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G -functions

We fix an embedding of Q into C.

Definition 1
A (formal) power series F (z) =

∑
n≥0 anz

n ∈ C[[z ]] is a G-function if
there exists C > 0 such that

(i) an ∈ Q for all n ≥ 0.

(ii) The maximum of the moduli of the algebraic conjuguates of an is
bounded by C n+1.

(iii) There exist Dn ∈ Z such that Dnaj is an algebraic integer for all
j ≤ n and |Dn| ≤ C n+1.

(iv) F is holonomic over Q(z), i.e., F satisfies a homogeneous linear
differential equation with coefficients in Q(z).



Examples

• Algebraic functions over Q(z), holomorphic at z = 0, like

f (z) =
1√

1− 4z
=
∑
n≥0

(
2n

n

)
zn.

This is a consequence of Eisenstein’s theorem.

• Hypergeometric series∑
n≥0

(a1)n · · · (ap)n
(1)n(b1)n · · · (bp−1)n

zn

where (x)m := x(x + 1) · · · (x + m − 1), p ≥ 1 and aj , bj ∈ Q.

In particular,

− log(1− z) =
∑
n≥1

zn

n
, Lis(z) =

∑
n≥1

zn

ns
(s ∈ Z).



• “Periods”, i.e. solutions of Picard-Fuchs differential equations. Grosso
modo, these are functions defined as integrals of algebraic forms over
cycles in families of algebraic varieties over Q.

A famous conjecture of Bombieri and Dwork predicts that G -functions
should coincide with periods (in a suitable sense). André proved that
periods “are” G -functions.

Non-examples

• E -functions, like

exp(z) =
∑
n≥0

zn

n!
.

• antiE -functions, like ∑
n≥0

n!zn.

• Mahler type-functions, like ∑
n≥0

z2
n

.



Properties of G -functions

• The set of G -functions is a ring (for the usual addition and Cauchy
product of series), stable by differentiation, integration and Hadamard
product.

• André: the units of the ring of G -functions are exactly the holomorphic
algebraic functions that do not vanish at z = 0.

• A G -function can be analytically continued to C, minus a finite number
of cuts.

Much more is true.



André-Chudnovski-Katz Theorem

Given a G -function F (z), consider the minimal linear differential equation
Ly = 0 of order µ and with coefficients in Q(z), of which F (z) is a
solution. Let ξ1, . . . , ξp denote the singularities of L at finite distance.
Then,

• L is globally fuchsian, with rational exponents at each ξj and at ∞.

• For all ξ ∈ C minus (fixed) cuts with the ξ′j s for origin (but ξ = ξj is
ok), L has a local basis of solutions G1(z), . . . ,Gµ(z) at z = ξ such that,
for any k = 1, . . . , µ,

Gk(z) =
∑
s∈Sk

∑
t∈Tk

log(z − ξ)s(z − ξ)tFs,t,k(z − ξ)

where

Sk ⊂ N and Tk ⊂ Q are finite, and if ξ 6= ξk , Sk = Tk = {0}.

Fs,t,k(z) are G -functions.

• If ξ =∞, the same result holds provided we replace z − ξ by 1/z
everywhere.



Diophantine motivation

• Apéry proved that ζ(3) 6∈ Q by constructing two sequences an and bn
such that

an ∈ Z, lcm(1, 2, . . . , n)3bn ∈ Z

0 6= lcm(1, 2, . . . , n)3(anζ(3)− bn) −→ 0.

Beukers and Dwork observed that
∑

n≥0 anz
n and

∑
n≥0 bnz

n are
G -functions (not with the same minimal equation).

• It is a difficult problem to find interesting real numbers that can be
proved irrational by Apéry’s method.

Can we at least say what “interesting” means?

Can we characterise the real numbers ξ such that there exist pn ∈ Q and
qn ∈ Q such that

pn
qn
−→ ξ

and
∑

n≥0 pnz
n,
∑

n≥0 qnz
n are G-functions?



G -values

With Stéphane Fischler, On the values of G-functions, to appear.

Definition 2
The set G of G-values is defined as the set of all values taken by any
analytic continuation of any G-function at any algebraic point.

G is a countable set.

There is currently no known algorithm to decide whether a number is in
G or not.

Theorem 1
A number ξ is in G iff ξ = F (1) where

(i) F is a G-function with coefficients in Q(i).

(ii) The radius of convergence of F can be as large as a priori wished.

Given ξ ∈ G, it seems difficult to describe explicitly F from our proof.



Theorem 1 for Q and log(Q∗)
Let α ∈ Q, Q(X ) ∈ Q[X ] such that α is a simple root of Q. Let
u ∈ Q(i) such that Q ′(u) 6= 0. Consider

Φu(z) := u +
∑
n≥1

(−1)n
Q(u)n

n!
· ∂

n−1

∂xn−1

((
x − u

Q(x)− Q(u)

)n)
x=u

zn.

Then

(i) Φu(z) is algebraic over Q(z), with coefficients in Q(i):

Q(Φu(z)) = (1− z)Q(u).

(ii) For any R > 1, we can choose u close enough to α such that the
radius of convergence of Φu is ≥ R and Φu(1) = α.

• Proof based on Lagrange’s inversion formula.

• Similarly, we have explicit G -functions F as in Theorem 1 such that
F (1) = log(α) for any non-zero algebraic number and any prescribed
branch of the logarithm.



From Theorem 1, we deduce

Corollary 1
G is a subring of C.

G is presumably not a field.

Proposition 1
The group of units of G contains Q∗ and the values B(a, b), a, b ∈ Q,
where

B(x , y) :=

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x + y)
,

provided B(a, b) is defined and non-zero.

