln) of linear forms with

H(Ln) ≤ Q1+o(1)
n and |Ln(ξ)| = Q−τ+o(1)

n .

• T ′′′
r (ξ) is the set of all τ > 0 such that, for any sequences (Qn) and (εn) of positive

real numbers with

lim
n→+∞

Qn = +∞, lim
n→+∞

εn = 0 and εn ≥ Q−τ+o(1)
n ,

there exists a sequence (Ln) of linear forms with

lim
n→+∞

H(Ln)

Qn

= lim
n→+∞

Ln(ξ)

εn

= 1.
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Theorem 5 below shows that τ ≤ s for any τ in Tr(ξ), with s = dimQ SpanQ(ξ0, . . . , ξr)− 1
(and the same holds for T ′

r (ξ), T ′′
r (ξ) and T ′′′

r (ξ)).
We let

τr(ξ) = sup Tr(ξ),

and in the same way τ ′r(ξ) = sup T ′
r (ξ), τ ′′r (ξ) = sup T ′′

r (ξ), τ ′′′r (ξ) = sup T ′′′
r (ξ), with the

convention sup ∅ = 0, so that each of τr(ξ), τ ′r(ξ), τ ′′r (ξ), τ ′′′r (ξ) belongs to [0, s].
If we have 0 < τ < τ ′ and τ ′ ∈ Tr(ξ), then τ ∈ Tr(ξ) so that Tr(ξ) is ∅, (0, τr(ξ)] or

(0, τr(ξ)). The same holds for T ′
r (ξ), T ′′

r (ξ), T ′′′
r (ξ).

Moreover the inclusions T ′′′
r (ξ) ⊂ T ′′

r (ξ) ⊂ T ′
r (ξ) ⊂ Tr(ξ) hold trivially, so that we have

τ ′′′r (ξ) ≤ τ ′′r (ξ) ≤ τ ′r(ξ) ≤ τr(ξ). (4.2)

Let ω0(ξ) be the supremum of the set of all ω > 0 such that there exists infinitely many
tuples (q0, . . . , qr) ∈ Zr+1 with

|qiξj − qjξi| ≤ max(|q0|, . . . , |qr|)−ω for any 1 ≤ i < j ≤ r. (4.3)

Up to renumbering ξ0, . . . , ξr, we may assume ξ0 6= 0 and in this case we can replace (4.3)
with ∣∣∣ξj

ξ0

− qj

q0

∣∣∣ ≤ |q0|−ω−1 for any i ∈ {1, . . . , r} (4.4)

so that ω0(ξ) measure the quality of simultaneous approximations to (ξ1/ξ0, . . . , ξr/ξ0) by
rational numbers with the same denominator.

When r = 1 and ξ0 6= 0, we have τ1(ξ0, ξ1) = τ(ξ1/ξ0) (and the analogous equalities for
τ ′1(ξ0, ξ1), τ ′′1 (ξ0, ξ1) and τ ′′′1 (ξ0, ξ1)), and ω0(ξ0, ξ1) = µ(ξ1/ξ0) − 1. This explains why the
following result is a partial generalization of Theorem 4:

Theorem 5. Let ξ0, . . . , ξr ∈ R, with r ≥ 1. Then we have

τ ′′′r (ξ) ≤ τ ′′r (ξ) ≤ τ ′r(ξ) ≤ τr(ξ) ≤ 1

ω0(ξ)
≤ s,

under the assumption that s = dimQ SpanQ(ξ0, . . . , ξr)− 1 is positive.

In the rest of this section, we prove this theorem and make some comments. The upper
bounds τ ′′′r (ξ) ≤ τ ′′r (ξ) ≤ τ ′r(ξ) ≤ τr(ξ) hold trivially, and have been observed before in
Eq. (4.2).

Let us prove that τr(ξ) ≤ 1
ω0(ξ)

. As above, we may assume that ξ0 = 1. If τr(ξ) = 0,

this result is trivial. Otherwise, let 0 < τ < τr(ξ) and 0 < ω < ω0(ξ) (where ω0(ξ) could
be +∞). Let (Ln) be a sequence of linear forms such that Ln(ξ) 6= 0 for any n, and

Ln(ξ) → 0, |Ln+1(ξ)| = |Ln(ξ)|1+o(1), and |Ln(ξ)| ≤ H(Ln)−τ+o(1). (4.5)

8



There exists integers q0, . . . , qr, with |q0| arbitrarily large, such that (4.4) holds. Let n be
the least positive integer such that |q0Ln(ξ)| ≤ 1/2. Taking |q0| sufficiently large ensure
that n can be made arbitrarily large; we denote by o(1) any sequence that tends to 0 as n
tends to infinity, so that o(1) can be made arbitrarily small.

