Linear independence of values of G-functions

S. Fischler and T. Rivoal

February 25, 2018

Abstract

Given any non-polynomial G-function $F(z)=\sum_{k=0}^{\infty} A_{k} z^{k}$ of radius of convergence R, we consider the G-functions $F_{n}^{[s]}(z)=\sum_{k=0}^{\infty} \frac{A_{k}}{(k+n)^{s}} z^{k+n}$ for any integers $s \geq 0$ and $n \geq 1$. For any fixed algebraic number α such that $0<|\alpha|<R$ and any number field \mathbb{K} containing α and the A_{k} 's, we define $\Phi_{\alpha, S}$ as the \mathbb{K}-vector space generated by the values $F_{n}^{[s]}(\alpha), n \geq 1$ and $0 \leq s \leq S$. We prove that $u_{\mathbb{K}, F} \log (S) \leq \operatorname{dim}_{\mathbb{K}}\left(\Phi_{\alpha, S}\right) \leq v_{F} S$ for any S, with effective constants $u_{\mathbb{K}, F}>0$ and $v_{F}>0$, and that the family $\left(F_{n}^{[s]}(\alpha)\right)_{1 \leq n \leq v_{F}, s \geq 0}$ contains infinitely many irrational numbers. This theorem applies in particular when F is an hypergeometric series with rational parameters or a multiple polylogarithm, and it encompasses a previous result by the second author and Marcovecchio in the case of polylogarithms. The proof relies on an explicit construction of Padé-type approximants. It makes use of results of André, Chudnovsky and Katz on G-operators, of a new linear independence criterion à la Nesterenko over number fields, of singularity analysis as well as of the saddle point method.

1 Introduction

The class of G-functions was defined by Siegel [33] to generalize the Diophantine properties of the logarithmic function, by opposition to the exponential function which he generalized with the class of E-functions. A series $F(z)=\sum_{k=0}^{\infty} A_{k} z^{k} \in \overline{\mathbb{Q}}[[z]]$ is a G-function if the following three conditions are met (we fix an embedding of $\overline{\mathbb{Q}}$ into \mathbb{C}):

1. There exists $C>0$ such that for any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and any $k \geq 0,\left|\sigma\left(A_{k}\right)\right| \leq C^{k+1}$.
2. Define D_{n} as the smallest positive integer such that $D_{n} A_{k}$ is an algebraic integer for any $k \leq n$. There exists $D>0$ such that for any $n \geq 0, D_{n} \leq D^{n+1}$.
3. $F(z)$ is a solution of a linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.

The first property implies that the radius of convergence of F is positive. In the second property, the existence of D is enough for the purpose of this paper, but we mention that a famous conjecture of Bombieri implies that D_{n} always divides $c^{n+1} d_{a n}^{b}$ for some integers $a, b \geq 0, c \geq 1$, where $d_{n}:=\operatorname{lcm}\{1,2, \ldots, n\}=e^{n+o(n)}$ (see [20]). The third property shows that there is a number field containing all the coefficients A_{k}. In the case where they are
all rational numbers, the three conditions become $\left|A_{k}\right| \leq C^{k+1}, D_{n} A_{k} \in \mathbb{Z}$ for $k \leq n$ and $D_{n} \leq D^{n+1}$, and $F(z)$ is in fact a solution of a linear differential equation with coefficients in $\mathbb{Q}(z)$.
G-functions can be either algebraic over $\overline{\mathbb{Q}}(z)$, like

$$
\begin{gather*}
\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z}, \quad \sum_{k=0}^{\infty} \frac{\binom{2 k}{k}}{k+1} z^{k}=\frac{2}{1+\sqrt{1-4 z}}, \quad \sum_{k=0}^{\infty}\binom{4 k}{2 k} z^{k}=\frac{\sqrt{1+\sqrt{1-16 z}}}{\sqrt{2-32 z}} \\
\sum_{k=0}^{\infty}\binom{3 k}{2 k} z^{k}=\frac{2 \cos \left(\frac{1}{3} \arcsin \left(\frac{3}{2} \sqrt{3 z}\right)\right)}{\sqrt{4-27 z}}, \quad \sum_{k=0}^{\infty} \frac{(30 k)!k!}{(15 k)!(10 k)!(6 k)!} z^{k} \tag{1.1}
\end{gather*}
$$

or transcendental over $\mathbb{C}(z)$, like

$$
\begin{gather*}
\sum_{k=0}^{\infty} \frac{z^{k+1}}{k+1}=-\log (1-z), \quad \sum_{k=0}^{\infty} \frac{\binom{2 k}{k}}{(k+1)^{2}} z^{k+1}=1-\sqrt{1-4 z}+\log \left(\frac{1+\sqrt{1-4 z}}{2}\right) \\
\sum_{k=0}^{\infty} \frac{\binom{2 k}{k}}{2 k+1} z^{2 k+1}=\frac{1}{2} \arcsin (2 z), \quad \sum_{k=0}^{\infty} \frac{z^{2 k+2}}{(k+1)^{2}\binom{2 k+2}{k+1}}=2 \arcsin \left(\frac{z}{2}\right)^{2} \tag{1.2}
\end{gather*}
$$

Transcendental G-functions also include the polylogarithms $\operatorname{Li}_{s}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}}$ for $s \geq 1$. All the above examples are special cases of the generalized hypergeometric series with rational parameters, which is a G-function:

$$
{ }_{p+1} F_{p}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p+1} ; z \tag{1.3}\\
b_{1}, b_{2}, \ldots, b_{p}
\end{array}\right]=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p+1}\right)_{k}}{(1)_{k}\left(b_{1}\right)_{k} \cdots\left(b_{p}\right)_{k}} z^{k}
$$

where $(\alpha)_{0}=1$ and $(\alpha)_{k}=\alpha(\alpha+1) \cdots(\alpha+k-1)$ for $k \geq 1$; we assume that $-b_{j} \notin$ $\mathbb{N}=\{0,1,2, \ldots\}$ for any j. Not all G-functions are hypergeometric, for instance the algebraic function $\frac{1}{\sqrt{1-6 z+z^{2}}}=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}\binom{k+j}{j}\right) z^{k}$ or the transcendental functions $\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{k+j}{j}^{2}\right) z^{k}, \frac{1}{2} \log (1-z)^{2}=\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{j=1}^{k-1} \frac{1}{j}\right) z^{k}$, and more generally multiple polylogarithms $\operatorname{Li}_{s_{1}, s_{2}, \ldots, s_{k}}(z)=\sum_{n_{1}>\cdots>n_{k} \geq 1} \frac{z^{n_{1}}}{n_{1}^{s_{1}} n_{2}^{2} \ldots n_{k}^{s_{k}}}$ with $s_{1}, s_{2}, \ldots, s_{k} \in \mathbb{Z}$.

In this paper, we are interested in the Diophantine properties of the values of G functions at algebraic points. We first recall that there is no definitive theorem about the irrationality or transcendance of values of G-functions, like the Siegel-Shidlovsky Theorem for values of E-functions: transcendental G-functions may take rational values or algebraic values at some non-zero algebraic points, see $[6,10,36]$ for examples related to Gauss ${ }_{2} F_{1}$ hypergeometric function. Moreover, very few values of classical G-functions are known to be irrational: apart from logarithms of algebraic numbers (proved to be transcendental by other methods, namely the Hermite-Lindemann theorem), we may cite Apéry's Theorem [5] that $\zeta(3)=\operatorname{Li}_{3}(1) \notin \mathbb{Q}$, and the Chudnovsky-André Theorem [3] on
the algebraic independence over $\overline{\mathbb{Q}}$ of the values ${ }_{2} F_{1}\left[\frac{1}{2}, \frac{1}{2} ; 1 ; \alpha\right]$ and ${ }_{2} F_{1}\left[-\frac{1}{2}, \frac{1}{2} ; 1 ; \alpha\right]$ for any $\alpha \in \overline{\mathbb{Q}}, 0<|\alpha|<1\left({ }^{1}\right)$.

Up to now, known results on values of G-functions can be divided into two families. The first one gathers theorems on $F(\alpha)$, where $\alpha \in \overline{\mathbb{Q}} \subset \mathbb{C}$ is sufficiently close to 0 in terms of F (and, often, of other parameters including the degree and height of α). One of the most general results of this family is the following.
Theorem 1 (Chudnovsky [13, 14]). Let $Y(z)={ }^{t}\left(F_{1}(z), \ldots, F_{S}(z)\right)$ be a vector of G functions solution of a differential system $Y^{\prime}(z)=A(z) Y(z)$, where $A(z) \in M_{S}(\overline{\mathbb{Q}}(z))$. Assume that $1, F_{1}(z), \ldots, F_{S}(z)$ are $\overline{\mathbb{Q}}(z)$-algebraically independent. Then for any integer $d \geq 1$, there exists $C=C(Y, d)>0$ such that, for any algebraic number $\alpha \neq 0$ of degree d with $|\alpha|<\exp \left(-C \log (H(\alpha))^{\frac{4 S}{S+1}}\right)$, there does not exist a polynomial relation of degree d and coefficients in $\mathbb{Q}(\alpha)$ between the values $1, F_{1}(\alpha), \ldots, F_{S}(\alpha)$.

Here, $H(\alpha)$ is the naive height of α, i.e. the maximum of the modulus of the integer coefficients of the (normalized) minimal polynomial of α over \mathbb{Q}. See [1] for a general strategy recently obtained to prove algebraic independence of G-functions. Chudnovsky's theorem refines the works of Bombieri [12] and Galochkin [22]. André [2] generalized Chudnovsky's theorem to the case of an inhomogenous system $Y^{\prime}(z)=A(z) Y(z)+B(z)$. Thus, if we consider the case where $\alpha=a / b \in \mathbb{Q}$ and $d=1$, the values $1, F_{1}(\alpha), \ldots, F_{S}(\alpha)$ are \mathbb{Q}-linearly independent provided $b \geq\left(c_{1}|a|\right)^{c_{2}}>0$, for some constants $c_{1}>0$ and $c_{2}>1$ depending on the vector Y. The best value known so far for c_{2} is quadratic in S; see $[21,38]$ for related results. When $\left(1, F_{1}(z), \ldots, F_{S}(z)\right)=\left(1, \operatorname{Li}_{1}(z), \ldots, \operatorname{Li}_{S}(z)\right)$, we refer to $[23,28]$ for the best linear independence results, where c_{2} is "only" linear in S.

The second family consists in more recent results where α is a fixed algebraic point in the disk of convergence: lower bounds are obtained for the dimension of the vector space generated over a given number field by $F(\alpha)$, where F ranges through a suitable set of G-functions. In general, this lower bound is not large enough to imply that all these values $F(\alpha)$ are irrational. In this family, we quote the theorem that infinitely many odd zeta values $\zeta(2 n+1)=\operatorname{Li}_{2 n+1}(1), n \geq 1$, are irrational (see [7,30]). Let us also quote the following result, first proved in [31] when α is real.
Theorem 2 (Marcovecchio [25]). Let $\alpha \in \overline{\mathbb{Q}}, 0<|\alpha|<1$. The dimension of the $\mathbb{Q}(\alpha)$ vector space spanned by $1, \operatorname{Li}_{1}(\alpha), \ldots, \operatorname{Li}_{S}(\alpha)$ is larger than $\frac{1+o(1)}{[\mathbb{Q}(\alpha): \mathbb{Q}] \log (2 e)} \log (S)$ as $S \rightarrow+\infty$.

It seems that all known results in this second family concern only specific G-functions, essentially polylogarithms. This is not the case of our main result, Theorem 3 below, which is very general. Starting from a G-function $F(z)=\sum_{k=0}^{\infty} A_{k} z^{k}$ with radius of convergence R, we define for any integers $n \geq 1$ and $s \geq 0$ the G-functions

$$
\begin{equation*}
F_{n}^{[s]}(z)=\sum_{k=0}^{\infty} \frac{A_{k}}{(k+n)^{s}} z^{k+n} \tag{1.4}
\end{equation*}
$$

[^0]which all have R as radius of convergence.
Let \mathbb{K} be a number field that contains all the Taylor coefficients A_{k} of F. For any integer $S \geq 0$ and any $\alpha \in \mathbb{K}$ such that $0<|\alpha|<R$, let $\Phi_{\alpha, S}$ denote the \mathbb{K}-vector space spanned by the numbers $F_{n}^{[s]}(\alpha)$ for $n \geq 1$ and $0 \leq s \leq S$; of course $\Phi_{\alpha, S}$ depends also implicitly on F and \mathbb{K}. If F is a polynomial, then $\Phi_{\alpha, S} \subset \mathbb{K}$ for any S. We shall obtain lower and upper bounds on $\operatorname{dim}_{\mathbb{K}}\left(\Phi_{\alpha, S}\right)$ when F is not a polynomial. To state them precisely, we need to introduce some notations.

We consider a differential operator $L=\sum_{j=0}^{\mu} P_{j}(z)\left(\frac{d}{d z}\right)^{j} \in \overline{\mathbb{Q}}\left[z, \frac{d}{d z}\right]$ such that $L F(z)=0$ and L is of minimal order for F; then L is a G-operator and in particular it is fuchsian by a result of Chudnovsky [13,14]. We denote by δ the degree of L and by $\omega \geq 0$ the multiplicity of 0 as a singularity of L, i.e. the order of vanishing of P_{μ} at 0 . We have $\delta=\operatorname{deg}\left(P_{\mu}\right)$ because ∞ is a regular singularity of L. We let $\ell=\delta-\omega$, and $\ell_{0}=\max \left(\ell, \widehat{f}_{1}, \ldots, \widehat{f}_{\eta}\right)$ where $\widehat{f}_{1}, \ldots, \widehat{f}_{\eta}$ are the integer exponents of L at ∞ (so that $\ell_{0}=\ell$ if no exponent at ∞ is an integer). We refer to [24] for the definitions and properties of these classical notions, and to $[4, \S 3]$ for those of G-operators.

Theorem 3. If F is not a polynomial, then there exists an effective constant $C(F)>0$ such that for any $\alpha \in \mathbb{K}, 0<|\alpha|<R$, we have

$$
\begin{equation*}
\frac{1+o(1)}{[\mathbb{K}: \mathbb{Q}] C(F)} \log (S) \leq \operatorname{dim}_{\mathbb{K}}\left(\Phi_{\alpha, S}\right) \leq \ell_{0} S+\mu \tag{1.5}
\end{equation*}
$$

The second inequality holds for all $S \geq 0$ while in the first one, o(1) is for $S \rightarrow+\infty$.
The upper bound in (1.5) depends only on F. The constant $C(F)$ is independent from the number field \mathbb{K}, which is assumed to contain α and all the Taylor coefficients A_{k} of F; its expression involves certain quantities introduced in Proposition 1 in $\S 5.1$.

We have the following corollary, in a case where $\ell_{0}=1$. The proof is given in $\S 2$, together with many examples and other applications of Theorem 3.

Corollary 1. Let us fix some rational numbers a_{1}, \ldots, a_{p+1} and b_{1}, \ldots, b_{p} such that $a_{i} \notin$ $\mathbb{Z} \backslash\{1\}$ and $b_{j} \notin-\mathbb{N}$ for any i, j. Then for any $\alpha \in \overline{\mathbb{Q}}$ such that $0<|\alpha|<1$, infinitely many of the hypergeometric values

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p+1}\right)_{k}}{(1)_{k}\left(b_{1}\right)_{k} \cdots\left(b_{p}\right)_{k}} \frac{\alpha^{k}}{(k+1)^{s}}, \quad s \geq 0 \tag{1.6}
\end{equation*}
$$

are linearly independent over $\mathbb{Q}(\alpha)$.
The numbers in (1.6) are hypergeometric because they are equal to

$$
{ }_{p+s+1} F_{p+s}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p+1}, 1, \ldots, 1 \\
b_{1}, b_{2}, \ldots, b_{p}, 2, \ldots, 2
\end{array} ; \alpha\right]
$$

where 1 and 2 are both repeated s times. It seems to be the first general Diophantine result of this type for values of hypergeometric functions. Of course the conclusion of Corollary 1 can be stated more precisely as

$$
\operatorname{dim}_{\mathbb{Q}(\alpha)} \operatorname{Span}_{\mathbb{Q}(\alpha)}\left\{\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p+1}\right)_{k}}{(1)_{k}\left(b_{1}\right)_{k} \cdots\left(b_{p}\right)_{k}} \frac{\alpha^{k}}{(k+1)^{s}}, 0 \leq s \leq S\right\} \geq \frac{1+o(1)}{[\mathbb{Q}(\alpha): \mathbb{Q}] C} \log (S),
$$

where $C>0$ depends on a_{1}, \ldots, a_{p+1} and b_{1}, \ldots, b_{p}. The special case $p=0, a_{1}=1$ corresponds to Theorem 2 stated above, except that $\log (2 e)$ is replaced with C. An $a d$ hoc analysis in this special case would give $C=\log (2 e)$, thereby providing Theorem 2 again (with a new proof, see below).

