Values of G-functions

Tanguy Rivoal
 CNRS et Université Grenoble 1

Joint work with Stéphane Fischler (Université Paris-Sud)

G-functions

We fix an embedding of $\overline{\mathbb{Q}}$ into \mathbb{C}.
Definition 1
A (formal) power series $F(z)=\sum_{n \geq 0} a_{n} z^{n} \in \mathbb{C}[[z]]$ is a G-function if there exists $C>0$ such that
(i) $a_{n} \in \overline{\mathbb{Q}}$ for all $n \geq 0$.
(ii) The maximum of the moduli of the algebraic conjuguates of a_{n} is bounded by C^{n+1}.
(iii) There exist $D_{n} \in \mathbb{Z}$ such that $D_{n} a_{j}$ is an algebraic integer for all $j \leq n$ and $\left|D_{n}\right| \leq C^{n+1}$.
(iv) F is holonomic over $\overline{\mathbb{Q}}(z)$, i.e., F satisfies a homogeneous linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.

Examples

- Algebraic functions over $\overline{\mathbb{Q}}(z)$, holomorphic at $z=0$, like

$$
f(z)=\frac{1}{\sqrt{1-4 z}}=\sum_{n \geq 0}\binom{2 n}{n} z^{n}
$$

This is a consequence of Eisenstein's theorem.

- Hypergeometric series

$$
\sum_{n \geq 0} \frac{\left(a_{1}\right)_{n} \cdots\left(a_{p}\right)_{n}}{(1)_{n}\left(b_{1}\right)_{n} \cdots\left(b_{p-1}\right)_{n}} z^{n}
$$

where $(x)_{m}:=x(x+1) \cdots(x+m-1), p \geq 1$ and $a_{j}, b_{j} \in \mathbb{Q}$. In particular,

$$
-\log (1-z)=\sum_{n \geq 1} \frac{z^{n}}{n}, \quad \operatorname{Li}_{s}(z)=\sum_{n \geq 1} \frac{z^{n}}{n^{s}} \quad(s \in \mathbb{Z})
$$

- "Periods", i.e. solutions of Picard-Fuchs differential equations. Grosso modo, these are functions defined as integrals of algebraic forms over cycles in families of algebraic varieties over $\overline{\mathbb{Q}}$.

A famous conjecture of Bombieri and Dwork predicts that G-functions should coincide with periods (in a suitable sense). André proved that periods "are" G-functions.

Non-examples

- E-functions, like

$$
\exp (z)=\sum_{n \geq 0} \frac{z^{n}}{n!}
$$

- antiE-functions, like

$$
\sum_{n \geq 0} n!z^{n} .
$$

- Mahler type-functions, like

$$
\sum_{n \geq 0} z^{2^{n}}
$$

Properties of G-functions

- The set of G-functions is a ring (for the usual addition and Cauchy product of series), stable by differentiation, integration and Hadamard product.
- André: the units of the ring of G-functions are exactly the holomorphic algebraic functions that do not vanish at $z=0$.
- A G-function can be analytically continued to \mathbb{C}, minus a finite number of cuts.

Much more is true.

André-Chudnovski-Katz Theorem

Given a G-function $F(z)$, consider the minimal linear differential equation $L y=0$ of order μ and with coefficients in $\overline{\mathbb{Q}}(z)$, of which $F(z)$ is a solution. Let ξ_{1}, \ldots, ξ_{p} denote the singularities of L at finite distance. Then,

- L is globally fuchsian, with rational exponents at each ξ_{j} and at ∞.
- For all $\xi \in \mathbb{C}$ minus (fixed) cuts with the $\xi_{j}^{\prime} s$ for origin (but $\xi=\xi_{j}$ is ok), L has a local basis of solutions $G_{1}(z), \ldots, G_{\mu}(z)$ at $z=\xi$ such that, for any $k=1, \ldots, \mu$,

$$
G_{k}(z)=\sum_{s \in S_{k}} \sum_{t \in T_{k}} \log (z-\xi)^{s}(z-\xi)^{t} F_{s, t, k}(z-\xi)
$$

where
$S_{k} \subset \mathbb{N}$ and $T_{k} \subset \mathbb{Q}$ are finite, and if $\xi \neq \xi_{k}, S_{k}=T_{k}=\{0\}$.
$F_{s, t, k}(z)$ are G-functions.