By minimality of n we have 1/2 < |q0||Ln+1(ξ)| = |q0||Ln(ξ)|1+o(1) so that

|q0| = |Ln(ξ)|−1+o(1). (4.6)

Now we have (since ξ0 = 1)

Ln(q0, . . . , qr) = q0Ln(ξ) + Ln(0, q1 − q0ξ1, . . . , qr − q0ξr).

In the right handside, the first term has absolute value less than or equal to 1/2, by
choice of n. If the second term has absolute value less than the first one, then the integer
Ln(q0, . . . , qr) has absolute value less than 1 so that it vanishes, and both terms in the right
handside have the same absolute value, thereby contradicting the assumption.

So we have, using also (4.6), (4.5) and (4.4):

|Ln(ξ)|o(1) = |q0Ln(ξ)| ≤ |Ln(0, q1 − q0ξ1, . . . , qr − q0ξr)|
≤ rH(Ln) max

1≤i≤r
|qi − q0ξi|

≤ |Ln(ξ)|− 1
τ
+o(1)|q0|−ω = |Ln(ξ)|ω− 1

τ
+o(1).

Since limn→+∞ |Ln(ξ)| = 0 and n can be chosen arbitrarily large, this implies ω ≤ 1
τ
,

thereby concluding the proof that τr(ξ) ≤ 1
ω0(ξ)

.

Let us prove that 1
ω0(ξ)

≤ s, that is ω0(ξ) ≥ 1/s. Renumbering ξ0, . . . , ξr if necessary,
we may assume that ξ0, . . . , ξs are linearly independent over the rationals; then ξs+1,
. . . , ξr are linear combinations over Q of these numbers, and it is easy to check that
ω0(ξ0, . . . , ξr) = ω0(ξ0, . . . , ξs). Now the lower bound ω0(ξ0, . . . , ξs) ≥ 1/s is a classical
consequence of Dirichlet’s pigeonhole principle, as follows. For any positive integer Q,
consider the Qs + 1 points ({q0ξ1/ξ0}, . . . , {q0ξs/ξ0}) ∈ [0, 1)s, for 0 ≤ q0 ≤ Qs (here
{x} denotes the fractional part of a real number x), and the Qs cubes Ci1,...,is defined, for
0 ≤ i1, . . . , is < Q, by the inequalities i1

Q
≤ x1 < i1+1

Q
, . . . , is

Q
≤ xs < is+1

Q
. At least two

of these points, given (say) by q′0 and q′′0 , lie in the same cube. Letting q0 = |q′0 − q′′0 |
and denoting by qj the nearest integer to q0ξj/ξ0 for j ∈ {1, . . . , s}, we obtain (4.4) with
ω = 1/s. Since a given tuple (q0, . . . , qs) is obtained in this way from only finitely many
integers Q (because ξ0, . . . , ξs are Q-linearly independent), we obtain infinitely many tuples
satisfying (4.4) so that ω0(ξ0, . . . , ξr) = ω0(ξ0, . . . , ξs) ≥ 1/s. This concludes the proof of
Theorem 5.

A consequence of Theorem 5 is the inequality τr(ξ) ≤ s, which amounts to the following
statement, known as Nesterenko’s linear independence criterion [10]:
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Assume there exists a sequence (Ln) of linear forms with Ln(ξ) 6= 0 for any n and

Ln(ξ) → 0, |Ln+1(ξ)| = |Ln(ξ)|1+o(1), and |Ln(ξ)| ≤ H(Ln)−τ+o(1)

for some τ > 0. Then we have

dimQ SpanQ(ξ0, . . . , ξr) ≥ τ + 1.

The above arguments provide a simple proof of this criterion, based on Dirichlet’s box
principle and the upper bound τr(ξ) ≤ 1

ω0(ξ)
(which is also proved, essentially in the same

way, as the first step in Nesterenko’s inductive proof [10]). This proof is essentially a special
case of the one of [7].

In the one-dimensional case, the upper bound τr(ξ) ≤ 1
ω0(ξ)

corresponds to Proposi-

tion 1, while 1
ω0(ξ)

≤ s simply means µ(ξ) ≥ 2 (and one way to prove this fact is to use

Dirichlet’s box principle like in the multivariate setting).

It would be very interesting to investigate on Theorem 5, for instance to know for which
real numbers ξ equality holds (as in the univariate case of Theorem 4). Is it the case for
almost all ξ with respect to Lebesgue measure ? It is well known that 1

ω0(ξ)
= s = r for

almost all ξ.

Another question worth studying is the connection between τr(ξ), τ ′r(ξ), τ ′′r (ξ), τ ′′′r (ξ),
and the exponent ωk(ξ) that measure the distance of ξ = (ξ0, . . . , ξr) to subspaces of
dimension k + 1 of Rr+1 defined over Q, for k < s (see [12], [9], [4] and [10]).
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[2] R. Apéry – “Irrationalité de ζ(2) et ζ(3)”, in: Journées Arithmétiques (Luminy, 1978),
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