The strategy to prove Theorem 3 is as follows. First, we construct certain algebraic numbers $\kappa_{j, t, s, n} \in \mathbb{K}$ and polynomials $K_{j, s, n}(z) \in \mathbb{K}[z]$ such that for any $s, n \geq 1$:

$$
\begin{equation*}
F_{n}^{[s]}(z)=\sum_{t=1}^{s} \sum_{j=1}^{\ell_{0}} \kappa_{j, t, s, n} F_{j}^{[t]}(z)+\sum_{j=0}^{\mu-1} K_{j, s, n}(z)\left(z \frac{d}{d z}\right)^{j} F(z) \tag{1.7}
\end{equation*}
$$

with geometric bounds on denominators and moduli of Galois conjugates (see Proposition 1 in $\S 5.1$ for a precise statement). Eq. (1.7) is a far reaching generalization of a property trivially satisfied by polylogarithms: for any $n \geq 1$,

$$
\sum_{k=0}^{\infty} \frac{z^{k+n}}{(k+n)^{s}}=\mathrm{Li}_{s}(z)-\sum_{k=1}^{n-1} \frac{z^{k}}{k^{s}}
$$

To obtain this result we study linear recurrences associated with G-operators, and make use in a crucial way of the results of André, Chudnovsky and Katz [4, 19]. With $z=\alpha$, (1.7) proves the inequality on the right-hand side of (1.5). This part of the proof of Theorem 3 uses only methods with an algebraic flavor.

To prove the inequality on the left-hand side of (1.5), we use methods with a more Diophantine flavor. We consider the series

$$
T_{S, r, n}(z)=n!^{S-r} \sum_{k=0}^{\infty} \frac{k(k-1) \cdots(k-r n+1)}{(k+1)^{S}(k+2)^{S} \cdots(k+n+1)^{S}} A_{k} z^{-k}
$$

where $|z|>1 / R, r$ and n are integer parameters such that $r \leq S$ and $n \rightarrow+\infty$. If $A_{k}=1$ for any k, this is essentially the series used in [31] and [25] to prove Theorem 2. Using (1.7) again, we prove that $T_{S, r, n}(1 / \alpha)$ is a \mathbb{K}-linear combination of the numbers $F_{j}^{[t]}(\alpha)$ $\left(1 \leq t \leq S, 1 \leq j \leq \ell_{0}\right)$ and $\left(z \frac{d}{d z}\right)^{j} F(\alpha)(0 \leq j \leq \mu-1)$. In fact, the series $T_{S, r, n}(z)$ can be interpreted has an explicit Padé-type approximant at $z=\infty$ for the functions $F_{j}^{[t]}(1 / z)$ and $\left(z \frac{d}{d z}\right)^{j} F(1 / z)$.

We apply singularity analysis and the saddle point method to prove that

$$
\begin{equation*}
T_{S, r, n}(1 / \alpha)=a^{n} n^{\kappa} \log (n)^{\lambda}\left(\sum_{q=1}^{Q} c_{q} \zeta_{q}^{n}+o(1)\right) \text { as } n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

for some integers $Q \geq 1$ and $\lambda \geq 0$, real numbers $a>0$ and κ, non-zero complex numbers c_{1}, \ldots, c_{Q} and pairwise distinct complex numbers $\zeta_{1}, \ldots, \zeta_{Q}$ such that $\left|\zeta_{q}\right|=1$ for any q. These parameters are effectively computed in terms of the finite singularities of F.

To conclude the proof we apply a linear independence criterion, as for all results of the second family mentioned above. Such a criterion enables one to deduce a lower bound on the dimension of the \mathbb{K}-vector space spanned by complex numbers $\vartheta_{1}, \ldots, \vartheta_{J}$ from the existence of linear forms $T_{n}=\sum_{j=1}^{J} p_{j, n} \vartheta_{j}$ with coefficients $p_{j, n} \in \mathcal{O}_{\mathbb{K}}$. This lower bound is non-trivial if $\left|T_{n}\right|$ is very small, and $p_{j, n}$ is not too large. However one more assumption is needed. In Siegel-type criteria this assumption is the non-vanishing of a determinant; Theorem 2 is proved in this way in [25], by constructing several sequences $\left(T_{n}^{(k)}\right)$. On the opposite, Nesterenko's criterion [26] (and its generalizations [35, 9] to number fields) enables one to construct only one sequence $\left(T_{n}\right)$, but it requires a lower bound on $\left|T_{n}\right|^{1 / n}$; this is how Theorem 2 is proved in [31] if α is real. If $\lim \inf _{n}\left|T_{n}\right|^{1 / n}$ is smaller than $\lim \sup _{n}\left|T_{n}\right|^{1 / n}$, this lower bound is weaker. In fact, in our situation, namely with the asymptotics (1.8), it is not even clear that $\liminf _{n}\left|T_{n}\right|^{1 / n}$ is positive so that these criteria do not apply. We solve this problem by generalizing Nesterenko's criterion (over any number field) to linear forms $\left(T_{n}\right)$ with asymptotics given by (1.8); our lower bound is best possible (see $\S 3$ for precise statements). In the special case of polylogarithms, this provides a new proof of Theorem 2 when α is not real.

The structure of this paper is as follows. In $\S 2$ we deduce Corollary 1 from Theorem 3 , and give applications of these results. In $\S 3$ we state and prove the generalization of Nesterenko's linear independence criterion to linear forms with asymptotics given by (1.8). Then in $\S 4$ we prove a general result, of independent interest, on linear recurrences related to G-operators (using in a crucial way the André-Chudnovsky-Katz theorem). This result allows us to prove (1.7) in $\S 5$, with geometric bounds on denominators and moduli of Galois conjugates. We conclude the proof of Theorem 3 in $\S 6$, except for the asymptotic estimate (1.8) that we obtain in $\S 7$ using singularity analysis and the saddle point method. At last, we mention in $\S 8$ how to simplify the proof in the special case where $A_{k} \geq 0$ for any k, and $\alpha>0$.

2 Examples

The generalized hypergeometric series defined by (1.3), if $b_{j} \notin-\mathbb{N}$ for any j, is solution of the differential equation $L_{h} y(z)=0$ where

$$
L_{h}=\theta\left(\theta+b_{1}-1\right) \cdots\left(\theta+b_{p}-1\right)-z\left(\theta+a_{1}\right) \cdots\left(\theta+a_{p+1}\right), \quad \theta=z \frac{d}{d z} .
$$

It is a G-function if and only if the a_{j} 's and b_{j} 's are rational numbers, in which case L_{h} is a G-operator. Assuming $a_{i} \notin-\mathbb{N}$, it is not a polynomial. We now compute the quantities defined before Theorem 3 , especially ℓ_{0}. The degree δ of L_{h} is $p+2$ and the multiplicity ω of 0 as a singularity of L_{h} is $p+1$. Hence, $\ell=\delta-\omega=1$ (consistently with the expression
of L_{h} and Lemma 1 below). Moreover, the exponents of L_{h} at 0 are $0,1-b_{1}, \ldots, 1-b_{p}$, while those at ∞ are a_{1}, \ldots, a_{p+1}, so that $\ell_{0}=\max \left(1, \widehat{a}_{1}, \ldots, \widehat{a}_{\eta}\right)$ where the \widehat{a}_{j} are the integer parameters amongst a_{1}, \ldots, a_{p+1}. If none of the a_{j} 's is an integer greater than 1 then $\ell_{0}=1$. This proves Corollary 1 .

We now list the hypergeometric parameters of the examples stated in the Introduction:

$$
\begin{gathered}
\frac{1}{k+1} \longleftrightarrow\left[\begin{array}{c}
1,1 \\
2
\end{array}\right] \quad \frac{\binom{2 k}{k}}{k+1} \longleftrightarrow\left[\begin{array}{c}
\frac{1}{2}, 1 \\
2
\end{array}\right] \quad\binom{3 k}{2 k} \longleftrightarrow\left[\begin{array}{c}
\frac{1}{3}, \frac{2}{3} \\
\frac{1}{2}
\end{array}\right] \\
\binom{4 k}{2 k} \longleftrightarrow\left[\begin{array}{c}
\frac{1}{4}, \frac{3}{4} \\
\frac{1}{2}
\end{array}\right] \quad \frac{\binom{2 k}{k}}{(k+1)^{2}} \longleftrightarrow\left[\begin{array}{c}
\frac{1}{2}, 1,1 \\
2,2
\end{array}\right] \quad \frac{1}{(k+1)^{2}\binom{2 k+2}{k+1}} \longleftrightarrow\left[\begin{array}{c}
1,1,1 \\
\frac{3}{2}, 2
\end{array}\right] \\
\frac{\binom{2 k}{k}}{2 k+1} \longleftrightarrow\left[\begin{array}{c}
\frac{1}{2}, \frac{1}{2} \\
\frac{3}{2}
\end{array}\right] \quad \frac{(30 k)!k!}{(15 k)!(10 k)!(6 k)!} \longleftrightarrow\left[\begin{array}{c}
\frac{1}{30}, \frac{7}{30}, \frac{11}{30}, \frac{13}{30}, \frac{17}{30}, \frac{1}{3}, \frac{2}{5}, \frac{19}{2}, \frac{23}{50},, \frac{2}{3}, \frac{4}{5}
\end{array}\right] .
\end{gathered}
$$

In these eight cases, we have $\ell_{0}=1$ so that Corollary 1 applies (separately) to them.
Let us now compute ℓ_{0} for non-hypergeometric examples. The function $\frac{1}{\sqrt{1-6 z+z^{2}}}=$ $\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}\binom{k+j}{j}\right) z^{k}$ is solution of the differential equation

$$
\left(z^{2}-6 z+1\right) y^{\prime}(z)+(z-3) y(z)=0
$$

which is minimal for this function; its exponent at ∞ is 1 . Hence $\ell_{0}=\ell=2$ and Theorem 3 provides $\frac{1+o(1)}{[\mathbb{K}: \mathbb{Q}] C} \log (S) \mathbb{K}$-linearly independent numbers amongst the numbers

$$
\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}\binom{k+j}{j}\right) \frac{\alpha^{k}}{(k+1)^{s}} \quad \text { and } \quad \sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}\binom{k+j}{j}\right) \frac{\alpha^{k}}{(k+2)^{s}}, \quad 0 \leq s \leq S
$$

The function $\log (1-z) \log (1+z)=\sum_{k=1}^{\infty}\left(\frac{1}{k} \sum_{j=1}^{2 k-1} \frac{(-1)^{j}}{j}\right) z^{2 k}$ is solution of the differential equation

$$
z\left(z^{2}-1\right)^{2} y^{(4)}(z)+\left(z^{2}-1\right)\left(7 z^{2}+1\right) y^{(3)}(z)+2 z\left(5 z^{2}-1\right) y^{(2)}(z)+2\left(z^{2}+1\right) y^{(1)}(z)=0
$$

which is minimal for this function; its exponents at ∞ are $0,0,0,1$, and $\ell_{0}=\ell=4$.
The function $\operatorname{Li}_{1,1}(z)=\frac{1}{2} \log (1-z)^{2}=\sum_{k=0}^{\infty}\left(\frac{1}{k+1} \sum_{j=1}^{k} \frac{1}{j}\right) z^{k+1}$ is solution of the differential equation

$$
(z-1)^{2} y^{\prime \prime \prime}(z)+3(z-1) y^{\prime \prime}(z)+y^{\prime}(z)=0
$$

which is minimal for this function; its exponents at ∞ are $0,0,0$. Hence $\ell_{0}=\ell=2$ and Theorem 3 applies to the numbers

$$
\sum_{k=1}^{\infty}\left(\sum_{j=1}^{k-1} \frac{1}{j}\right) \frac{\alpha^{k}}{k^{s+1}} \quad \text { and } \quad \sum_{k=1}^{\infty}\left(\sum_{j=1}^{k-1} \frac{1}{j}\right) \frac{\alpha^{k}}{k(k+1)^{s}}, \quad s \geq 0 .
$$

More generally, the multiple polylogarithm function $\operatorname{Li}_{s_{1}, s_{2}, \ldots, s_{n}}(z)$, with $s_{j} \geq 1$, is solution of the differential equation $\frac{d}{d z} \delta_{s_{n}} \cdots \delta_{s_{1}} y(z)=0$, where $\delta_{s}=\frac{1-z}{z} \theta^{s}$. This equation is a G-operator (being a product of G-operators) of order $1+\sum_{j=1}^{n} s_{j}$. Its leading coefficient is $(1-z)^{n} z^{s_{1}+\cdots+s_{n}-n}$ and its indicial polynomial at ∞ is $x^{s_{1}+\cdots+s_{n}+1}$, so that $\ell_{0}=n$.

The generating function of the Apéry numbers $\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}\binom{k+j}{j}^{2}\right) z^{k}$ is solution of the minimal differential equation
$z^{2}\left(1-34 z+z^{2}\right) y^{\prime \prime \prime}(z)+z\left(3-153 z+6 z^{2}\right) y^{\prime \prime}(z)+\left(1-112 z+7 z^{2}\right) y^{\prime}(z)+(z-5) y(z)=0$.
Its exponents at ∞ are $1,1,1$. Hence $\ell_{0}=\ell=2$ and Theorem 3 applies again to the numbers

$$
\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{k+j}{j}^{2}\right) \frac{\alpha^{k}}{(k+1)^{s}} \quad \text { and } \quad \sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{k+j}{j}^{2}\right) \frac{\alpha^{k}}{(k+2)^{s}}, \quad s \geq 0
$$

We conclude this section with the case of the series $G_{b}(z)=\sum_{k=1}^{\infty} \frac{\chi(k)}{k^{b}} z^{k}$ where b is any fixed positive integer and χ is the unique non-principal character mod 4. Since $G_{b}(z)=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{b}} z^{2 k+1}$, it is a G-function. Moreover, $\theta\left(\left(1+z^{2}\right) \theta^{b}\right) G_{b}(z)=0$, which is of minimal order for $G_{b}(z)$. Hence $\theta\left(\left(1+z^{2}\right) \theta^{b}\right)$ is a G-operator: it is such that $\mu=b+1$, $\delta=b+3, \omega=b+2, \ell=1$ and its exponents at infinity are $0,0, \ldots, 0,2$, where 0 is repeated b times. Hence $\ell_{0}=2$ and Theorem 3 applies to the numbers

$$
\sum_{k=1}^{\infty} \frac{\chi(k)}{k^{b+s}} \alpha^{k} \quad \text { and } \quad \sum_{k=1}^{\infty} \frac{\chi(k)}{k^{b}(k+1)^{s}} \alpha^{k}, \quad s \geq 0
$$

More generally, Theorem 3 applies to any G-function of the form $\sum_{k=1}^{\infty} \frac{\chi(k)}{A(k)} z^{k}$ where χ is a Dirichlet character and $A(X) \in \mathbb{Q}[X]$ is split over \mathbb{Q} and such that $A(k) \neq 0$ for any positive integer k.

3 Generalization of Nesterenko's linear independence criterion

The following version of Nesterenko's linear independence criterion will be used in the proof of Theorem 3.

Let \mathbb{K} be a number field embedded in \mathbb{C}. We let $\mathbb{L}=\mathbb{R}$ if $\mathbb{K} \subset \mathbb{R}$, and $\mathbb{L}=\mathbb{C}$ otherwise. We denote by $o(1)$ any sequence that tends to 0 as $n \rightarrow \infty$.

Theorem 4. Let $\left(Q_{n}\right)$ be an increasing sequence of positive real numbers, with limit $+\infty$, such that $Q_{n+1}=Q_{n}^{1+o(1)}$. Let $T \geq 1, c_{1}, \ldots, c_{T}$ be non-zero complex numbers, and ζ_{1}, \ldots, ζ_{T} be pairwise distinct complex numbers such that $\left|\zeta_{t}\right|=1$ for any t.

Consider N numbers $\vartheta_{1}, \ldots, \vartheta_{N} \in \mathbb{L}$. Assume that for some $\tau>0$ there exist N sequences $\left(p_{j, n}\right)_{n \geq 0}, j=1, \ldots, N$, such that for any j and $n, p_{j, n} \in \mathcal{O}_{\mathbb{K}}$, all Galois conjugates of $p_{j, n}$ have modulus less than $Q_{n}^{1+o(1)}$, and

$$
\begin{equation*}
\sum_{j=1}^{N} p_{j, n} \vartheta_{j}=Q_{n}^{-\tau+o(1)}\left(\sum_{t=1}^{T} c_{t} \zeta_{t}^{n}+o(1)\right) \tag{3.1}
\end{equation*}
$$

Then

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{Span}_{\mathbb{K}}\left(\vartheta_{1}, \ldots, \vartheta_{N}\right) \geq \frac{\tau+1}{[\mathbb{K}: \mathbb{Q}]}
$$

Given $0<\alpha<1<\beta$ and $\kappa, \lambda \in \mathbb{R}$, this theorem can be applied when all Galois conjugates of $p_{j, n}$ have modulus less than $\beta^{n(1+o(1))}$ and

$$
\begin{equation*}
\sum_{j=1}^{N} p_{j, n} \vartheta_{j}=\alpha^{n} n^{\kappa}(\log n)^{\lambda}\left(\sum_{t=1}^{T} c_{t} \zeta_{t}^{n}+o(1)\right) \tag{3.2}
\end{equation*}
$$

then the conclusion reads

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{Span}_{\mathbb{K}}\left(\vartheta_{1}, \ldots, \vartheta_{N}\right) \geq \frac{1}{[\mathbb{K}: \mathbb{Q}]}\left(1-\frac{\log (\alpha)}{\log (\beta)}\right)
$$

Nesterenko's original linear independence criterion [26] is a general quantitative result, of which Theorem 4 is a special case if $\mathbb{K}=\mathbb{Q}, T=1, \zeta_{1}= \pm 1$. The case where $\mathbb{K}=\mathbb{Q}$, $T=2, \zeta_{2}=\overline{\zeta_{1}}$ and $c_{2}=\overline{c_{1}}$ follows using either lower bounds for linear forms in logarithms (if $c_{1}, \zeta_{1} \in \overline{\mathbb{Q}}$, see [34] or [17, §2.2]) or Kronecker-Weyl's equidistribution theorem [17].