- If $\xi=\infty$, the same result holds provided we replace $z-\xi$ by $1 / z$ everywhere.

Diophantine motivation

- Apéry proved that $\zeta(3) \notin \mathbb{Q}$ by constructing two sequences a_{n} and b_{n} such that

$$
\begin{gathered}
a_{n} \in \mathbb{Z}, \quad \operatorname{Icm}(1,2, \ldots, n)^{3} b_{n} \in \mathbb{Z} \\
0 \neq \operatorname{Icm}(1,2, \ldots, n)^{3}\left(a_{n} \zeta(3)-b_{n}\right) \longrightarrow 0
\end{gathered}
$$

Beukers and Dwork observed that $\sum_{n \geq 0} a_{n} z^{n}$ and $\sum_{n \geq 0} b_{n} z^{n}$ are G-functions (not with the same minimal equation).

- It is a difficult problem to find interesting real numbers that can be proved irrational by Apéry's method.

Can we at least say what "interesting" means?
Can we characterise the real numbers ξ such that there exist $p_{n} \in \mathbb{Q}$ and $q_{n} \in \mathbb{Q}$ such that

$$
\frac{p_{n}}{q_{n}} \longrightarrow \xi
$$

and $\sum_{n \geq 0} p_{n} z^{n}, \sum_{n \geq 0} q_{n} z^{n}$ are G-functions?

G-values

With Stéphane Fischler, On the values of G-functions, to appear.
Definition 2
The set \mathbb{G} of G-values is defined as the set of all values taken by any analytic continuation of any G-function at any algebraic point.
\mathbb{G} is a countable set.
There is currently no known algorithm to decide whether a number is in \mathbb{G} or not.

Theorem 1
A number ξ is in \mathbb{G} iff $\xi=F(1)$ where
(i) F is a G-function with coefficients in $\mathbb{Q}(i)$.
(ii) The radius of convergence of F can be as large as a priori wished.

Given $\xi \in \mathbb{G}$, it seems difficult to describe explicitly F from our proof.

Theorem 1 for $\overline{\mathbb{Q}}$ and $\log \left(\overline{\mathbb{Q}}^{*}\right)$

Let $\alpha \in \overline{\mathbb{Q}}, Q(X) \in \mathbb{Q}[X]$ such that α is a simple root of Q. Let $u \in \mathbb{Q}(i)$ such that $Q^{\prime}(u) \neq 0$. Consider

$$
\Phi_{u}(z):=u+\sum_{n \geq 1}(-1)^{n} \frac{Q(u)^{n}}{n!} \cdot \frac{\partial^{n-1}}{\partial x^{n-1}}\left(\left(\frac{x-u}{Q(x)-Q(u)}\right)^{n}\right)_{x=u} z^{n} .
$$

Then
(i) $\Phi_{u}(z)$ is algebraic over $\overline{\mathbb{Q}}(z)$, with coefficients in $\mathbb{Q}(i)$:

$$
Q\left(\Phi_{u}(z)\right)=(1-z) Q(u) .
$$

(ii) For any $R>1$, we can choose u close enough to α such that the radius of convergence of Φ_{u} is $\geq R$ and $\Phi_{u}(1)=\alpha$.

- Proof based on Lagrange's inversion formula.
- Similarly, we have explicit G-functions F as in Theorem 1 such that $F(1)=\log (\alpha)$ for any non-zero algebraic number and any prescribed branch of the logarithm.

From Theorem 1, we deduce
Corollary 1
\mathbb{G} is a subring of \mathbb{C}.
\mathbb{G} is presumably not a field.