The numbers Γ(a/b)b, a/b ∈ Q \ {0,−1,−2, . . .}, are units.

For instance, π = Γ(1/2)2 is a unit. Proof:

π =
∑
n≥0

4(−1)n

2n + 1
,

1

π
=
∑
n≥0

(42n + 5)
(
2n
n

)3
212n+4

.



• The proof of Theorem 1 is long and technically complicated.

The ACK theorem is crucial.

We also use the fact that the theorem holds for algebraic numbers and
logarithms of algebraic numbers (previous slide).

• We need the following result, of independent interest.

Theorem 2
Let F (z) be a G-function solution of the minimal differential equation
Ly = 0. For any given ξ ∈ C ∪ {∞} (minus cuts), let G1(z), . . . ,Gµ(z)
be a basis of local solutions of Ly = 0 around z = ξ. We have

F (z) =

µ∑
k=1

ωkGk(z)

for any z in the (multi)cut plane.

Then for all k, the connection constants ωk ∈ G.



Answer to the characterisation question

Theorem 3
Let ξ ∈ R∗. The following statements are equivalent.

(i) There exist two sequences of rational numbers an and bn such that∑
n≥0 anz

n,
∑

n≥0 bnz
n are G-functions, with bn 6= 0 for all n� 1 and

an
bn
−→ ξ.

(ii) ξ ∈ Frac(G) ∩ R = Frac(G ∩ R) = interesting numbers.

(iii) For any given R ≥ 1, there exist two G-functions A(z) =
∑

n≥0 anz
n

and B(z) =
∑

n≥0 bnz
n, with an, bn ∈ Q, both with radius of

convergence 1, and such that A(z)− ξB(z) has radius of convergence
ρ > R. In particular,

an − bnξ = O(ρ−n).

The proof uses Theorems 1-2 and Singularity Analysis à la
Flajolet-Sedgewick.



Moral consequences of Theorem 3
• It is believed that Euler’s constant γ = limn

∑n
k=1

1
k − log(n) is

irrational. Why? Because if γ = p/q ∈ Q with (p, q) = 1, then

|q| ≥ 10242080.

It is also believed that γ 6∈ G. Why? Because Euler and Ramanujan
would have found various formulas proving this fact.

It is also plausible that γ is not even in Frac(G).

Then Theorem 3 rules out the possibility to prove the irrationality of γ à
la Apéry, i.e., with sequences generated by G -functions.

• Aptekarev has showed the existence of sequences of rational numbers
pn and qn such that pn/qn → γ and such that

∑
n≥0 pnz

n,
∑

n qnz
n are

holonomic functions.

But these series are not G -functions.

• Similar considerations apply to the number exp(1), except of course
that we already know that it is irrational.



Proof of Proposition 1
• For x , y ∈ Q ∩ (0, 1],

B(x , y) =

∫ 1

0

tx−1(1− t)y−1dt =

∫ 1

0

∑
n≥0

(−1)n
(
y − 1

n

)
tn+x−1dt

=
∑
n≥0

(−1)n
(
y−1
n

)
n + x

∈ G.

• Extension to suitable x , y ∈ Q by means of

B(x , y) =
x + y

x
B(x + 1, y), B(x , y) =

x + y

y
B(x , y + 1).

• For suitable x , y ∈ Q,

1

B(x , y)
=

sin(πx) sin(πy)

sinπ(x + y)
· 1− x − y

π
· B(1− x , 1− y),

hence 1/B(x , y) ∈ G.

• Finally, Γ(a/b)b = Γ(a)
∏b

j=1 B(a/b, ja/b) is a unit of G.



Sketch of proof of Theorem 2
• We start from the relation

F (z) =

µ∑
j=1

ωjGj(z)

that we assume to hold in an neighborhood V containing ξ (maybe on its
boundary) where the power series for F (z) and those in the expressions
of the Gj (given by the ACK Theorem) are absolutely convergent.

• For any k = 0, . . . , µ− 1,

F (k)(z) =

µ∑
j=1

ωjG
(k)
j (z).

Hence, for any z ∈ V ,

ωj =
1

W (z)

∣∣∣∣∣∣∣∣∣∣
G1(z) · · · Gj−1(z) F (z) Gj+1(z) · · · Gµ(z)

G
(1)
1 (z) · · · G

(1)
j−1(z) F (1)(z) G

(1)
j+1(z) · · · G

(1)
µ (z)

... · · ·
...

...
... · · ·

...

G
(µ−1)
1 (z) · · · G

(µ−1)
j−1 (z) F (µ−1)(z) G

(µ−1)
j+1 (z) · · · G

(µ−1)
µ (z)

∣∣∣∣∣∣∣∣∣∣
.



Here,

W (z) =

∣∣∣∣∣∣∣∣∣
G1(z) · · · Gµ(z)

G
(1)
1 (z) · · · G

(1)
µ (z)

... · · ·
...

G
(µ−1)
1 (z) · · · G

(µ−1)
µ (z)

∣∣∣∣∣∣∣∣∣ .
is a wronskien of the differential equation L.

• We can choose β ∈ V ∩Q such that all the values F (k)(β), G
(k)
j (β) are

in G.

This is clear for F (k)(β).

For G
(k)
j (β), we use the ACK Theorem around z = ξ, as well as the fact

that algebraic numbers and logarithms of algebraic numbers are in G.

• Since L has only algebraic singularities with rational exponents, W (z)
is an algebraic function over Q(z). We can also assume that W (β) 6= 0.

Hence 1/W (β) ∈ G.

• In the formula for ωj as a quotient of the two determinants, we set
z = β and the above arguments prove that ωj ∈ G.