Nesterenko's criterion has been extended to any number field \mathbb{K} by Töpfer [35] and Bedulev [9]; their results are similar, but different in several aspects. The case $T=1$ of Theorem 4 follows from Töpfer's Korollar 2 [35], but does not seem to follow directly from Bedulev's result since he uses the exponential Weil height relative to \mathbb{K} instead of the house of $p_{j, n}$ (i.e., the maximum of the moduli of all Galois conjugates of $p_{j, n}$).

We shall deduce the general case of Theorem 4 from Töpfer's result using Vandermonde determinants (as in the proof of [19, Lemma 6]). This provides also a new and simpler proof of the above-mentioned case $\mathbb{K}=\mathbb{Q}, T=2, \zeta_{2}=\overline{\zeta_{1}}$ and $c_{2}=\overline{c_{1}}$.

Even in the special case where $T=1$ and $\mathbb{K}=\mathbb{Q}$, the lower bound in Theorem 4 is best possible (see [18]). We have the following corollary, which we shall not use in this paper but which can be useful in other contexts.

Corollary 2. Let $\alpha, \beta \in \mathbb{R}$ be such that $0<\alpha<1<\beta$. Consider N numbers $\vartheta_{1}, \ldots, \vartheta_{N} \in$ \mathbb{L}. Assume that there exist N sequences $\left(p_{j, n}\right)_{n \geq 0}, j=1, \ldots, N$, such that for any j and n, $p_{j, n} \in \mathcal{O}_{\mathbb{K}}$, all Galois conjugates of $p_{j, n}$ have modulus less than $\beta^{n(1+o(1))}$, and

$$
\limsup _{n \rightarrow \infty}\left|\sum_{j=1}^{N} p_{j, n} \vartheta_{j}\right|^{1 / n} \leq \alpha
$$

Assume also that $\sum_{j=1}^{N} p_{j, n} \vartheta_{j} \neq 0$ for infinitely many n, and that for any j the function $\sum_{n=0}^{\infty} p_{j, n} z^{n}$ is solution of a homogeneous linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$. Then

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{Span}_{\mathbb{K}}\left(\vartheta_{1}, \ldots, \vartheta_{N}\right) \geq \frac{1}{[\mathbb{K}: \mathbb{Q}]}\left(1-\frac{\log (\alpha)}{\log (\beta)}\right)
$$

The point in Corollary 2 is that no lower bound is needed on $\left|\sum_{j=1}^{N} p_{j, n} \vartheta_{j}\right|$. This result fits in the context of G-functions, since its assumptions imply that $\sum_{n=0}^{\infty} p_{j, n} z^{n}$ is a G-function for any j. To deduce Corollary 2 from Theorem 4, it is enough to notice that $\sum_{n=0}^{\infty} \sum_{j=1}^{N} p_{j, n} \vartheta_{j} z^{n}=\sum_{j=1}^{N} \vartheta_{j} \sum_{n=0}^{\infty} p_{j, n} z^{n}$ is solution of a homogeneous linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$. We can then apply classical transfer results from Singularity Analysis: an asymptotic estimate like (3.2) holds.

Proof of Theorem 4. For any $n \geq 0$ we consider the following determinant:

$$
\Delta_{n}=\left|\begin{array}{ccc}
\zeta_{1}^{n} & \ldots & \zeta_{T}^{n} \\
\vdots & & \vdots \\
\zeta_{1}^{n+T-1} & \ldots & \zeta_{T}^{n+T-1}
\end{array}\right|
$$

We have $\left|\Delta_{n}\right|=\left|\zeta_{1}^{n} \ldots \zeta_{T}^{n} \Delta_{0}\right|=\left|\Delta_{0}\right| \neq 0$ since Δ_{0} is the Vandermonde determinant built on the pairwise distinct complex numbers $\zeta_{1}, \ldots, \zeta_{T}$. We claim that for any $n \geq 0$ there exists $\delta_{n} \in\{0, \ldots, T-1\}$ such that

$$
\begin{equation*}
\left|\sum_{t=1}^{T} c_{t} \zeta_{t}^{n+\delta_{n}}\right| \geq \frac{\left|c_{1} \Delta_{0}\right|}{T!} \tag{3.3}
\end{equation*}
$$

Indeed if this equation holds for no integer $\delta_{n} \in\{0, \ldots, T-1\}$ then upon replacing $C_{1, n}$ with $\frac{1}{c_{1}} \sum_{t=1}^{T} c_{t} C_{t, n}$ (where $C_{t, n}$ is the t-th column of the matrix of which Δ_{n} is the determinant) we obtain:

$$
\left|\Delta_{0}\right|=\left|\Delta_{n}\right|<\frac{T}{c_{1}} \frac{\left|c_{1} \Delta_{0}\right|}{T!}(T-1)!=\left|\Delta_{0}\right|
$$

since all minors of size $T-1$ have modulus less than or equal to $(T-1)$!. This contradiction proves the claim (3.3) for some $\delta_{n} \in\{0, \ldots, T-1\}$.

Now let $p_{j, n}^{\prime}=p_{j, n+\delta_{n}}$. Since $Q_{n+1}=Q_{n}^{1+o(1)}$ and $0 \leq \delta_{n} \leq T-1$ (where $T-1$ does not depend on n), all Galois conjugates of $p_{j, n}$ have modulus less than $Q_{n}^{1+o(1)}$. Moreover (3.3) yields $\left|\sum_{j=1}^{N} p_{j, n}^{\prime} \vartheta_{j}\right|=Q_{n}^{-\tau+o(1)}$. Therefore Töpfer's Korollar 2 [35] applies to the sequences $\left(p_{j, n}^{\prime}\right)$: this concludes the proof of Theorem 4.
Remark 1. In the proof of Theorem 4 the sequences $\left(p_{j, n}^{\prime}\right)$ may be such that $p_{j, n}^{\prime}=p_{j, n^{\prime}}^{\prime}$ for some $n<n^{\prime}$ even if this does not happen with $p_{j, n}$. This is not a problem since in this case $n^{\prime}-n \leq T-1$, where T is independent from n.

4 Linear recurrences associated with G-operators

In this section we apply some results of André, Chudnovsky and Katz to prove a few general properties of G-operators (stated in $\S 4.1$). We recall that for any G-function F, any non-zero differential operator $L \in \overline{\mathbb{Q}}\left[z, \frac{d}{d z}\right]$ of minimal order such that $L F=0$ is a G-operator. We refer to $[4, \S 3]$ for the definition and properties of G-operators.

4.1 Setting and statements

Lemma 1. Let \mathbb{K} be a number field, and $L=\sum_{j=0}^{\mu} P_{j}(z)\left(\frac{d}{d z}\right)^{j}$ a G-operator with $P_{j} \in$ $\mathbb{K}[X]$ and $P_{\mu} \neq 0$; denote by δ the degree of L, and by $\omega \geq 0$ the multiplicity of 0 as a singularity of L; let $\ell=\delta-\omega$.

Then there exist some polynomials $Q_{j}(X) \in \mathcal{O}_{\mathbb{K}}[X]$ and a positive rational integer α such that

$$
\alpha z^{\mu-\omega} L=\sum_{j=0}^{\ell} z^{j} Q_{j}(\theta+j) \text { where } \theta=z \frac{d}{d z}
$$

Moreover letting $d_{j}=\operatorname{deg}\left(Q_{j}\right)$ we have

$$
d_{j} \leq \mu \text { for any } 0 \leq j \leq \ell \text {, and } d_{0}=d_{\ell}=\mu
$$

At last, $Q_{0}(X)=0$ and $Q_{\ell}(-X+\ell)=0$ are (up to a multiplicative constant) the indicial equations of L at 0 and ∞, respectively.

This lemma belongs to folklore (see for instance [8, §4.1] for a part of it) but for the sake of completeness we provide a proof in $\S 4.2$ below.

In what follows we keep the notation and assumptions of Lemma 1 . We denote by \widehat{e}_{1}, $\ldots, \widehat{e}_{\kappa}$ and $\widehat{f}_{1}, \ldots, \widehat{f}_{\eta}$ the integer exponents of L at 0 and ∞, respectively; they are the integer roots of the indicial equations at 0 and ∞, namely $Q_{0}(X)=0$ and $Q_{\ell}(-X+\ell)=0$. We let $m \geq 1$ be such that

$$
m>-\widehat{e}_{i} \text { and } m>\widehat{f}_{j}-\ell \text { for all } 1 \leq i \leq \kappa, 1 \leq j \leq \eta
$$

of course the condition on \widehat{e}_{i} (resp. \widehat{f}_{j}) is always satisfied if $\kappa=0$ (resp. $\eta=0$). Then $Q_{0}(-n) \neq 0$ and $Q_{\ell}(-n) \neq 0$ for any integer $n \geq m$, so that the linear recurrence relation

$$
\begin{equation*}
\sum_{j=0}^{\ell} Q_{j}(-n) U(n+j)=0, \quad n \geq m \tag{4.1}
\end{equation*}
$$

(satisfied by the Taylor coefficients of any power series in $1 / z$ annihilated by L, see Step 1 in the proof of Lemma 2) has a \mathbb{C}-basis of solutions $\left(u_{1}(n)\right)_{n \geq m}, \ldots,\left(u_{\ell}(n)\right)_{n \geq m}$ with $u_{j}(n) \in \mathbb{K}$ for any $1 \leq j \leq \ell$ and any $n \geq m$. The determinant

$$
W(n)=\left|\begin{array}{ccc}
u_{1}(n+\ell-1) & \cdots & u_{\ell}(n+\ell-1) \tag{4.2}\\
u_{1}(n+\ell-2) & \cdots & u_{\ell}(n+\ell-2) \\
\vdots & \vdots & \vdots \\
u_{1}(n) & \cdots & u_{\ell}(n)
\end{array}\right|
$$

is called a wronskian (or casoratian) of the recurrence.
Now let us consider an inhomogeneous linear recurrence relation

$$
\begin{equation*}
\sum_{j=0}^{\ell} Q_{j}(-n) V(n+j)=g(n), \quad n \geq m \tag{4.3}
\end{equation*}
$$

where $g(n)$ is defined for any $n \geq m$. We let $\Delta_{j}(n)=D_{j}(n) \frac{g(n-1)}{Q_{\ell}(1-n)}$ for $n \geq m+1$, where

$$
D_{j}(n)=(-1)^{j}\left|\begin{array}{cccccc}
u_{1}(n+\ell-2) & \cdots & u_{j-1}(n+\ell-2) & u_{j+1}(n+\ell-2) & \cdots & u_{\ell}(n+\ell-2) \tag{4.4}\\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
u_{1}(n) & \cdots & u_{j-1}(n) & u_{j+1}(n) & \cdots & u_{\ell}(n)
\end{array}\right|
$$

Lemma 2. The general solution of the recurrence (4.3) is

$$
V(n)=\sum_{j=1}^{\ell}\left(\chi_{j}+\sum_{k=m+1}^{n} \frac{\Delta_{j}(k)}{W(k)}\right) u_{j}(n), \quad n \geq m
$$

where $\chi_{1}, \ldots, \chi_{\ell}$ are arbitrary complex numbers. Moreover we have $W(n) \neq 0$ for any $n \geq m$, and the power series $\sum_{n=m}^{\infty} \frac{z^{n}}{W(n)}, \sum_{n=m}^{\infty} u_{j}(n) z^{n}$ and $\sum_{n=m+1}^{\infty} \frac{D_{j}(n)}{Q_{\ell}(1-n)} z^{n}$ (with $1 \leq j \leq \ell$) are G-functions.

The first part of this lemma (namely, the expression of $V(n)$) is valid as soon as $Q_{0}(-n) Q_{\ell}(-n) \neq 0$ for any $n \geq m$: it does not rely on the assumption that L is a G-operator.

4.2 Proofs

Proof of Lemma 1. Since ∞ is a regular singularity of L we have $\operatorname{deg}\left(P_{k}\right) \leq \delta-(\mu-k)$ for any k and $\operatorname{deg}\left(P_{\mu}\right)=\delta$; since 0 is a regular singularity the order of vanishing of each P_{k} at 0 is at least $\max (0, \omega-(\mu-k))$. Therefore we may write

$$
P_{k}(z)=\sum_{i=\max (0, \omega-\mu+k)}^{\delta-\mu+k} p_{k, i} z^{i} .
$$

Now observe that for any $n \geq 1$,

$$
z^{n}\left(\frac{d}{d z}\right)^{n}=\sum_{j=1}^{n} c_{j, n} \theta^{j} \text { with } c_{j, n} \in \mathbb{Q} \text { and } c_{n, n}=1
$$

Then we let $p_{0, i}=0$ if $i \leq-1$, and

$$
S_{k}(X)=p_{0, k-\mu}+\sum_{j=1}^{\mu}\left(\sum_{i=\max (0, k+j-\mu)}^{k} p_{i+\mu-k, i} c_{j, i+\mu-k}\right) X^{j}
$$

for $\omega \leq k \leq \delta$, so that $\operatorname{deg}\left(S_{\omega}\right)=\operatorname{deg}\left(S_{\delta}\right)=\mu$ and

$$
L=\sum_{k=\omega}^{\delta} z^{k-\mu} S_{k}(\theta)
$$

Let $\alpha \geq 1$ denote a common denominator of the (algebraic) coefficients of all polynomials S_{k}, and put $Q_{j}(X)=\alpha S_{j+\omega}(X-j)$. Then we have

$$
\alpha z^{\mu-\omega} L=\sum_{j=0}^{\ell} z^{j} Q_{j}(\theta+j) .
$$

At last, since $\theta z^{p}=p z^{p}$ for any $p \in \mathbb{Z}$ we have

$$
L z^{p}=\frac{1}{\alpha} \sum_{j=0}^{\ell} Q_{j}(p+j) z^{p+j+\omega-\mu} .
$$

Since Q_{0} and Q_{ℓ} have degree μ, they are non-zero and (up to the multiplicative constant $\frac{1}{\alpha}$) the indicial equations at 0 and infinity are respectively $Q_{0}(p)=0$ and $Q_{\ell}(-p+\ell)=0$.

Proof of Lemma 2. We split the proof into four steps. Step 3 and a part of Step 2 are somewhat classical, and do not rely on the assumption that L is a G-operator (see for instance [29, pp. 5 and 22]). However we provide a complete proof for the reader's convenience.
Step 1: Proof that $\sum_{n=m}^{\infty} u_{j}(n) z^{n}$ is a G-function.
For any power series $U(z)=\sum_{n=m}^{\infty} u_{n} z^{-n}$, Lemma 1 yields

$$
\alpha z^{\mu-\omega} L U(z)=\sum_{k=m-\ell}^{+\infty}\left(\sum_{j=\max (0, m-k)}^{\ell} u_{k+j} Q_{j}(-k)\right) z^{-k} .
$$

Therefore $\left(u_{n}\right)_{n \geq m}$ is a solution of (4.1) if, and only if, $\alpha z^{\mu-\omega} L U(z)=z^{1-m} U_{0}(z)$ where U_{0} is a polynomial of degree at most $\ell-1$. In this case $\left(\frac{d}{d z}\right)^{\ell} z^{\mu-\omega+m-1} L$ is a G-operator that annihilates $U(z)$; notice that $z^{\mu-\omega} L \in \mathbb{K}\left[z, \frac{d}{d z}\right]$ even if $\omega>\mu$, since 0 is a regular singularity of L. Applying the André-Chudnovsky-Katz theorem (see [4, p. 719] or [19, $\S 4.1]$), we deduce that if $u_{n} \in \mathbb{K}$ for any n then $U(z)$ is a G-function in $1 / z$.
Step 2: Computation of the wronskian $W(n)$.
First of all, if $W\left(n_{0}\right)=0$ for some $n_{0} \geq m$ then we obtain $\lambda_{1}, \ldots, \lambda_{\ell} \in \mathbb{C}$, not all zero, such that $\lambda_{1} u_{1}(n)+\ldots+\lambda_{\ell} u_{\ell}(n)=0$ for any $n_{0} \leq n \leq n_{0}+\ell-1$; by induction this equality holds for any $n \geq m$, which is a contradiction. Therefore we have $W(n) \neq 0$ for any $n \geq m$. Moreover $W(n)$ is solution of the linear recurrence of order 1

$$
\begin{equation*}
Q_{\ell}(-n) W(n+1)=(-1)^{\ell} Q_{0}(-n) W(n), \tag{4.5}
\end{equation*}
$$

since the left hand side is equal to

$$
\left|\begin{array}{ccc}
-\sum_{j=0}^{\ell-1} Q_{j}(-n) u_{1}(n+j) & \ldots & -\sum_{j=0}^{\ell-1} Q_{j}(-n) u_{\ell}(n+j) \\
u_{1}(n+\ell-1) & \ldots & u_{\ell}(n+\ell-1) \\
\vdots & & \vdots \\
u_{1}(n+1) & \ldots & u_{\ell}(n+1)
\end{array}\right|
$$

