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G-functions

We fix an embedding of Q into C.

Definition 1
A (formal) power series F(z) =" -, anz" € C[[z]] is a G-function if
there exists C > 0 such that B

(i) a, € Q for all n > 0.

(ii) The maximum of the moduli of the algebraic conjuguates of a, is
bounded by C"*1.

(iii) There exist D, € Z such that Dpa; is an algebraic integer for all
j<nand|D,| <C"*

(iv) F is holonomic over Q(z), i.e., F satisfies a homogeneous linear
differential equation with coefficients in Q(z).



Examples

o Algebraic functions over Q(z), holomorphic at z = 0, like

om0

This is a consequence of Eisenstein’s theorem.

e Hypergeometric series

Z (a1)n -+~ (ap)n "
(1)”(b1)n"'(bp71)n

n>0

where (X)m :==x(x+1)---(x+m—1), p>1and a;, b; € Q.
In particular,

n

—log(1-2) =Y % Lis(z) =Y % (s € 7).

n>1 n>1



e “Periods”, i.e. solutions of Picard-Fuchs differential equations. Grosso
modo, these are functions defined as integrals of algebraic forms over
cycles in families of algebraic varieties over Q.

A famous conjecture of Bombieri and Dwork predicts that G-functions
should coincide with periods (in a suitable sense). André proved that
periods “are” G-functions.

Non-examples

e E-functions, like

e antiE-functions, like

E nlz".

n>0
e Mahler type-functions, like

522.

n>0



Properties of G-functions

e The set of G-functions is a ring (for the usual addition and Cauchy
product of series), stable by differentiation, integration and Hadamard
product.

e André: the units of the ring of G-functions are exactly the holomorphic
algebraic functions that do not vanish at z = 0.

e A G-function can be analytically continued to C, minus a finite number
of cuts.

Much more is true.



André-Chudnovski-Katz Theorem

Given a G-function F(z), consider the minimal linear differential equation
Ly = 0 of order p and with coefficients in Q(z), of which F(z) is a
solution. Let &, ...,&, denote the singularities of L at finite distance.
Then,

o L is globally fuchsian, with rational exponents at each &; and at oco.

e For all § € C minus (fixed) cuts with the ¢s for origin (but § = ¢ is
ok), L has a local basis of solutions Gi(z), ..., G,(z) at z = £ such that,
forany k=1,...,p4,

Gi(z) = Z Z log(z — £)°(z — &) Fs.e.k(z — €)

SES, te Ty

where
Sk C N and T, C Q are finite, and if £ # &, Sk = T = {0}.
Fs.+ k(z) are G-functions.

o If £ = 00, the same result holds provided we replace z — ¢ by 1/z
everywhere.



Diophantine motivation

o Apéry proved that ((3) ¢ Q by constructing two sequences a, and b,
such that
a, €7, lem(1,2,...,n)%b, € 7Z

0#lem(1,2,...,n)*(anC(3) — b,) — 0.

Beukers and Dwork observed that }° ., a,z" and ) -, b,z" are
G-functions (not with the same minimal equation).

e |t is a difficult problem to find interesting real numbers that can be
proved irrational by Apéry’'s method.

Can we at least say what “interesting” means?

Can we characterise the real numbers £ such that there exist p, € Q and

gn € Q such that

&Hg
an

and ano pnz", ano gnz" are G-functions?



G-values

With Stéphane Fischler, On the values of G-functions, to appear.

Definition 2
The set G of G-values is defined as the set of all values taken by any
analytic continuation of any G-function at any algebraic point.

G is a countable set.

There is currently no known algorithm to decide whether a number is in
G or not.

Theorem 1
A number { is in G iff ¢ = F(1) where

(i) F is a G-function with coefficients in Q(i).

(ii) The radius of convergence of F can be as large as a priori wished.

Given £ € G, it seems difficult to describe explicitly F from our proof.



Theorem 1 for Q@ and log(Q")

Let « € Q, Q(X) € Q[X] such that « is a simple root of Q. Let
u € Q(7) such that Q'(u) # 0. Consider

Ou2) = ut ) (1) Q(nu!)n ' aaxn:l ((o(xx) = ua(u))n)xu i

Then
(i) ®,(2) is algebraic over Q(z), with coefficients in Q(/):
Q(®u(2)) = (1 - 2)Q(u).

(i) For any R > 1, we can choose u close enough to a such that the
radius of convergence of ¢, is > R and ¢,(1) = a.

e Proof based on Lagrange's inversion formula.
e Similarly, we have explicit G-functions F as in Theorem 1 such that

F(1) = log(a) for any non-zero algebraic number and any prescribed
branch of the logarithm.