Proposition 1

The group of units of \mathbb{G} contains $\overline{\mathbb{Q}}^{*}$ and the values $B(a, b), a, b \in \mathbb{Q}$, where

$$
B(x, y):=\int_{0}^{1} t^{x-1}(1-t)^{y-1} \mathrm{~d} t=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)},
$$

provided $B(a, b)$ is defined and non-zero.
The numbers $\Gamma(a / b)^{b}, a / b \in \mathbb{Q} \backslash\{0,-1,-2, \ldots\}$, are units.
For instance, $\pi=\Gamma(1 / 2)^{2}$ is a unit. Proof:

$$
\pi=\sum_{n \geq 0} \frac{4(-1)^{n}}{2 n+1}, \quad \frac{1}{\pi}=\sum_{n \geq 0} \frac{(42 n+5)\binom{2 n}{n}^{3}}{2^{12 n+4}} .
$$

- The proof of Theorem 1 is long and technically complicated.

The ACK theorem is crucial.
We also use the fact that the theorem holds for algebraic numbers and logarithms of algebraic numbers (previous slide).

- We need the following result, of independent interest.

Theorem 2
Let $F(z)$ be a G-function solution of the minimal differential equation $L y=0$. For any given $\xi \in \mathbb{C} \cup\{\infty\}$ (minus cuts), let $G_{1}(z), \ldots, G_{\mu}(z)$ be a basis of local solutions of $L y=0$ around $z=\xi$. We have

$$
F(z)=\sum_{k=1}^{\mu} \omega_{k} G_{k}(z)
$$

for any z in the (multi)cut plane.
Then for all k, the connection constants $\omega_{k} \in \mathbb{G}$.

Answer to the characterisation question

Theorem 3
Let $\xi \in \mathbb{R}^{*}$. The following statements are equivalent.
(i) There exist two sequences of rational numbers a_{n} and b_{n} such that $\sum_{n \geq 0} a_{n} z^{n}, \sum_{n \geq 0} b_{n} z^{n}$ are G-functions, with $b_{n} \neq 0$ for all $n \gg 1$ and

$$
\frac{a_{n}}{b_{n}} \longrightarrow \xi
$$

(ii) $\xi \in \operatorname{Frac}(\mathbb{G}) \cap \mathbb{R}=\operatorname{Frac}(\mathbb{G} \cap \mathbb{R})=$ interesting numbers.
(iii) For any given $R \geq 1$, there exist two G-functions $A(z)=\sum_{n \geq 0} a_{n} z^{n}$ and $B(z)=\sum_{n \geq 0} b_{n} z^{n}$, with $a_{n}, b_{n} \in \mathbb{Q}$, both with radius of convergence 1, and such that $A(z)-\xi B(z)$ has radius of convergence $\rho>R$. In particular,

$$
a_{n}-b_{n} \xi=\mathcal{O}\left(\rho^{-n}\right)
$$

The proof uses Theorems 1-2 and Singularity Analysis à la Flajolet-Sedgewick.

Moral consequences of Theorem 3

- It is believed that Euler's constant $\gamma=\lim _{n} \sum_{k=1}^{n} \frac{1}{k}-\log (n)$ is irrational. Why? Because if $\gamma=p / q \in \mathbb{Q}$ with $(p, q)=1$, then

$$
|q| \geq 10^{242080}
$$

It is also believed that $\gamma \notin \mathbb{G}$. Why? Because Euler and Ramanujan would have found various formulas proving this fact.

It is also plausible that γ is not even in $\operatorname{Frac}(\mathbb{G})$.
Then Theorem 3 rules out the possibility to prove the irrationality of γ à la Apéry, i.e., with sequences generated by G-functions.

- Aptekarev has showed the existence of sequences of rational numbers p_{n} and q_{n} such that $p_{n} / q_{n} \rightarrow \gamma$ and such that $\sum_{n \geq 0} p_{n} z^{n}, \sum_{n} q_{n} z^{n}$ are holonomic functions.

But these series are not G-functions.

- Similar considerations apply to the number $\exp (1)$, except of course that we already know that it is irrational.