By Lemma 1 we have

$$
Q_{0}(X)=\gamma_{0} \prod_{i=1}^{\mu}\left(X-e_{i}\right) \quad \text { and } \quad Q_{\ell}(X)=\gamma_{\ell} \prod_{i=1}^{\mu}\left(X+f_{i}-\ell\right)
$$

where $\gamma_{0}, \gamma_{\ell}$ are non-zero elements of \mathbb{K} and e_{1}, \ldots, e_{μ} (resp. f_{1}, \ldots, f_{μ}) are the exponents of L at 0 (resp. at ∞). By Katz' theorem [4, p. 719], these exponents are rational numbers. The recurrence (4.5) is easily solved: for $n \geq m$, we have

$$
\begin{aligned}
W(n) & =(-1)^{\ell(n-m)} \frac{Q_{0}(1-n) \cdots Q_{0}(-m)}{Q_{\ell}(1-n) \cdots Q_{\ell}(-m)} W(m) \\
& =W(m)\left((-1)^{\ell} \gamma_{0} / \gamma_{\ell}\right)^{n-m} \prod_{i=1}^{\mu} \frac{\left(n-1+e_{i}\right) \cdots\left(m+e_{i}\right)}{\left(n-1-f_{i}+\ell\right) \cdots\left(m-f_{i}+\ell\right)} \\
& =W(m)\left((-1)^{\ell} \gamma_{0} / \gamma_{\ell}\right)^{n-m} \prod_{i=1}^{\mu} \frac{\left(m+e_{i}\right)_{n-m}}{\left(m-f_{i}+\ell\right)_{n-m}} .
\end{aligned}
$$

Therefore $\sum_{n=m}^{\infty} \frac{z^{n}}{W(n)}$ is a ${ }_{d+1} F_{d}$ hypergeometric series with rational parameters, and accordingly a G-function.
Step 3: Computation of the solutions of (4.3).
Since $W(n) \neq 0$ for any $n \geq m$, given any sequence $(v(n))_{n \geq m}$ there exist sequences $\left(c_{j}(n)\right)_{n \geq m}, 1 \leq j \leq \ell$, such that

$$
\begin{equation*}
v(n+k)=\sum_{j=1}^{\ell} c_{j}(n) u_{j}(n+k), \quad k=0, \ldots, \ell-1 \tag{4.6}
\end{equation*}
$$

This equation with $n+1$ and $k-1$ reads

$$
v(n+k)=\sum_{j=1}^{\ell} c_{j}(n+1) u_{j}(n+k), \quad k=1, \ldots, \ell-1
$$

so that

$$
\begin{equation*}
\sum_{j=1}^{\ell}\left(\Delta c_{j}(n)\right) u_{j}(n+k)=0, \quad k=1, \ldots, \ell-1 \tag{4.7}
\end{equation*}
$$

where we define as usual the difference operator $\Delta x_{n}:=x_{n+1}-x_{n}$.

Now let us assume that $(v(n))_{n \geq m}$ is a solution of the inhomogeneous linear recurrence relation (4.3). Since (4.6) with $n+1$ and $\ell-1$ yields

$$
v(n+\ell)=\sum_{j=1}^{\ell}\left(\Delta c_{j}(n)\right) u_{j}(n+\ell)+\sum_{j=1}^{\ell} c_{j}(n) u_{j}(n+\ell)
$$

we obtain using also (4.6) and the fact that $\left(u_{j}(n)\right)_{n \geq m}$ is a solution of (4.1) for any j :

$$
\begin{equation*}
\sum_{j=1}^{\ell}\left(\Delta c_{j}(n)\right) u_{j}(n+\ell)=\frac{g(n)}{Q_{\ell}(-n)} \tag{4.8}
\end{equation*}
$$

The ℓ equations given by (4.7) and (4.8) form a system of linear equations which enables us to find $\Delta c_{j}(n)$ by Cramér's rule because the determinant of the system is the wronskian $W(n+1)$ defined by (4.2). We have $W(n+1) \neq 0$ (by Step 2) so that $\Delta c_{j}(n)=\frac{\Delta_{j}(n+1)}{W(n+1)}$ since $\Delta_{j}(n)=D_{j}(n) \frac{g(n-1)}{Q_{\ell}(1-n)}$ is equal to the following determinant:

$$
\left|\begin{array}{ccccccc}
u_{1}(n+\ell-1) & \cdots & u_{j-1}(n+\ell-1) & \frac{g(n-1)}{Q_{\ell}(1-n)} & u_{j+1}(n+\ell-1) & \cdots & u_{\ell}(n+\ell-1) \\
u_{1}(n+\ell-2) & \cdots & u_{j-1}(n+\ell-2) & 0 & u_{j+1}(n+\ell-2) & \cdots & u_{\ell}(n+\ell-2) \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
u_{1}(n) & \cdots & u_{j-1}(n) & 0 & u_{j+1}(n) & \cdots & u_{\ell}(n)
\end{array}\right| .
$$

Therefore we obtain

$$
c_{j}(n)=c_{j}(m)+\sum_{k=m}^{n-1} \Delta c_{j}(k)=c_{j}(m)+\sum_{k=m+1}^{n} \frac{\Delta_{j}(k)}{W(k)}, \quad n \geq m
$$

and finally

$$
v(n)=\sum_{j=1}^{\ell}\left(c_{j}(m)+\sum_{k=m+1}^{n} \frac{\Delta_{j}(k)}{W(k)}\right) u_{j}(n) .
$$

Conversely, the same computations prove that any sequence defined in this way (with arbitrary constants $c_{j}(m), 1 \leq j \leq \ell$) is a solution of the inhomogeneous linear recurrence relation (4.3).
Step 4: Proof that $\sum_{n=m+1}^{\infty} \frac{D_{j}(n)}{Q_{\ell}(1-n)} z^{n}$ is a G-function.
Expanding the determinant in (4.4) we see that $\sum_{n=m+1}^{\infty} D_{j}(n) z^{n}$ is a \mathbb{Z}-linear combination of Hadamard (i.e., coefficientwise) products of G-functions $\sum_{n=m+1}^{\infty} u_{h}(n+i) z^{n}$, so that it is a G-function. On the other hand $\sum_{n=m+1}^{\infty} \frac{z^{n}}{Q_{\ell}(1-n)}$ is a G-function because Q_{ℓ} is split over the rationals (see Step 2) so that finally $\sum_{n=m+1}^{\infty} \frac{D_{j}(n)}{Q_{\ell}(1-n)} z^{n}$ is a G-function for any j.

5 Properties of $F_{n}^{[s]}(z)$

Throughout this section, let \mathbb{K} be a number field, and $L=\sum_{j=0}^{\mu} P_{j}(z)\left(\frac{d}{d z}\right)^{j}$ a G-operator with $P_{j} \in \mathbb{K}[X]$ and $P_{\mu} \neq 0$. We denote by δ the degree of L (i.e., $\delta=\operatorname{deg}\left(P_{\mu}\right)$ since ∞ is a regular singularity of L), by $\omega \geq 0$ the multiplicity of 0 as a singularity of L (i.e., the order of vanishing of P_{μ} at 0), and we let $\ell=\delta-\omega$.

Let $F(z)=\sum_{k=0}^{\infty} A_{k} z^{k}$, with $A_{k} \in \mathbb{K}$, be such that $L F=0$; then F is a G-function. Of course, starting with such a G-function F, one may choose for L a differential operator, of minimal order, such that $L F=0$; then L is a G-operator.

Recall that we let $\theta=z \frac{d}{d z}$ and that

$$
F_{n}^{[s]}(z)=\sum_{k=0}^{\infty} \frac{A_{k}}{(k+n)^{s}} z^{k+n}
$$

5.1 The main proposition

As in the introduction, we denote by $\widehat{f}_{1}, \ldots, \widehat{f}_{\eta}$ the integer exponents of L at ∞, with $\eta=0$ if there isn't any.

Proposition 1. Let $m \geq 1$ be such that

$$
\begin{equation*}
m>\widehat{f_{j}}-\ell \text { for all } 1 \leq j \leq \eta \tag{5.1}
\end{equation*}
$$

Then for any $s, n \geq 1$:
(i) There exist some algebraic numbers $\kappa_{j, t, s, n} \in \mathbb{K}$, and some polynomials $K_{j, s, n}(z) \in$ $\mathbb{K}[z]$ of degree at most $n+s(\ell-1)$, such that

$$
\begin{equation*}
F_{n}^{[s]}(z)=\sum_{t=1}^{s} \sum_{j=1}^{\ell+m-1} \kappa_{j, t, s, n} F_{j}^{[t]}(z)+\sum_{j=0}^{\mu-1} K_{j, s, n}(z)\left(\theta^{j} F\right)(z) . \tag{5.2}
\end{equation*}
$$

(ii) All Galois conjugates of all the numbers $\kappa_{j, t, s, n}(j \leq \ell+m-1, t \leq s)$, and all Galois conjugates of all the coefficients of the polynomials $K_{j, s, n}(z)(j \leq \mu-1)$, have modulus less than $H(F, s, n)>0$ with

$$
\limsup _{n \rightarrow+\infty} H(F, s, n)^{1 / n} \leq C_{1}(F)^{s}
$$

for some constant $C_{1}(F) \geq 1$ independent of s.
(iii) Let $D(F, s, n)>0$ denote the least common denominator of the algebraic numbers $\kappa_{j, t, s, n^{\prime}}\left(j \leq \ell+m-1, t \leq s, n^{\prime} \leq n\right)$ and of the coefficients of the polynomials $K_{j, s, n^{\prime}}(z)$ ($\left.j \leq \mu-1, n^{\prime} \leq n\right)$; then

$$
\limsup _{n \rightarrow+\infty} D(F, s, n)^{1 / n} \leq C_{2}(F)^{s}
$$

for some constant $C_{2}(F) \geq 1$ independent of s.

The constants $C_{1}(F)$ and $C_{2}(F)$ are effective and could be computed in principle. However, their values are complicated to write down and do not add much value.

Of course the most interesting case of Proposition 1 is when $m=\max \left(1, \widehat{f}_{1}+1-\right.$ $\left.\ell, \ldots, \widehat{f}_{\eta}+1-\ell\right)$, that is $m=\ell_{0}-\ell+1$ where ℓ_{0} was defined in the introduction: we obtain in this way (1.7). However, in the proof we shall use greater values of m (see $\S 5.3$ below). Our main tool will be a linear recurrence relation satisfied by $F_{n}^{[s]}(z)$.

5.2 A linear recurrence relation satisfied by $F_{n}^{[s]}(z)$

Let Q_{0}, \ldots, Q_{ℓ} and $d_{j}=\operatorname{deg}\left(Q_{j}\right)$ be as in Lemma 1 .
Lemma 3. For any fixed integer $s \geq 1$, the sequence of functions $\left(F_{n}^{[s]}(z)\right)_{n \geq 1}$ is solution of the inhomogeneous recurrence relation

$$
\begin{equation*}
\sum_{j=0}^{\ell} Q_{j}(-n) F_{n+j}^{[s]}(z)=\sum_{j=0}^{\ell} \sum_{t=1}^{s-1} \beta_{j, n, t, s} F_{n+j}^{[t]}(z)+\sum_{j=0}^{\ell} z^{n+j} B_{j, n, s}(\theta) F(z), \quad n \geq 1 \tag{5.3}
\end{equation*}
$$

where $\beta_{j, n, t, s} \in \mathcal{O}_{\mathbb{K}}$ and each polynomial $B_{j, n, s}(X) \in \mathcal{O}_{\mathbb{K}}[X]$ has degree $\leq d_{j}-s$.
Moreover, letting $B_{j, n, s}(X)=\sum_{q=0}^{d_{j}-s} b_{j, n, s, q} X^{q}$ the coefficients $\beta_{j, n, t, s}$ and $b_{j, n, s, q}$ are polynomials in n, with coefficients in $\mathcal{O}_{\mathbb{K}}$ (depending on j, t, s, q), such that

$$
\operatorname{deg}\left(\beta_{j, n, t, s}\right) \leq d_{j}+t-s \text { and } \operatorname{deg}\left(b_{j, n, s, q}\right) \leq d_{j}-q-s
$$

In particular:

- If $s>\mu=\max \left(d_{0}, \ldots, d_{\ell}\right)$, then $B_{j, n, s}(X)=0$.
- If $t<s-d_{j}$ then $\beta_{j, n, t, s}=0$.

Proof. We prove (5.3) by induction on $s \geq 1$, and this will provide expressions for the various involved quantities. In the case $s=1$, we write $Q_{j}(x)=\sum_{m=0}^{d_{j}} \rho_{j, m} x^{m}$ with $\rho_{j, m} \in \mathcal{O}_{\mathbb{K}}$ for any j, m. For any integer $n \geq 1$, we have

$$
\begin{aligned}
0= & \int_{0}^{z} x^{n-1} L F(x) d x=\sum_{j=0}^{\ell} \sum_{m=0}^{d_{j}} \rho_{j, m} \int_{0}^{z} x^{n+j-1}(\theta+j)^{m} F(x) d x \\
& =\sum_{j=0}^{\ell} \sum_{m=0}^{d_{j}} \rho_{j, m} \sum_{p=0}^{m}\binom{m}{p} j^{m-p} \int_{0}^{z} x^{n+j-1} \theta^{p} F(x) d x
\end{aligned}
$$

because $(\theta+j)^{m}=\sum_{p=0}^{m}\binom{m}{p} j^{m-p} \theta^{p}$. After successive integrations by parts (with respect to θ; all the integrated parts vanish at $x=0$ because $n \geq 1$), we see that

$$
\begin{aligned}
& \int_{0}^{z} x^{n+j-1} \theta^{p} F(x) d x \\
& \qquad=z^{n+j} \sum_{q=0}^{p-1}(-1)^{p-q-1}(n+j)^{p-q-1} \theta^{q} F(z)+(-1)^{p}(n+j)^{p} \int_{0}^{z} x^{n+j-1} F(x) d x
\end{aligned}
$$

Since $\int_{0}^{z} x^{n+j-1} F(x) d x=F_{n+j}^{[1]}(z)$ we deduce that

$$
\begin{aligned}
& 0=\sum_{j=0}^{\ell} F_{n+j}^{[1]}(z) \sum_{m=0}^{d_{j}} \rho_{j, m} \sum_{p=0}^{m}\binom{m}{p}(-1)^{p}(n+j)^{p} j^{m-p} \\
&+\sum_{j=0}^{\ell} z^{n+j} \sum_{m=0}^{d_{j}} \rho_{j, m} \sum_{p=0}^{m}\binom{m}{p} j^{m-p} \sum_{q=0}^{p-1}(-1)^{p-q-1}(n+j)^{p-q-1} \theta^{q} F(z) .
\end{aligned}
$$

We now set for $0 \leq q \leq d_{j}-1$

$$
\begin{equation*}
b_{j, n, 1, q}=-\sum_{m=0}^{d_{j}} \rho_{j, m} \sum_{p=q+1}^{m}\binom{m}{p} j^{m-p}(-1)^{p-q}(n+j)^{p-q-1} \tag{5.4}
\end{equation*}
$$

which is a polynomial in n with coefficients in $\mathcal{O}_{\mathbb{K}}$ and degree at most $d_{j}-q-1$. Therefore $B_{j, n, 1}(X)=\sum_{q=0}^{d_{j}-1} b_{j, n, 1, q} X^{q}$ has degree $\leq d_{j}-1$ and coefficients in $\mathcal{O}_{\mathbb{K}}$. Since

$$
\sum_{m=0}^{d_{j}} \rho_{j, m} \sum_{p=0}^{m}\binom{m}{p}(-1)^{p}(n+j)^{p} j^{m-p}=\sum_{m=0}^{d_{j}} \rho_{j, m}(-n)^{m}=Q_{j}(-n),
$$

we then deduce that

$$
\sum_{j=0}^{\ell} Q_{j}(-n) F_{n+j}^{[1]}(z)=\sum_{j=0}^{\ell} z^{n+j} B_{j, n, 1}(\theta) F(z)
$$

for any integer $n \geq 1$: this proves (5.3) for $s=1$.
Let us assume that Lemma 3 holds for some $s \geq 1$. Then, since $\int_{0}^{z} \frac{1}{x} F_{n+j}^{[s]}(x) d x=$ $F_{n+j}^{[s+1]}(z)$, we have

$$
\sum_{j=0}^{\ell} Q_{j}(-n) F_{n+j}^{[s+1]}(z)=\sum_{j=0}^{\ell} \sum_{t=1}^{s-1} \beta_{j, n, t, s} F_{n+j}^{[t+1]}(z)+\sum_{j=0}^{\ell} \int_{0}^{z} x^{n+j-1} B_{j, n, s}(\theta) F(x) d x
$$

Now recall from the case $s=1$ that

$$
\int_{0}^{z} x^{n+j-1} \theta^{q} F(x) d x=z^{n+j} \sum_{h=0}^{q-1}(-1)^{q-h-1}(n+j)^{q-h-1} \theta^{h} F(z)+(-1)^{q}(n+j)^{q} F_{n+j}^{[1]}(z) .
$$

Hence,

$$
\begin{aligned}
& \sum_{j=0}^{\ell} Q_{j}(-n) F_{n+j}^{[s+1]}(z) \\
& =\sum_{j=0}^{\ell} \sum_{t=2}^{s} \beta_{j, n, t-1, s} F_{n+j}^{[t]}(z)+\sum_{j=0}^{\ell} F_{n+j}^{[1]}(z)\left(\sum_{q=0}^{d_{j}-s}(-1)^{q}(n+j)^{q} b_{j, n, s, q}\right) \\
& \\
& \quad+\sum_{j=0}^{\ell} z^{n+j} \sum_{q=0}^{d_{j}-s} b_{j, n, s, q} \sum_{h=0}^{q-1}(-1)^{q-h-1}(n+j)^{q-h-1} \theta^{h} F(z) .
\end{aligned}
$$

Eq. (5.3) follows for $s+1 \geq 2$ with

$$
\beta_{j, n, t, s+1}=\left\{\begin{array}{l}
\sum_{q=0}^{d_{j}-s}(-1)^{q}(n+j)^{q} b_{j, n, s, q} \quad \text { for } \quad t=1 \\
\beta_{j, n, t-1, s} \quad \text { for } \quad 2 \leq t \leq s
\end{array}\right.
$$

and

$$
B_{j, n, s+1}(X)=\sum_{h=0}^{d_{j}-s-1}\left(\sum_{q=h+1}^{d_{j}-s}(-1)^{q-h-1}(n+j)^{q-h-1} b_{j, n, s, q}\right) X^{h}
$$

In particular,

$$
b_{j, n, s+1, h}=\sum_{q=h+1}^{d_{j}-s}(-1)^{q-h-1}(n+j)^{q-h-1} b_{j, n, s, q}, \quad 0 \leq h \leq d_{j}-s-1
$$

This completes the proof of Lemma 3, with explicit formulas.