From Theorem 1, we deduce

Corollary 1
G is a subring of C.

G is presumably not a field.

Proposition 1

The group of units of G contains Q" and the values B(a,b), a,b € Q,
where

provided B(a, b) is defined and non-zero.

The numbers T(a/b)?, a/b e Q\ {0,—1,-2,...}, are units.

For instance, 7 = '(1/2)? is a unit. Proof:

A=) 42n+5()
7T_nz>;)2n+1’ E‘Z p1nte

n>0




e The proof of Theorem 1 is long and technically complicated.

The ACK theorem is crucial.

We also use the fact that the theorem holds for algebraic numbers and
logarithms of algebraic numbers (previous slide).

e We need the following result, of independent interest.

Theorem 2

Let F(z) be a G-function solution of the minimal differential equation
Ly = 0. For any given { € CU {oo} (minus cuts), let Gi(z),...,G.(z)
be a basis of local solutions of Ly = 0 around z = £. We have

F(z) =) wiGi(2)
k=1

for any z in the (multi)cut plane.

Then for all k, the connection constants wy € G.



Answer to the characterisation question

Theorem 3
Let £ € R*. The following statements are equivalent.

(i) There exist two sequences of rational numbers a, and b, such that
> 032", D 2,50 baz" are G-functions, with b, # 0 for all n>>1 and

an

b—n—>§.

(i) € € Frac(G) NR = Frac(G NR) = interesting numbers.

(iii) For any given R > 1, there exist two G-functions A(z) = <o anz"
and B(z) =Y ,~o bnz", with a,, b, € Q, both with radius of
convergence 1, and such that A(z) — £€B(z) has radius of convergence

p > R. In particular,

an — by& =0(p™").

The proof uses Theorems 1-2 and Singularity Analysis a la
Flajolet-Sedgewick.



Moral consequences of Theorem 3
e It is believed that Euler's constant v = lim, Y>_,_; + — log(n) is
irrational. Why? Because if v = p/q € Q with (p, g) = 1, then

|q| > 10242080.
It is also believed that v € G. Why? Because Euler and Ramanujan
would have found various formulas proving this fact.
It is also plausible that v is not even in Frac(G).

Then Theorem 3 rules out the possibility to prove the irrationality of v a
la Apéry, i.e., with sequences generated by G-functions.

e Aptekarev has showed the existence of sequences of rational numbers
pn and g, such that p,/q, — ~ and such that > ., pnz", >, qnz" are
holonomic functions.

But these series are not G-functions.

e Similar considerations apply to the number exp(1), except of course
that we already know that it is irrational.



Proof of Proposition 1
e For x,y e @n(0,1],

B(x,y) = /01 Y1 -ty e = /01 > (1) (y; 1) e

n>0

e Extension to suitable x, y € Q by means of

X+y X+y
B(x,y) = TB(X+ Ly), B(x,y) = TB(X,y+ 1).

e For suitable x,y € Q,

1 sin(mx)sin(my) 1—x—y
- : B(1-x,1—
B(x,y) sinm(x + y) T (1=x1-y)

hence 1/B(x,y) € G.

o Finally, [(a/b)> = (a) ]}, B(a/b,ja/b) is a unit of G.



Sketch of proof of Theorem 2

o We start from the relation

F

(2)= > w6(2)

that we assume to hold in an neighborhood V' containing & (maybe on its
boundary) where the power series for F(z) and those in the expressions

of the G; (given by the ACK Theorem) are absolutely convergent.

e Forany k=0,...,u—1,

F(k)

Hence, for any z € V,

Gi(2)

1| &)

T WE) |
G V(z)

(2) =D w6 (2).
j=1

G-1(z)  F(2)  Gu(2)
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Here,

i) %)
W) Gl.(z> Gu:(z)
"z - 6 ()

is a wronskien of the differential equation L.

e We can choose 3 € V NQ such that all the values F(K)(p), Gj(k)(ﬂ) are
in G.

This is clear for F(K)(3).

For Gj(k)(ﬁ), we use the ACK Theorem around z = &, as well as the fact
that algebraic numbers and logarithms of algebraic numbers are in G.

e Since L has only algebraic singularities with rational exponents, W(z
is an algebraic function over Q(z). We can also assume that W(3) # 0.

Hence 1/W(pB) € G.

o In the formula for w; as a quotient of the two determinants, we set
z = f3 and the above arguments prove that w; € G.