Proof of Proposition 1

- For $x, y \in \mathbb{Q} \cap(0,1]$,

$$
\begin{aligned}
B(x, y) & =\int_{0}^{1} t^{x-1}(1-t)^{y-1} \mathrm{~d} t=\int_{0}^{1} \sum_{n \geq 0}(-1)^{n}\binom{y-1}{n} t^{n+x-1} \mathrm{~d} t \\
& =\sum_{n \geq 0}(-1)^{n} \frac{\binom{y-1}{n}}{n+x} \in \mathbb{G}
\end{aligned}
$$

- Extension to suitable $x, y \in \mathbb{Q}$ by means of

$$
B(x, y)=\frac{x+y}{x} B(x+1, y), \quad B(x, y)=\frac{x+y}{y} B(x, y+1) .
$$

- For suitable $x, y \in \mathbb{Q}$,

$$
\frac{1}{B(x, y)}=\frac{\sin (\pi x) \sin (\pi y)}{\sin \pi(x+y)} \cdot \frac{1-x-y}{\pi} \cdot B(1-x, 1-y)
$$

hence $1 / B(x, y) \in \mathbb{G}$.

- Finally, $\Gamma(a / b)^{b}=\Gamma(a) \prod_{j=1}^{b} B(a / b, j a / b)$ is a unit of \mathbb{G}.

Sketch of proof of Theorem 2

- We start from the relation

$$
F(z)=\sum_{j=1}^{\mu} \omega_{j} G_{j}(z)
$$

that we assume to hold in an neighborhood V containing ξ (maybe on its boundary) where the power series for $F(z)$ and those in the expressions of the G_{j} (given by the ACK Theorem) are absolutely convergent.

- For any $k=0, \ldots, \mu-1$,

$$
F^{(k)}(z)=\sum_{j=1}^{\mu} \omega_{j} G_{j}^{(k)}(z)
$$

Hence, for any $z \in V$,

$$
\omega_{j}=\frac{1}{W(z)}\left|\begin{array}{ccccccc}
G_{1}(z) & \cdots & G_{j-1}(z) & F(z) & G_{j+1}(z) & \cdots & G_{\mu}(z) \\
G_{1}^{(1)}(z) & \cdots & G_{j-1}^{(1)}(z) & F^{(1)}(z) & G_{j+1}^{(1)}(z) & \cdots & G_{\mu}^{(1)}(z) \\
\vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
G_{1}^{(\mu-1)}(z) & \cdots & G_{j-1}^{(\mu-1)}(z) & F^{(\mu-1)}(z) & G_{j+1}^{(\mu-1)}(z) & \cdots & G_{\mu}^{(\mu-1)}(z)
\end{array}\right|
$$

Here,

$$
W(z)=\left|\begin{array}{ccc}
G_{1}(z) & \cdots & G_{\mu}(z) \\
G_{1}^{(1)}(z) & \cdots & G_{\mu}^{(1)}(z) \\
\vdots & \cdots & \vdots \\
G_{1}^{(\mu-1)}(z) & \cdots & G_{\mu}^{(\mu-1)}(z)
\end{array}\right| .
$$

is a wronskien of the differential equation L.

- We can choose $\beta \in V \cap \overline{\mathbb{Q}}$ such that all the values $F^{(k)}(\beta), G_{j}^{(k)}(\beta)$ are in \mathbb{G}.
This is clear for $F^{(k)}(\beta)$.
For $G_{j}^{(k)}(\beta)$, we use the ACK Theorem around $z=\xi$, as well as the fact that algebraic numbers and logarithms of algebraic numbers are in \mathbb{G}.
- Since L has only algebraic singularities with rational exponents, $W(z)$ is an algebraic function over $\overline{\mathbb{Q}}(z)$. We can also assume that $W(\beta) \neq 0$. Hence $1 / W(\beta) \in \mathbb{G}$.
- In the formula for ω_{j} as a quotient of the two determinants, we set $z=\beta$ and the above arguments prove that $\omega_{j} \in \mathbb{G}$.