5.3 Proof of Proposition 1

Let \mathbb{K}, F, L be as in the statement of Proposition 1 , and Q_{0}, \ldots, Q_{ℓ} be as in Lemma 1.
To begin with, we claim that if m satisfies (5.1) and Proposition 1 holds for $m+1$, then Proposition 1 holds for m. Indeed Lemma 1 asserts that the integer roots of $Q_{\ell}(-X+\ell)$ are $\widehat{f}_{1}, \ldots, \widehat{f}_{\eta}$ so that (5.1) yields $Q_{\ell}(-m) \neq 0$. By induction on $s \geq 0$, Lemma 3 implies that $F_{m+\ell}^{[s]}(z)$ is a linear combination of $F_{m+j}^{[t]}(z)(0 \leq j \leq \ell-1,1 \leq t \leq s$, with coefficients in $\mathbb{K})$ and $\theta^{j} F(z)(0 \leq j \leq \mu-1$, with coefficients in $\mathbb{K}[z]$ of degree at most $m+\ell)$. Then for any $n \geq 1$ we may replace all $F_{m+\ell}^{[s]}(z)$ with this expression in the expansion (5.2) provided by Proposition 1 with $m+1$. This gives an expansion of the form (5.2) with m, and the new values of $\kappa_{j, t, s, n}$ and $K_{j, s, n}(z)$ are easily proved to satisfy also (ii) and (iii). This concludes the proof of the claim.

We denote by $\widehat{e}_{1}, \ldots, \widehat{e}_{\kappa}$ the integer exponents of L at 0 ; we have $\kappa \geq 1$ because $L F(z)=0$. Recall that $\widehat{f}_{1}, \ldots, \widehat{f}_{\eta}$ are the integer exponents of L at ∞, with $\eta=0$ if there isn't any. The claim shows that in proving Proposition 1 we may assume that m is large; we shall assume from now on that

$$
\begin{equation*}
m>-\widehat{e}_{i} \text { and } m>\widehat{f}_{j}-\ell \text { for all } 1 \leq i \leq \kappa, 1 \leq j \leq \eta \tag{5.5}
\end{equation*}
$$

Then we are in the setting of $\S 4.1$; in particular, $Q_{0}(-n) \neq 0$ and $Q_{\ell}(-n) \neq 0$ for any integer $n \geq m$. As in $\S 4.1$ we denote by $\left(u_{1}(n)\right)_{n \geq m}, \ldots,\left(u_{\ell}(n)\right)_{n \geq m}$ a basis of the space of solutions of the homogeneous recurrence relation $\sum_{j=0}^{\ell} Q_{j}(-n) U(n+j)=0, n \geq m$, such that $u_{j}(n) \in \mathbb{K}$ for any j and any n. We also define $W(n)$ and $D_{j}(n)$ as in $\S 4.1$ (see (4.2) and (4.4)). Lemma 2 shows that $\sum_{n=m}^{\infty} \frac{z^{n}}{W(n)}, \sum_{n=m}^{\infty} u_{j}(n) z^{n}$ and $\sum_{n=m+1}^{\infty} \frac{D_{j}(n)}{Q_{\ell}(1-n)} z^{n}$ (with $1 \leq j \leq \ell$) are G-functions. Therefore letting $\delta_{n}>0$ denote a common denominator of the algebraic numbers $\frac{1}{W(k)}, \frac{D_{j}(k)}{Q_{\ell}(1-k)}(m+1 \leq k \leq n, 1 \leq j \leq \ell), u_{j}(k)(m \leq k \leq n$, $1 \leq j \leq \ell$), we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \delta_{n}^{3 / n} \leq C_{2}(F) \tag{5.6}
\end{equation*}
$$

where $C_{2}(F)$ is a constant that depends only on F. Since $\delta_{n} \geq 1$, we have $C_{2}(F) \geq 1$. For the same reason we have

$$
\begin{equation*}
\max _{m+1 \leq k \leq n} \max \left(\left|u_{j}(k)\right|, \frac{1}{|W(k)|}, \frac{\left|D_{j}(k)\right|}{\left|Q_{\ell}(1-k)\right|}\right) \leq C_{1}(F)^{n(1+o(1))} \tag{5.7}
\end{equation*}
$$

as $n \rightarrow \infty$, for any $j \leq \ell$, where $C_{1}(F)$ is a constant that depends only on F. Increasing $C_{1}(F)$ if necessary, we may assume that $C_{1}(F) \geq 1$.

By induction on $s \geq 1$ we shall construct algebraic numbers $\kappa_{j, t, s, n} \in \mathbb{K}$ and polynomials $K_{j, s, n}(z) \in \mathbb{K}[z]$ of degree at most $\ell+n-1$ such that for any $n \geq 1$,

$$
\begin{equation*}
F_{n}^{[s]}(z)=\sum_{t=1}^{s} \sum_{j=1}^{\ell+m-1} \kappa_{j, t, s, n} F_{j}^{[t]}(z)+\sum_{j=0}^{\mu-1} K_{j, s, n}(z) \theta^{j} F(z) \tag{5.8}
\end{equation*}
$$

with the additional properties

$$
\begin{equation*}
d^{s} \delta_{n+s(\ell-1)}^{3 s} \kappa_{j, t, s, n^{\prime}} \in \mathcal{O}_{\mathbb{K}} \text { and } d^{s} \delta_{n+s(\ell-1)}^{3 s} K_{j, s, n^{\prime}}(z) \in \mathcal{O}_{\mathbb{K}}[z] \text { for any } n^{\prime} \leq n \tag{5.9}
\end{equation*}
$$

where $d \geq 1$ depends only on F but neither on n nor on s. Together with (5.6) this implies assertion (iii) of Proposition 1; our construction (in which all formulas are explicit) yields also assertion (ii) using (5.7).

The construction of $\kappa_{j, t, s, n}$ and $K_{j, s, n}(z)$ is trivial if $n \leq \ell+m-1$: it is enough to choose $K_{s, j, n}(z)=0$ for any s, j, and $\kappa_{j, t, s, n}$ equal to 1 if $j=n$ and $t=s$, equal to 0 otherwise. Therefore we may restrict now to the case $n \geq \ell+m$.

We shall prove at the same time the initial step $(s=1)$ and the inductive step. With this aim in mind we let $s \geq 0$ and we shall prove the property with $s+1$ (i.e., construct
explicitly $\kappa_{j, t, s+1, n}$ and $K_{j, s+1, n}(z)$ such that (5.8) and (5.9) hold); if $s=0$ the proof is unconditional, whereas if $s \geq 1$ the property with s will be used.

By Lemma 3, the sequence of functions $\left(F_{n}^{[s+1]}(z)\right)_{n \geq 1}$ is solution of the inhomogeneous recurrence relation

$$
\begin{equation*}
\sum_{j=0}^{\ell} Q_{j}(-n) F_{n+j}^{[s+1]}(z)=g_{s+1}(n), \quad n \geq 1 \tag{5.10}
\end{equation*}
$$

with

$$
\begin{equation*}
g_{s+1}(n)=\sum_{j=0}^{\ell} \sum_{t=1}^{s} \beta_{j, n, t, s+1} F_{n+j}^{[t]}(z)+\sum_{j=0}^{\ell} z^{n+j} B_{j, n, s+1}(\theta) F(z) \tag{5.11}
\end{equation*}
$$

where $\beta_{j, n, t, s+1} \in \mathcal{O}_{\mathbb{K}}$ and each polynomial $B_{j, n, s+1}(X) \in \mathcal{O}_{\mathbb{K}}[X]$ has degree $\leq d_{j}-s-1$. Lemma 2 shows that there exist some functions $\chi_{s+1, j}(z)$ such that for all $n \geq m$,

$$
\begin{equation*}
F_{n}^{[s+1]}(z)=\sum_{j=1}^{\ell} \chi_{s+1, j}(z) u_{j}(n)+\sum_{j=1}^{\ell}\left(\sum_{k=m+1}^{n} \frac{\Delta_{s+1, j}(k)}{W(k)}\right) u_{j}(n), \tag{5.12}
\end{equation*}
$$

with (using (5.11))

$$
\begin{equation*}
\frac{\Delta_{s+1, j}(k)}{W(k)}=\frac{D_{j}(k)}{W(k) Q_{\ell}(1-k)}\left(\sum_{q=0}^{\ell} \sum_{t=1}^{s} \beta_{q, k-1, t, s+1} F_{k-1+q}^{[t]}(z)+\sum_{q=0}^{\ell} z^{k+q-1} B_{q, k-1, s+1}(\theta) F(z)\right) \tag{5.13}
\end{equation*}
$$

The point here is that $F_{n}^{[s+1]}(z), g_{s+1}(n), \Delta_{s+1, j}(k)$ depend on z, whereas $Q_{j}(-n)$ does not: the homogeneous recurrence relation (4.1) and $u_{j}(n), W(k), D_{j}(k)$ do not depend on z. The functions $\chi_{s+1, j}(z)$ can be determined as follows. We use (5.12) for $n=m, \ldots, m+\ell-1$ so that the linear system of ℓ equations

$$
\sum_{j=1}^{\ell} \chi_{s+1, j}(z) u_{j}(n)=F_{n}^{[s+1]}(z)-\sum_{h=1}^{\ell}\left(\sum_{k=m+1}^{n} \frac{\Delta_{s+1, h}(k)}{W(k)}\right) u_{h}(n)
$$

is solved by Cramér's rule. Indeed, the determinant of the system is $W(m)$ and accordingly a non-zero element of \mathbb{K} by Lemma 2 . Therefore, for any j there exist some $\alpha_{p, j} \in \mathbb{K}$ (independent of s) such that

$$
\begin{equation*}
\chi_{s+1, j}(z)=\sum_{p=m}^{\ell+m-1} \alpha_{p, j}\left(F_{p}^{[s+1]}(z)-\sum_{h=1}^{\ell}\left(\sum_{k=m+1}^{p} \frac{\Delta_{s+1, h}(k)}{W(k)}\right) u_{h}(p)\right) . \tag{5.14}
\end{equation*}
$$

Using this equality and (5.13) into (5.12) yields, for any $n \geq m$:

$$
\begin{equation*}
F_{n}^{[s+1]}(z)=c_{1}+c_{2}+c_{3}+c_{4}+c_{5} \tag{5.15}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{1}=\sum_{j=1}^{\ell} u_{j}(n) \sum_{p=m}^{\ell+m-1} \alpha_{p, j} F_{p}^{[s+1]}(z), \\
& c_{2}=-\sum_{j=1}^{\ell} u_{j}(n) \sum_{p=m}^{\ell+m-1} \alpha_{p, j} \sum_{h=1}^{\ell} u_{h}(p) \sum_{k=m+1}^{p} \sum_{q=0}^{\ell} \sum_{t=1}^{s} \frac{D_{h}(k)}{W(k) Q_{\ell}(1-k)} \beta_{q, k-1, t, s+1} F_{k-1+q}^{[t]}(z), \\
& c_{3}=-\sum_{j=1}^{\ell} u_{j}(n) \sum_{p=m}^{\ell+m-1} \alpha_{p, j} \sum_{h=1}^{\ell} u_{h}(p) \sum_{k=m+1}^{p} \frac{D_{h}(k)}{W(k) Q_{\ell}(1-k)} \sum_{q=0}^{\ell} z^{k-1+q} B_{q, k-1, s+1}(\theta) F(z), \\
& c_{4}=\sum_{j=1}^{\ell} u_{j}(n) \sum_{k=m+1}^{n} \sum_{q=0}^{\ell} \sum_{t=1}^{s} \frac{D_{j}(k)}{W(k) Q_{\ell}(1-k)} \beta_{q, k-1, t, s+1} F_{k-1+q}^{[t]}(z), \\
& c_{5}=\sum_{j=1}^{\ell} u_{j}(n) \sum_{k=m+1}^{n} \frac{D_{j}(k)}{W(k) Q_{\ell}(1-k)} \sum_{q=0}^{\ell} z^{k-1+q} B_{q, k-1, s+1}(\theta) F(z) .
\end{aligned}
$$

If $s=0$ then c_{2} and c_{4} vanish; otherwise we apply (5.8) with each $t \in\{1, \ldots, s\}$ and get

$$
\begin{aligned}
c_{2}= & -\sum_{j=1}^{\ell} u_{j}(n) \sum_{p=m}^{\ell+m-1} \alpha_{p, j} \sum_{h=1}^{\ell} u_{h}(p) \sum_{k=m+1}^{p} \sum_{q=0}^{\ell} \sum_{t=1}^{s} \frac{D_{h}(k)}{W(k) Q_{\ell}(1-k)} \beta_{q, k-1, t, s+1} \\
& \left(\sum_{t^{\prime}=1}^{t} \sum_{j^{\prime}=1}^{\ell+m-1} \kappa_{j^{\prime}, t^{\prime}, t, k-1+q} F_{j^{\prime}}^{\left[t^{\prime}\right]}(z)+\sum_{j^{\prime}=0}^{\mu-1} K_{j^{\prime}, t, k-1+q}(z) \theta^{j^{\prime}} F(z)\right), \\
c_{4}= & \sum_{j=1}^{\ell} u_{j}(n) \sum_{k=m+1}^{n} \sum_{q=0}^{\ell} \sum_{t=1}^{s} \frac{D_{j}(k)}{W(k) Q_{\ell}(1-k)} \beta_{q, k-1, t, s+1} \\
& \left(\sum_{t^{\prime}=1}^{t} \sum_{j^{\prime}=1}^{\ell+m-1} \kappa_{j^{\prime}, t^{\prime}, t, k-1+q} F_{j^{\prime}}^{\left[t^{\prime}\right]}(z)+\sum_{j^{\prime}=0}^{\mu-1} K_{j^{\prime}, t, k-1+q}(z) \theta^{j^{\prime}} F(z)\right) .
\end{aligned}
$$

We shall now define the coefficients $\kappa_{p, t^{\prime}, s+1, n}$ and $K_{j^{\prime}, s+1, n}(z)$ in such a way that (5.15) reads

$$
F_{n}^{[s+1]}(z)=\sum_{t^{\prime}=1}^{s+1} \sum_{j^{\prime}=1}^{\ell+m-1} \kappa_{j^{\prime}, t^{\prime}, s+1, n} F_{j^{\prime}}^{\left[t^{\prime}\right]}(z)+\sum_{j^{\prime}=0}^{\mu-1} K_{j^{\prime}, s+1, n}(z) \theta^{j^{\prime}} F(z) .
$$

Taking c_{1} into account we let

$$
\kappa_{p, s+1, s+1, n}=\left\{\begin{array}{l}
0 \text { if } 1 \leq p \leq m-1 \\
\sum_{j=1}^{\ell} \alpha_{p, j} u_{j}(n) \text { if } m \leq p \leq \ell+m-1
\end{array}\right.
$$

If $s \geq 1$ then considering c_{2} and c_{4} we let, for any t^{\prime}, j^{\prime} such that $1 \leq t^{\prime} \leq s$ and
$1 \leq j^{\prime} \leq \ell+m-1:$

$$
\begin{aligned}
& \kappa_{j^{\prime}, t^{\prime}, s+1, n}= \\
&-\sum_{j=1}^{\ell} u_{j}(n) \sum_{p=m}^{\ell+m-1} \alpha_{p, j} \sum_{h=1}^{\ell} u_{h}(p) \sum_{k=m+1}^{p} \sum_{q=0}^{\ell} \sum_{t=t^{\prime}}^{s} \frac{D_{h}(k)}{W(k) Q_{\ell}(1-k)} \beta_{q, k-1, t, s+1} \kappa_{j^{\prime}, t^{\prime}, t, k-1+q} \\
&+\sum_{j=1}^{\ell} u_{j}(n) \sum_{k=m+1}^{n} \sum_{q=0}^{\ell} \sum_{t=t^{\prime}}^{s} \frac{D_{j}(k)}{W(k) Q_{\ell}(1-k)} \beta_{q, k-1, t, s+1} \kappa_{j^{\prime}, t^{\prime}, t, k-1+q}
\end{aligned}
$$

Now recall that we assume $n \geq \ell+m$. Then in each term of the sum we have $k-1+q \leq$ $n+\ell-1$ so that (5.9) yields $d^{s} \delta_{n+(s+1)(\ell-1)}^{3 s} \kappa_{j^{\prime}, t^{\prime}, t, k-1+q} \in \mathcal{O}_{\mathbb{K}}$. By definition of $\delta_{n+(s+1)(\ell-1)}$ we obtain in both cases ($s=0$ and $s \geq 1$) that
$d^{s+1} \delta_{n+(s+1)(\ell-1)}^{3(s+1)} \kappa_{j^{\prime}, t^{\prime}, s+1, n^{\prime}} \in \mathcal{O}_{\mathbb{K}}$ for any $n^{\prime} \leq n$, any $1 \leq j^{\prime} \leq \ell+m-1$ and any $1 \leq t^{\prime} \leq s+1$, where $d \geq 1$ is chosen (in terms of F only, independently from n and s) such that

$$
d \alpha_{p, j} u_{h}(p) \in \mathcal{O}_{\mathbb{K}} \text { for any } m \leq p \leq \ell+m-1 \text { and any } 1 \leq j, h \leq \ell
$$

On the other hand, writing $B_{j, k, s+1}(X)=\sum_{q=0}^{\mu-1} b_{j, k, s+1, q} X^{q}$ (so that $b_{j, k, s+1, q}=0$ if $\left.\operatorname{deg} B_{j, k, s+1}<q \leq \mu-1\right)$ and considering the coefficients of $\theta^{j^{\prime}}$ in c_{3}, c_{5}, c_{2} and c_{4} we let for any j^{\prime} with $0 \leq j^{\prime} \leq \mu-1$:

$$
\begin{aligned}
& K_{j^{\prime}, s+1, n}(z)=-\sum_{j=1}^{\ell} u_{j}(n) \sum_{p=m}^{\ell+m-1} \alpha_{p, j} \sum_{h=1}^{\ell} u_{h}(p) \sum_{k=m+1}^{p} \frac{D_{h}(k)}{W(k) Q_{\ell}(1-k)} \sum_{q=0}^{\ell} z^{k-1+q} b_{q, k-1, s+1, j^{\prime}} \\
& \quad+\sum_{j=1}^{\ell} u_{j}(n) \sum_{k=m+1}^{n} \frac{D_{j}(k)}{W(k) Q_{\ell}(1-k)} \sum_{q=0}^{\ell} z^{k-1+q} b_{q, k-1, s+1, j^{\prime}} \\
& \quad-\sum_{j=1}^{\ell} u_{j}(n) \sum_{p=m}^{\ell+m-1} \alpha_{p, j} \sum_{h=1}^{\ell} u_{h}(p) \sum_{k=m+1}^{p} \sum_{q=0}^{\ell} \sum_{t=1}^{s} \frac{D_{h}(k)}{W(k) Q_{\ell}(1-k)} \beta_{q, k-1, t, s+1} K_{j^{\prime}, t, k-1+q}(z) \\
& \quad+\sum_{j=1}^{\ell} u_{j}(n) \sum_{k=m+1}^{n} \sum_{q=0}^{\ell} \sum_{t=1}^{s} \frac{D_{j}(k)}{W(k) Q_{\ell}(1-k)} \beta_{q, k-1, t, s+1} K_{j^{\prime}, t, k-1+q}(z) .
\end{aligned}
$$

Then we have
$d^{s+1} \delta_{n+(s+1)(\ell-1)}^{3(s+1)} K_{j^{\prime}, s+1, n^{\prime}}(z) \in \mathcal{O}_{\mathbb{K}}[X]$ for any $n^{\prime} \leq n$ and $\operatorname{deg}\left(K_{j^{\prime}, s+1, n}\right) \leq n+(s+1)(\ell-1)$ for any j^{\prime}.

At last assertion (ii) of Proposition 1 follows also from these formulas, using Lemma 3 and (5.7).

6 Proof of Theorem 3

In this section, we introduce a power series that will play the usual role of an auxiliary function in transcendance theory. We denote by $R>0$ the radius of convergence of $F(z)=\sum_{k=0}^{\infty} A_{k} z^{k}$.

Let $r, S \geq 0$ be integers such that $r \leq S$. Let us define the following auxiliary series, for $n \geq 0$:

$$
\begin{aligned}
T_{S, r, n}(z) & =n!^{S-r} \sum_{k=0}^{\infty} \frac{k(k-1) \cdots(k-r n+1)}{(k+1)^{S}(k+2)^{S} \cdots(k+n+1)^{S}} A_{k} z^{-k} \\
& =n!^{S-r} \sum_{k=0}^{\infty} \frac{(k-r n+1)_{r n}}{(k+1)_{n+1}^{S}} A_{k} z^{-k} .
\end{aligned}
$$

It converges for any z such that $|z|>1 / R$. If $A_{k}=1$ for all $k \geq 0$, we recover the series $N_{n}(z)$ in [31], up to a factor of z.

As in $\S 5$ we let $\theta=z \frac{d}{d z}$, and as in the introduction we let $\ell_{0}=\max \left(\ell, \widehat{f}_{1}, \ldots, \widehat{f_{\eta}}\right)$ where $\widehat{f}_{1}, \ldots, \widehat{f}_{\eta}$ are the integer exponents of L at ∞ and ℓ is defined as in Lemma 1.

6.1 A linear form

We now make the connection between $T_{S, r, n}(z)$ and the functions $F_{n}^{[s]}(z)$.
Lemma 4. Let us assume that $n \geq \ell_{0}$. There exist some polynomials $C_{u, s, n}(X) \in \mathbb{K}[X]$ and $\widetilde{C}_{u, n}(X) \in \mathbb{K}[X]$ of respective degrees $\leq n+1$ and $\leq n+1+S(\ell-1)$ such that, for any z such that $|z|>1 / R$, we have

$$
T_{S, r, n}(z)=\sum_{u=1}^{\ell_{0}} \sum_{s=1}^{S} C_{u, s, n}(z) F_{u}^{[s]}(1 / z)+\sum_{u=0}^{\mu-1} \widetilde{C}_{u, n}(z) z^{-S(\ell-1)}\left(\theta^{u} F\right)(1 / z)
$$

Remark 2. Since the Taylor expansion of $T_{S, r, n}(z)$ has order $\geq r n+1$ at $z=\infty$, this lemma shows that $T_{S, r, n}(z)$ can be interpreted has an explicit Padé-type approximant at $z=\infty$ for the functions $F_{u}^{[s]}(1 / z)$ and $\left(\theta^{u} F\right)(1 / z)$. We do not know if it is possible to find an explicit Padé approximation problem of which $T_{S, r, n}(z)$ is the unique solution up to proportionality.

Proof. We have the partial fractions expansion in k :

$$
\begin{equation*}
n!^{S-r} \frac{k(k-1) \cdots(k-r n+1)}{(k+1)^{S}(k+2)^{S} \cdots(k+n+1)^{S}}=\sum_{j=1}^{n+1} \sum_{s=1}^{S} \frac{c_{j, s, n}}{(k+j)^{s}} \tag{6.1}
\end{equation*}
$$

for some $c_{j, s, n} \in \mathbb{Q}$, which also depend on r and S. It follows that

$$
T_{S, r, n}(z)=\sum_{j=1}^{n+1} \sum_{s=1}^{S} c_{j, s, n} z^{j} F_{j}^{[s]}(1 / z)
$$

Since $n \geq \ell_{0}$, by Proposition 1 (with $m=\ell_{0}-\ell+1$) we have

$$
\begin{aligned}
T_{S, r, n}(z)= & \sum_{j=1}^{\ell_{0}} \sum_{s=1}^{S} c_{j, s, n} z^{j} F_{j}^{[s]}(1 / z)+\sum_{j=\ell+m}^{n+1} \sum_{s=1}^{S} c_{j, s, n} z^{j} F_{j}^{[s]}(1 / z) \\
= & \sum_{j=1}^{\ell_{0}} \sum_{s=1}^{S} c_{j, s, n} z^{j} F_{j}^{[s]}(1 / z) \\
& +\sum_{j=\ell+m}^{n+1} \sum_{s=1}^{S} c_{j, s, n} z^{j}\left(\sum_{t=1}^{s} \sum_{u=1}^{\ell_{0}} \kappa_{u, t, s, j} F_{u}^{[t]}(1 / z)+\sum_{u=0}^{\mu-1} K_{u, s, j}(1 / z)\left(\theta^{u} F\right)(1 / z)\right) \\
= & \sum_{u=1}^{\ell_{0}} \sum_{s=1}^{S} C_{u, s, n}(z) F_{u}^{[s]}(1 / z)+\sum_{u=0}^{\mu-1} \widetilde{C}_{u, n}(z) z^{-S(\ell-1)}\left(\theta^{u} F\right)(1 / z)
\end{aligned}
$$

where

$$
\begin{equation*}
C_{u, s, n}(z)=c_{u, s, n} z^{u}+\sum_{j=\ell+m}^{n+1} \sum_{\sigma=s}^{S} z^{j} c_{j, \sigma, n} \kappa_{u, s, \sigma, j} \tag{6.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{C}_{u, n}(z)=\sum_{j=\ell_{0}+1}^{n+1} \sum_{s=1}^{S} c_{j, s, n} z^{j+S(\ell-1)} K_{u, s, j}(1 / z) \tag{6.3}
\end{equation*}
$$

The assertion on the degree of these polynomials is clear from their expressions since $K_{u, s, j}(1 / z)$ is a polynomial in $1 / z$ of degree at most $j+s(\ell-1)$.

6.2 Analytic and arithmetic bounds for $C_{u, s, n}(z)$ and $\widetilde{C}_{u, n}(z)$

In this section, we prove two lemmas concerning the coefficients of the polynomials $C_{u, s, n}(z)$ and $\widetilde{C}_{u, n}(z)$. Given $\xi \in \overline{\mathbb{Q}}$ we denote by ξ the house of ξ, i.e. the maximum modulus of the Galois conjugates of ξ.

Lemma 5. For any $z \in \overline{\mathbb{Q}}$, we have

$$
\limsup _{n \rightarrow+\infty}\left(\max _{u, s} \mid \overline{C_{u, s, n}(z)}\right)^{1 / n} \leq C_{1}(F)^{S} r^{r} 2^{S+r+1} \max (1, \text { (च) })
$$

and

$$
\limsup _{n \rightarrow+\infty}\left(\max _{u} \widetilde{C}_{u, n}(z) \mid\right)^{1 / n} \leq C_{1}(F)^{S} r^{r} 2^{S+r+1} \max (1, \text { (ح) })
$$

Proof. In [31, Lemma 4], it is proved that the coefficients $c_{j, s, n}$ in (6.1) satisfy

$$
\left|c_{j, s, n}\right| \leq(r n+1) 2^{S}\left(r^{r} 2^{S+r+1}\right)^{n}
$$

for all j, s, n. (Our $c_{j, s, n}$ are noted $c_{s, j-1, n}$ in [31]). To conclude the proof, we simply use this bound in (6.2) and (6.3) together with Proposition 1(ii).

Lemma 6. Let $z \in \mathbb{K}$ and $q \in \mathbb{N}^{\star}$ be such that $q z \in \mathcal{O}_{\mathbb{K}}$. Then there exists a sequence $\left(\Delta_{n}\right)_{n \geq 1}$ of positive rational integers such that for any u, s :

$$
\Delta_{n} C_{u, s, n}(z) \in \mathcal{O}_{\mathbb{K}}, \quad \Delta_{n} \widetilde{C}_{u, n}(z) \in \mathcal{O}_{\mathbb{K}}, \quad \text { and } \quad \lim _{n \rightarrow+\infty} \Delta_{n}^{1 / n}=q C_{2}(F)^{S} e^{S}
$$

Proof. Let $d_{n}=\operatorname{lcm}\{1,2, \ldots, n\}$. The proof of [31, Lemme 5] shows that $d_{n}^{S} c_{j, s, n} \in \mathbb{Z}$ for all j, s, n; we recall that $\lim _{n} d_{n}^{1 / n}=e$. On the other hand, in Proposition 1(iii) we may assume that $D(F, S, n) \geq C_{2}(F)^{S n} / 2$, upon multiplying $D(F, S, n)$ with a suitable positive integer if necessary, so that $\lim _{n} D(F, S, n)^{1 / n}=C_{2}(F)^{S}$. Then the result follows again from (6.2) and (6.3).

6.3 Asymptotic estimate of the linear form

The following lemma will be proved in $\S 7$ (see $\S 7.3$) using singularity analysis and the saddle point method.

Lemma 7. Let $\alpha \in \mathbb{C}$ be such that $0<|\alpha|<R$. Assume that S is sufficiently large (with respect to F and α), and that r is the integer part of $\frac{S}{(\log S)^{2}}$. Then there exist some integers $Q \geq 1$ and $\lambda \geq 0$, real numbers a and κ, non-zero complex numbers c_{1}, \ldots, c_{Q}, and pairwise distinct complex numbers $\zeta_{1}, \ldots, \zeta_{Q}$, such that $\left|\zeta_{q}\right|=1$ for any q,

$$
T_{S, r, n}(1 / \alpha)=a^{n} n^{\kappa} \log (n)^{\lambda}\left(\sum_{q=1}^{Q} c_{q} \zeta_{q}^{n}+o(1)\right) \text { as } n \rightarrow \infty
$$

and

$$
0<a \leq \frac{1}{r^{S-r}}
$$

6.4 Completion of the proof of Theorem 3

Let α be a non-zero element of \mathbb{K} such that $|\alpha|<R$; choose $q \in \mathbb{N}^{\star}$ such that $q / \alpha \in \mathcal{O}_{\mathbb{K}}$. By Lemmas 5 and $6, p_{u, s, n}:=\Delta_{n} C_{u, s, n}(1 / \alpha)$ and $\tilde{p}_{u, n}:=\Delta_{n} \widetilde{C}_{u, n}(1 / \alpha)$ belong to $\mathcal{O}_{\mathbb{K}}$ and for any u, s we have

$$
\limsup _{n \rightarrow+\infty} \max \left(\left|p_{u, s, n}\right|^{1 / n},\left|\tilde{p}_{u, n}\right|^{1 / n}\right) \leq b:=q C_{1}(F)^{S} C_{2}(F)^{S} e^{S} r^{r} 2^{S+r+1} \max (1, \sqrt{1 / \alpha}) .
$$

Using Lemma 4 we consider

$$
\tau_{n}:=\Delta_{n} T_{S, r, n}(1 / \alpha)=\sum_{u=1}^{\ell_{0}} \sum_{s=1}^{S} p_{u, s, n} F_{u}^{[s]}(\alpha)+\sum_{u=0}^{\mu-1} \tilde{p}_{u, n} \alpha^{S(\ell-1)}\left(\theta^{u} F\right)(\alpha) .
$$

Choosing $r=\left[S /(\log S)^{2}\right]$, Lemmas 6 and 7 yield as $n \rightarrow \infty$:

$$
\tau_{n}=a_{0}^{n(1+o(1))}\left(\sum_{q=1}^{Q} c_{q} \zeta_{q}^{n}+o(1)\right) \text { with } 0<a_{0}<\frac{q C_{2}(F)^{S} e^{S}}{r^{S-r}}
$$

Let $\Psi_{\alpha, S}$ denote the \mathbb{K}-vector space spanned by the numbers $F_{u}^{[s]}(\alpha)$ and $\left(\theta^{v} F\right)(\alpha)$, $1 \leq u \leq \ell_{0}, 1 \leq s \leq S, 0 \leq v \leq \mu-1$. It follows from Theorem 4 that

$$
\operatorname{dim}_{\mathbb{K}}\left(\Psi_{\alpha, S}\right) \geq \frac{1}{[\mathbb{K}: \mathbb{Q}]}\left(1-\frac{\log \left(a_{0}\right)}{\log (b)}\right) .
$$

Now, as $S \rightarrow+\infty$,

$$
\log (b)=\log \left(2 e C_{1}(F) C_{2}(F)\right) S+o(S) \text { and } \log \left(a_{0}\right) \leq-S \log (S)+o(S \log S)
$$

so that

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{K}}\left(\Psi_{\alpha, S}\right) \geq \frac{1+o(1)}{[\mathbb{K}: \mathbb{Q}] \log \left(2 e C_{1}(F) C_{2}(F)\right)} \log (S) \tag{6.4}
\end{equation*}
$$

as $S \rightarrow+\infty$.
We recall that $\Phi_{\alpha, S}$ is the \mathbb{K}-vector space spanned by the numbers $F_{u}^{[s]}(\alpha)$ for $u \geq 1$ and $0 \leq s \leq S$. Now, taking $z=\alpha$ in Eq. (5.2) of Proposition 1 with $m=\ell_{0}-\ell+1$ (i.e. (1.7)) shows that in fact $\Phi_{\alpha, S}$ is a \mathbb{K}-subspace of $\Psi_{\alpha, S}$. In particular, for any $S \geq 0$,

$$
\operatorname{dim}_{\mathbb{K}}\left(\Phi_{\alpha, S}\right) \leq \operatorname{dim}_{\mathbb{K}}\left(\Psi_{\alpha, S}\right) \leq \ell_{0} S+\mu,
$$

which proves the right-hand side of (1.5) in Theorem 3. On the other hand, we also have

$$
\operatorname{dim}_{\mathbb{K}}\left(\Psi_{\alpha, S}\right) \leq \operatorname{dim}_{\mathbb{K}}\left(\Phi_{\alpha, S}\right)+\mu
$$

so that the lower bound (6.4) holds as well with $\Phi_{\alpha, S}$ instead of $\Psi_{\alpha, S}$ because μ is independent from S. This proves the left hand side of (1.5) in Theorem 3 with $C(F)=$ $\log \left(2 e C_{1}(F) C_{2}(F)\right)$.

7 Asymptotic behavior of $T_{S, r, n}(1 / \alpha)$

In this long section, we determine the precise asymptotic behavior of $T_{S, r, n}(1 / \alpha)$ as $n \rightarrow$ $+\infty$, under certain conditions on r and S. The result is presented as Proposition 2 at the very end of the section, and then we deduce from it Lemma 7 stated in $\S 6.3$. Before that, we state and prove many preliminary results.

7.1 Analytic representation of $T_{S, r, n}(1 / \alpha)$

Let $\alpha \in \mathbb{C}$ be such that $0<|\alpha|<R$. We start with

$$
\begin{aligned}
T_{S, r, n}(1 / \alpha) & =n!^{S-r} \sum_{k=0}^{\infty} \frac{(k-r n+1)_{r n}}{(k+1)_{n+1}^{S}} A_{k} \alpha^{k} \\
& =n!^{S-r} \sum_{k=0}^{\infty} \frac{(k-r n+1)_{r n}}{(k+1)_{n+1}^{S}}\left(\frac{1}{2 i \pi} \int_{\mathcal{C}} \frac{F(z)}{z^{k+1}} d z\right) \alpha^{k}
\end{aligned}
$$

Figure 1: The contour \mathcal{C}
where \mathcal{C} is any direct closed path surrounding 0 and enclosing none of the singularities of $F(z)$. We want to define a suitable analytic function $A(z)$ such that $A(k)=A_{k}$ for any large enough integer k.

Let ξ_{1}, \ldots, ξ_{p} denote the finite singularities of $F(z)$. We exclude from this list possible removable singularities which contribute 0 to (7.1) below; then $\xi_{j} \neq 0$ for any j. We have $p \geq 1$ because $F(z)$ is not a polynomial. Amongst these singularities, we will not distinguish poles from branch points.

Let $\vartheta \in\left(\frac{3 \pi}{4}, \pi\right)$ be such that $\arg \left(\xi_{j}\right) \not \equiv \vartheta \bmod 2 \pi$ for any j. We choose also $\varepsilon_{j} \in$ $\left(\frac{-\pi}{8}, \frac{\pi}{8}\right)$ such that the half-lines $L_{j}=\xi_{j}+\xi_{j} e^{i \varepsilon_{j}} \mathbb{R}_{+}$are pairwise disjoint, and disjoint from $L_{0}=e^{i \vartheta} \mathbb{R}_{+} ;$note that $\pi / 8$ (and $3 \pi / 4$ above) do not play a special role here. Then $\mathcal{D}=\mathbb{C} \backslash\left(L_{0} \cup L_{1} \cup \cdots \cup L_{p}\right)$ is simply connected; using analytic continuation F is welldefined on \mathcal{D}. Moreover for $z \in \mathbb{C} \backslash L_{0}$ we choose the value of $\arg (z)$ between $\vartheta-2 \pi$ and ϑ so that $\log (z)=\ln |z|+i \arg (z)$ is also well-defined on \mathcal{D}. Unless otherwise stated, we shall use this choice everywhere until the end of the proof of Lemma 9.

Since $F(z)$ is fuchsian, it has moderate growth at ∞, i.e there exists $u>0$ such that $|F(z)| \ll|z|^{u}$ as $z \rightarrow \infty, z \in \mathcal{D}$. Hence if $k>u$, we can "send" \mathcal{C} to ∞, see Figure 1. We then have

$$
\frac{1}{2 i \pi} \int_{\mathcal{C}} \frac{F(x)}{x^{k+1}} d x=\sum_{j=1}^{p} \frac{1}{2 i \pi} \int_{\widehat{L}_{j}} \frac{F(x)}{x^{k+1}} d x
$$

where for each j, \widehat{L}_{j} is a Hankel contour: from ∞ to ξ_{j} on one bank of the cut L_{j} (namely with $\arg \left(z-\xi_{j}\right)$ slightly less than $\left.\arg \left(\xi_{j}\right)+\varepsilon_{j}\right)$ and back to ∞ on the other bank, and always at a (constant) positive distance of L_{j}. We thus have the representation

$$
\begin{equation*}
A_{k}=\sum_{j=1}^{p} \frac{1}{2 i \pi} \int_{\widehat{L}_{j}} \frac{F(x)}{x^{k+1}} d x \tag{7.1}
\end{equation*}
$$

Note that if ξ_{j} is a pole of $F(z)$, then

$$
\frac{1}{2 i \pi} \int_{\widehat{L}_{j}} \frac{F(x)}{x^{k+1}} d x=\operatorname{Res}\left(\frac{F(x)}{x^{k+1}}, x=\xi_{j}\right)
$$

We define

$$
B_{j}(z)=\frac{1}{2 i \pi} \int_{\widehat{L}_{j}} \frac{F(x)}{x^{z+1}} d x=\frac{\xi_{j}^{-z}}{2 i \pi} \int_{\widetilde{L}_{j}} \frac{F\left(\xi_{j} x\right)}{x^{z+1}} d x
$$

where $\widetilde{L}_{j}=\xi_{j}^{-1} \widehat{L}_{j}$; recall that $-\frac{\pi}{8}<\varepsilon_{j}<\frac{\pi}{8}$ so that $\arg \left(\xi_{j} x\right)=\arg \left(\xi_{j}\right)+\arg (x)$ when x lies on \widetilde{L}_{j}. Each function $B_{j}(z)$ is analytic in $\operatorname{Re}(z)>u$ (at least). Note that \widetilde{L}_{j} is again a Hankel contour: from ∞ to 1 on the bank of the cut $1+e^{i \varepsilon_{j}} \mathbb{R}_{+}$where $\arg (x-1)$ is slightly less than ε_{j}, and back to ∞ on the other bank, always at a (constant) positive distance of the cut.

Lemma 8. (i) The function $A(z):=\sum_{j=1}^{p} B_{j}(z)$ is analytic in $\operatorname{Re}(z)>u$ and $A(k)=A_{k}$ for any integer $k>u$.
(ii) For each j, there exist $s_{j} \in \mathbb{N}, \beta_{j} \in \mathbb{Q}$ and $\kappa_{j} \in \mathbb{C} \backslash\{0\}$ such that for any t such that $\operatorname{Re}(t)>0$,

$$
\begin{equation*}
B_{j}(t n)=\kappa_{j} \frac{\log (n)^{s_{j}}}{(t n)^{\beta_{j}} \xi_{j}^{\text {tn }}}\left(1+\mathcal{O}\left(\frac{1}{\log (n)}\right)\right) \tag{7.2}
\end{equation*}
$$

as $n \rightarrow+\infty$. The implicit constant is uniform in any half-plane $\operatorname{Re}(t) \geq d$ where d is a fixed positive constant.
Proof. Item (i) is clear. Item (ii) is standard but we sketch the argument for the reader's convenience; it is essentially the same one as in the proof of [32, Theorem 3]. We fix $j \in\{1, \ldots, p\}$. Given $x \in \mathbb{C} \backslash \widetilde{L}_{j}$ we choose the value of $\arg (1-x)$ between $\varepsilon_{j}-\pi$ and $\varepsilon_{j}+\pi$; then $\log (1-x)$ and $(1-x)^{t}$ are well-defined (for any $\left.t \in \mathbb{C}\right)$. To make things more precise we shall write $\log _{j}$ when we refer to this choice, and \log when the previous one is used. By the André-Chudnovsky-Katz Theorem, in a neighborhood of $x=1, x \notin \widetilde{L}_{j}$, we have

$$
\begin{equation*}
F\left(\xi_{j} x\right)=\sum_{s \in S_{j}} \sum_{t \in T_{j}} \kappa_{j, s, t} \log _{j}(1-x)^{s}(1-x)^{t} F_{j, s, t}(1-x) \tag{7.3}
\end{equation*}
$$

where $\kappa_{j, s, t} \in \mathbb{C}, S_{j} \subset \mathbb{N}, T_{j} \subset \mathbb{Q}$ and $F_{s, t, j}(x)$ are G-functions. (In fact, the full strength of the André-Chudnovsky-Katz Theorem is not needed here: the theory of fuchsian equations ensures that (7.3) holds a priori with $T_{j} \subset \overline{\mathbb{Q}}$ and $F_{j, s, t}(x)$ holomorphic at $x=0$, which is enough.) Each function $F_{s, t, j}(x)$ can be analytically continued but we would like to use only its Taylor series around $x=0$. To do that, we now use a classical trick that goes back to Nörlund [29] at least. We set $x=1 /(1-y)^{\omega}$, where $\omega>0$ is a parameter to be specified below, so that

$$
\begin{align*}
B_{j}(z) & =\frac{\xi_{j}^{-z}}{2 i \pi} \int_{\widetilde{L}_{j}} \frac{F\left(\xi_{j} x\right)}{x^{z+1}} d x \\
& =\frac{\omega \xi_{j}^{-z}}{2 i \pi} \int_{M_{j}} F\left(\frac{\xi_{j}}{(1-y)^{\omega}}\right)(1-y)^{z \omega-1} d y \tag{7.4}
\end{align*}
$$

where M_{j} is a closed loop around N_{j}, with negative orientation, passing through 1 ; here N_{j} is the set of all $y=1-\left(1+e^{i \varepsilon_{j}} R\right)^{-1 / \omega}$ with $R \in \mathbb{R}_{+}$. It is a cut going from 1 to 0 , and if $\varepsilon_{j}=0$ (which is a suitable choice if $\arg \left(\xi_{i}\right) \not \equiv \arg \left(\xi_{j}\right) \bmod 2 \pi$ whenever $i, j \in\{1, \ldots, p\}$ are distinct) then N_{j} is the real interval $[0,1]$. We may assume that $\operatorname{Re}(y) \leq 1$ for any $y \in M_{j}$ so that $\log (1-y)$ is well-defined for any $y \in M_{j} \backslash\{1\}$, and also $(1-y)^{z \omega-1}$. On the other hand, in the integral (7.4) we have $y \notin N_{j}$ so that $(1-y)^{-\omega} \notin \widetilde{L}_{j}$: we have defined $\log _{j}\left(1-(1-y)^{-\omega}\right)$ and we use it in what follows.

We have

$$
F\left(\frac{\xi_{j}}{(1-y)^{\omega}}\right)=\sum_{s \in S_{j}} \sum_{t \in T_{j}} \kappa_{j, s, t} \frac{\partial^{s}}{\partial \varepsilon^{s}}\left(\left(1-\frac{1}{(1-y)^{\omega}}\right)^{t+\varepsilon} F_{j, s, t}\left(1-\frac{1}{(1-y)^{\omega}}\right)\right)_{\varepsilon=0}
$$

We now choose ω small enough such that N_{j} is strictly inside the disk of convergence of each of the series

$$
\left(1-\frac{1}{(1-y)^{\omega}}\right)^{t+\varepsilon} F_{j, s, t}\left(1-\frac{1}{(1-y)^{\omega}}\right)=y^{t+\varepsilon} \sum_{m=0}^{\infty} \phi_{j, s, t, m}(\varepsilon, \omega) y^{m}
$$

for any $\varepsilon>0$, where the coefficients $\phi_{j, s, t, m}(\varepsilon, \omega)$ are infinitely differentiable at $\varepsilon=0$. Here $\log (y)$ is defined with a cut along $N_{j} \cup\left(1+\mathbb{R}_{+}\right)$; if y does not lie on this cut then $\varepsilon_{j}<\arg (y)<\varepsilon_{j}+2 \pi$. Since we may also ensure that M_{j} is strictly inside these disks, we can exchange summation and integral and we obtain

$$
B_{j}(z)=\omega \xi_{j}^{-z} \sum_{s \in S_{j}} \sum_{t \in T_{j}} \kappa_{j, s, t} \sum_{m=0}^{\infty} \frac{\partial^{s}}{\partial \varepsilon^{s}}\left(\phi_{j, s, t, m}(\varepsilon, \omega) \frac{1}{2 i \pi} \int_{M_{j}} y^{m+t+\varepsilon}(1-y)^{z \omega-1} d y\right)_{\varepsilon=0}
$$

Now this integral can be computed in terms of Euler's Beta function $B\left(z_{1}, z_{2}\right)=\frac{\Gamma\left(z_{1}\right) \Gamma\left(z_{2}\right)}{\Gamma\left(z_{1}+z_{2}\right)}$ as follows. Using the residue theorem we may assume that $\varepsilon_{j}=0$, i.e. $N_{j}=[0,1]$. If $t>-1$ then M_{j} can be taken as the succession of a path from 1 to 0 along this segment (in which $\arg (y)=2 \pi$) and a path from 0 to 1 along the same segment (but in which $\arg (y)=0)$; in both paths we have $\arg (1-y)=0$. Therefore we obtain:

$$
\int_{M_{j}} y^{m+t+\varepsilon}(1-y)^{z \omega-1} d y=\left(1-e^{2 i \pi(m+t+\varepsilon)}\right) \frac{\Gamma(m+t+\varepsilon+1) \Gamma(\omega z)}{\Gamma(\omega z+m+t+\varepsilon+1)}
$$

Using analytic continuation with respect to t, we see that this equality holds for any $t \in \mathbb{C}$. Hence, using the reflection formula we obtain

$$
\begin{equation*}
B_{j}(z)=\omega \xi_{j}^{-z} \sum_{s \in S_{j}} \sum_{t \in T_{j}} \kappa_{j, s, t} \sum_{m=0}^{\infty} \frac{\partial^{s}}{\partial \varepsilon^{s}}\left(\frac{\phi_{j, s, t, m}(\varepsilon, \omega) e^{i \pi(m+t+\varepsilon)} \Gamma(\omega z)}{\Gamma(\omega z+m+t+\varepsilon+1) \Gamma(-m-t-\varepsilon)}\right)_{\varepsilon=0} \tag{7.5}
\end{equation*}
$$

where all the involved series are absolutely convergent; they are called "séries de facultés" in [29]. Note that of course the result does not depend on the chosen value of ω (but convergence holds only if ω is small enough).

Convergent "Séries de facultés" play a role similar to asymptotic expansions (except that usually the latter are divergent): roughly speaking, instead of asymptotic expansions with terms of the form $1 / z^{m}$, we obtain convergent expansions with terms of the form $1 /(z)_{m}$. The asymptotic expansion (7.2) follows by classical arguments because we can easily get the asymptotic expansion of a "série de facultés" as $z \rightarrow \infty$: if we differentiate s times $1 /(z)_{m}=\Gamma(z) / \Gamma(z+m)$ with respect to m, we obtain a finite sum of terms involving (derivatives of) the Digamma function $\Psi(z)=\Gamma^{\prime}(z) / \Gamma(z)$, which are asymptotically of the form $\log (z)^{t} / z^{m}$ with $0 \leq t \leq s$. See [32] for details when $s=0$ and [29, pp. 42-45] for the general case, especially Théorème 1 there.

Moreover, the constant κ_{j} in (7.2) is non-zero. Indeed since ξ_{j} is a non-removable singularity of $F(z)$, the overall asymptotic expansion of $B_{j}(t n)$ obtained from (7.5) cannot be identically 0 as $n \rightarrow+\infty$.

In what follows we let

$$
\mathcal{B}_{S, r, n, j}(\alpha):=\int_{c-i \infty}^{c+i \infty} B_{j}(t n) \frac{n!^{S-r} \Gamma((r-t) n) \Gamma(t n+1)^{S+1}}{\Gamma((t+1) n+2)^{S}}(-\alpha)^{t n} d t
$$

for $1 \leq j \leq p$, where c is such that $0<c<r$; the residue theorem shows that $\mathcal{B}_{S, r, n, j}(\alpha)$ is independent from the choice of c.

Lemma 9. If $0<|\alpha|<R$ and $r>u$ then for n large enough, we have

$$
\begin{equation*}
T_{S, r, n}(1 / \alpha)=\sum_{j=1}^{p} \frac{(-1)^{r n} n}{2 i \pi} \mathcal{B}_{S, r, n, j}(\alpha) \tag{7.6}
\end{equation*}
$$

Proof. Let $\mathcal{R}_{N, c}$ denote the positively oriented rectangular contour with vertices $c n \pm i N$ and $N+\frac{1}{2} \pm i N$, where $u<c<r$ and the integer N is such that $N \geq r n$. Then by the residue theorem

$$
\begin{aligned}
n!^{S-r} \sum_{k=r n}^{N} \frac{(k-r n+1)_{r n}}{(k+1)_{n+1}^{S}} A_{k} \alpha^{k} & =\frac{n!^{S-r}}{2 i \pi} \int_{\mathcal{R}_{N, c}} A(t) \frac{(t-r n+1)_{r n}}{(t+1)_{n+1}^{S}} \frac{\pi}{\sin (\pi t)}(-\alpha)^{t} d t \\
& =\sum_{j=1}^{p} \frac{n!^{S-r}}{2 i \pi} \int_{\mathcal{R}_{N, c}} B_{j}(t) \frac{(t-r n+1)_{r n}}{(t+1)_{n+1}^{S}} \frac{\pi}{\sin (\pi t)}(-\alpha)^{t} d t .
\end{aligned}
$$

Here we take $\log (-\alpha)$ such that $-\pi<\arg (-\alpha)-\arg \left(\xi_{j}\right) \leq \pi$, where $\arg \left(\xi_{j}\right)$ has been chosen at the beginning of $\S 7$. Now, if $0<|\alpha|<R$ then

$$
\lim _{N \rightarrow+\infty} n!^{S-r} \sum_{k=r n}^{N} \frac{(k-r n+1)_{r n}}{(k+1)_{n+1}^{S}} A_{k} \alpha^{k}=T_{S, r, n}(1 / \alpha)
$$

while

$$
\begin{aligned}
\lim _{N \rightarrow+\infty} \frac{n!^{S-r}}{2 i \pi} & \int_{\mathcal{R}_{N, c}} B_{j}(t) \frac{(t-r n+1)_{r n}}{(t+1)_{n+1}^{S}} \frac{\pi}{\sin (\pi t)}(-\alpha)^{t} d t \\
& =\frac{n!^{S-r}}{2 i \pi} \int_{c n+i \infty}^{c n-i \infty} B_{j}(t) \frac{(t-r n+1)_{r n}}{(t+1)_{n+1}^{S}} \frac{\pi}{\sin (\pi t)}(-\alpha)^{t} d t \\
& =\frac{(-1)^{r n}!^{S-r}}{2 i \pi} \int_{c n+i \infty}^{c n-i \infty} B_{j}(t) \frac{(-t)_{r n}}{(t+1)_{n+1}^{S}} \frac{\pi}{\sin (\pi t)}(-\alpha)^{t} d t \\
& =\frac{(-1)^{r n-1} n!^{S-r}}{2 i \pi} \int_{c n-i \infty}^{c n+i \infty} B_{j}(t) \frac{\Gamma(r n-t) \Gamma(t+1)^{S}}{\Gamma(t+n+2)^{S} \Gamma(-t)} \Gamma(-t) \Gamma(t+1)(-\alpha)^{t} d t \\
& =\frac{(-1)^{r n} n!^{S-r} n}{2 i \pi} \int_{c-i \infty}^{c+i \infty} B_{j}(t n) \frac{\Gamma((r-t) n) \Gamma(t n+1)^{S+1}}{\Gamma((t+1) n+2)^{S}}(-\alpha)^{t n} d t .
\end{aligned}
$$

This concludes the proof of Lemma 9.

7.2 Asymptotic expansion of $\mathcal{B}_{S, r, n, j}(\alpha)$

We want to estimate these integrals using the saddle point method. We first recall Stirling's formula

$$
\Gamma(z)=z^{z-1 / 2} e^{-z} \sqrt{2 \pi}\left(1+\mathcal{O}\left(\frac{1}{z}\right)\right), \quad z \rightarrow \infty
$$

valid if $|\arg (z)| \leq \pi-\varepsilon$ with $\varepsilon>0$; here the constant implied in $\mathcal{O}\left(\frac{1}{z}\right)$ depends on ε but not on z. By Lemma 8, we have

$$
\mathcal{B}_{S, r, n, j}(\alpha)=(2 \pi)^{(S-r+2) / 2} \kappa_{j} \cdot \frac{\log (n)^{s_{j}}}{n^{(S+r) / 2+\beta_{j}}} \int_{c-i \infty}^{c+i \infty} g_{j}(t) e^{n \varphi\left(-\alpha / \xi_{j}, t\right)}\left(1+\mathcal{O}\left(\frac{1}{\log (n)}\right)\right) d t
$$

where the constant in \mathcal{O} is uniform in t, and

$$
\begin{gathered}
g_{j}(t)=t^{-\beta_{j}-(S+1) / 2}(t+1)^{-3 S / 2}(r-t)^{-1 / 2} \\
\varphi(z, t)=t \log (z)+(S+1) t \log (t)+(r-t) \log (r-t)-S(t+1) \log (t+1)
\end{gathered}
$$

We shall be interested only in the case where $z=-\alpha / \xi_{j}$, but from now on we consider any non-zero complex number z such that $|z|<1$ and $-\pi<\arg (z) \leq \pi$. Indeed we have $0<\left|-\alpha / \xi_{j}\right|<1$ because $0<|\alpha|<R$ the radius of convergence of F, which is equal to the minimal value of $\left|\xi_{j}\right|, j=1, \ldots, p$, and letting $\log \left(-\alpha / \xi_{j}\right)=\log (-\alpha)-\log \left(\xi_{j}\right)$ yields $\arg \left(-\alpha / \xi_{j}\right) \in(-\pi, \pi]$ (recall that $\arg (-\alpha)$ has been chosen in the proof of Lemma 9).

If $-\pi<\arg (z)<\pi$, we work in the cut plane $\Omega=\mathbb{C} \backslash((-\infty, 0] \cup[r,+\infty))$, so that any $t \in \Omega$ is such that $\arg (t), \arg (t+1)$ and $\arg (r-t)$ belong to $(-\pi, \pi)$. On the other hand, if z is real and negative (i.e., $\arg (z)=\pi)$, we work in $\Omega=\mathbb{C} \backslash\left((-\infty, 0] \cup\left(r+e^{i \pi / 8} \mathbb{R}_{+}\right)\right)$; if t is real and $0<t<r$ we take $\arg (t)=\arg (t+1)=\arg (r-t)=0$, and we use analytic continuation to define $\arg (t), \arg (t+1)$ and $\arg (r-t)$ for any $t \in \Omega$.

In both cases, the function $t \mapsto \varphi(z, t)$ is analytic on the cut plane Ω. In what follows, $\varphi^{\prime}(z, t)$ and $\varphi^{\prime \prime}(z, t)$ denote the first and second derivatives of $\varphi(z, t)$ with respect to t. We denote by $\tau_{S, r}(z)$ the unique solution (in t) of the equation $z t^{S+1}=(r-t)(t+1)^{S}$ which is such that $\operatorname{Re}\left(\tau_{S, r}(z)\right)>0$. (A more precise localization is given below.) For simplicity, we set $\tau_{j}=\tau_{S, r}\left(-\alpha / \xi_{j}\right), \varphi_{j}=\varphi\left(-\alpha / \xi_{j}, \tau_{j}\right), \psi_{j}=\varphi^{\prime \prime}\left(-\alpha / \xi_{j}, \tau_{j}\right)$ and $\gamma_{j}=g_{j}\left(\tau_{j}\right)$.

Lemma 10. Let us assume that $r=r(S)$ is an increasing function of S such that $r=o(S)$ and $S e^{-S / r}=o(1)$ as $S \rightarrow+\infty$. Then if S is large enough (with respect to the choice of the function $S \mapsto r(S)$), the following estimate holds: for any $j=1, \ldots, p$, we have $\kappa_{j} \gamma_{j} \psi_{j} \neq 0$ and, as $n \rightarrow+\infty$,

$$
\mathcal{B}_{S, r, n, j}(\alpha)=(2 \pi)^{(S-r+3) / 2} \frac{\kappa_{j} \gamma_{j}}{\sqrt{-\psi_{j}}} \cdot \frac{\log (n)^{s_{j}} e^{\varphi_{j} n}}{n^{(S+r+1) / 2+\beta_{j}}} \cdot(1+o(1)) .
$$

Any choice of the form $r(S)=\left[\frac{S}{\log (S)^{1+\varepsilon}}\right]$ with $\varepsilon>0$ satisfies $r=o(S)$ and $S e^{-S / r}=o(1)$ (but not with $\varepsilon=0$); in Lemma 7, we take $\varepsilon=1$.

Note that we have three trivially equivalent expressions for $e^{\varphi_{j}}$:

$$
\begin{equation*}
e^{\varphi_{j}}=\frac{\left(r-\tau_{j}\right)^{r}}{\left(\tau_{j}+1\right)^{S}}=\frac{\left(\left(-\alpha / \xi_{j}\right) \tau_{j}^{S+1}\right)^{r}}{\left(\tau_{j}+1\right)^{S(r+1)}}=-\frac{\xi_{j}\left(r-\tau_{j}\right)^{r+1}}{\alpha \tau_{j}^{S+1}} . \tag{7.7}
\end{equation*}
$$

Proof. We split the proof in several steps. The assumptions made on r and S are not always necessary at each step. We will write τ for $\tau_{S, r}(z)$ when there will no ambiguity.
Step 1. We want to begin localizing the solutions of the equation $\varphi^{\prime}(z, t)=0$ (for any fixed z such that $0<|z|<1$ and $-\pi<\arg (z) \leq \pi)$, i.e. of

$$
\log (z)+(S+1) \log (t)-\log (r-t)-S \log (t+1)=0
$$

These solutions are obviously amongst the solutions of the polynomial equation $P(t)=0$ where

$$
P(t)=z t^{S+1}-(r-t)(t+1)^{S} .
$$

In this step, we prove the following facts: For any $1 \leq r \leq S$, the polynomial $P(t)$ has exactly S roots in the half-plane $\operatorname{Re}(t)<-\frac{1}{2}$ and one root in the half-plane $\operatorname{Re}(t)>\frac{1}{2}$.

Let us prove that there is no root in the strip $-\frac{1}{2} \leq \operatorname{Re}(t) \leq \frac{1}{2}$. We set $t=x+i y$ and assume that $-\frac{1}{2} \leq x \leq \frac{1}{2}$. We have

$$
\begin{aligned}
|t+1| & =\sqrt{(x+1)^{2}+y^{2}} \geq \sqrt{1 / 4+y^{2}} \\
|r-t| & =\sqrt{(r-x)^{2}+y^{2}} \geq \sqrt{(r-1 / 2)^{2}+y^{2}} \geq \sqrt{1 / 4+y^{2}} \\
|t| & =\sqrt{x^{2}+y^{2}} \leq \sqrt{1 / 4+y^{2}}
\end{aligned}
$$

Since $|z|<1$, it follows that $|z||t|^{S+1}<{\sqrt{1 / 4+y^{2}}}^{S+1} \leq|r-t||t+1|^{S}$ for any t in the strip, which proves the claim.

Let us now prove that there are exactly S roots in $\operatorname{Re}(t)<-\frac{1}{2}$. With $u=1 / t$, this amounts to prove that the equation $z=(r u-1)(u+1)^{S}$ has exactly S solutions in the open disk $|u+1|<1$. Let us define

$$
f(u)=z-r(u+1)^{S+1}+(r+1)(u+1)^{S}, \quad g(u)=z+(r+1)(u+1)^{S} .
$$

We have $f(u)-g(u)=-r(u+1)^{S+1}$ so that on the circle $|u+1|=1$ we have

$$
|f(u)-g(u)|=r<r+1-|z| \leq|g(u)| .
$$

Hence, by Rouché's theorem, the equation $f(u)=0$ has the same number of solutions as $g(u)=0$ inside the disk $|u+1|<1$. There are S such solutions because the solutions of $g(u)=0$ are $-1+(-z /(r+1))^{1 / S} e^{2 i \pi k / S}, k=0, \ldots, S-1$, which are all inside the disk.

It follows that $P(t)$ has exactly one root in the half-plane $\operatorname{Re}(t)>\frac{1}{2}$. (We can be more precise. Let us define the functions $P(t)=z t^{S+1}-(r-t)(t+1)^{S}$ and $Q(t)=-(r-t)(t+1)^{S}$. On the circle $|r-t|=\frac{r^{2}}{S+r}$, we have $|P(t)-Q(t)|=\left|z t^{S+1}\right|<|Q(t)|$. Hence, $P(t)$ has a root inside the disk $|r-t|<\frac{r^{2}}{S+r}$. This estimate holds for any r, S, but we will prove and use a more precise one under a more restrictive condition on r.)
Step 2. We need a more precise estimate for $\tau=\tau_{S, r}(z)$ that the mere fact that $|\tau-r|<$ $\frac{r^{2}}{S+r}$, namely

$$
\begin{equation*}
\tau_{S, r}(z)=r-r z\left(\frac{r}{r+1}\right)^{S}(1+o(1)) \tag{7.8}
\end{equation*}
$$

To prove this, we consider the power series

$$
v_{S, r}(z):=\frac{1}{r}-\sum_{m=1}^{\infty} \frac{\binom{(S+1) m-1}{m}}{(S+1) m-1} \frac{r^{S m-1}}{(r+1)^{(S+1) m-1}}(-z)^{m}
$$

We shall prove that it has radius of convergence $\frac{S^{S}(r+1)^{S+1}}{r^{r}(S+1)^{S+1}} \geq 1$, with equality only for $r=S$, and that if r is an increasing function of S such that $r=o(S)$ as $n \rightarrow+\infty$ then, provided S is large enough (with respect to the choice of $r(S)$), we have $1 / v_{S, r}(z)=\tau_{S, r}(z)$, the unique root of $P(t)$ in the half-plane $\operatorname{Re}(t)>\frac{1}{2}$.

As in the first step, we solve the equation $z=V(u)$, with $V(u)=(r u-1)(u+1)^{S}$, and then get the solutions of $P(t)=0$ by $t=1 / u$. By Lagrange's inversion formula [15, p. 250], a solution of the equation $z=V(u)$ is

$$
\begin{aligned}
\frac{1}{r}+\sum_{m=1}^{\infty} \frac{1}{m!}\left(\left(\frac{u-1 / r}{V(u)-V(1 / r)}\right)^{m}\right)_{u=1 / r}^{(m-1)} z^{m} & =\frac{1}{r}+\sum_{m=1}^{\infty} \frac{r^{-m}}{m!}\left(\frac{1}{(u+1)^{S m}}\right)_{u=1 / r}^{(m-1)} z^{m} \\
& =\frac{1}{r}-\sum_{m=1}^{\infty} \frac{\left({ }^{(S+1) m-1}\right)}{(S+1) m-1} \frac{r^{S m-1}}{(r+1)^{(S+1) m-1}}(-z)^{m} \\
& =v_{S, r}(z)
\end{aligned}
$$

Since

$$
\lim _{m \rightarrow+\infty}\left(\frac{\binom{(S+1) m-1}{m}}{(S+1) m-1} \frac{r^{S m-1}}{(r+1)^{(S+1) m-1}}\right)^{1 / m}=\frac{r^{S}(S+1)^{S+1}}{S^{S}(r+1)^{S+1}} \leq 1
$$

with equality only for $r=S$, the assertion on the radius of convergence follows.
Since $(\underset{m}{(S+1) m-1}) \leq S\left(\frac{(S+1)^{S+1}}{S^{S}}\right)^{m-1}$ and $\frac{S}{(S+1) m-1} \leq \frac{1}{m}$, for any z such that $|z|<1$ (inside the circle of convergence), we have

$$
\begin{aligned}
\left|v_{S, r}(z)-\frac{1}{r}-\frac{z}{r}\left(\frac{r}{r+1}\right)^{S}\right| & \leq \frac{(r+1) S^{S}}{r(S+1)^{S+1}} \sum_{m=2}^{\infty} \frac{1}{m}\left(\frac{r^{S}(S+1)^{S+1}}{S^{S}(r+1)^{S+1}}|z|\right)^{m} \\
& \leq \frac{|z|}{r}\left(\frac{r}{r+1}\right)^{S}\left|\log \left(1-\frac{r^{S}(S+1)^{S+1}}{S^{S}(r+1)^{S+1}}|z|\right)\right|
\end{aligned}
$$

Hence, for any $|z|<1,1 \leq r \leq S$,

$$
r v_{S, r}(z)=1+z\left(\frac{r}{r+1}\right)^{S}\left(1+\theta\left|\log \left(1-\frac{r^{S}(S+1)^{S+1}}{S^{S}(r+1)^{S+1}}|z|\right)\right|\right)
$$

for some θ (depending on S, r, z) such that $|\theta| \leq 1$.
We now choose r as any fixed increasing function of S such that $r=o(S)$ as $S \rightarrow+\infty$. Then $\frac{r^{S}(S+1)^{S+1}}{S^{S}(r+1)^{S+1}}|z|$ tends to 0 as $S \rightarrow \infty$, so that

$$
v_{S, r}(z)=\frac{1}{r}+\frac{z}{r}\left(\frac{r}{r+1}\right)^{S}(1+o(1)) .
$$

Therefore,

$$
\frac{1}{v_{S, r}(z)}=r-r z\left(\frac{r}{r+1}\right)^{S}(1+o(1)) .
$$

Since $|z|<1$, the real part of $1 / v_{S, r}(z)$ is positive for any S sufficiently large (with respect to the choice of $r(S))$ and thus $1 / v_{S, r}(z)$ coincides with $\tau_{S, r}(z)$. This concludes the proof of (7.8).
Step 3. We now prove that $\tau=\tau_{S, r}(z)$ belongs to the cut plane Ω and is indeed a solution of the equation $\varphi^{\prime}(z, t)=0$, provided r is any fixed increasing function of S such that $r=o(S)$ and $S e^{-S / r}=o(1)$ as $n \rightarrow+\infty$, and S is large enough (with respect to the choice of $r(S))$. Since $\exp \left(\varphi^{\prime}(z, \tau)\right)=\frac{z \tau^{S+1}}{(r-\tau)(\tau+1)^{S}}=1$, we have $\varphi^{\prime}(z, \tau) \in 2 i \pi \mathbb{Z}$ and

$$
\frac{1}{i} \varphi^{\prime}(z, \tau)=\arg (z)+(S+1) \arg (\tau)-\arg (r-\tau)-S \arg (\tau+1)
$$

Since $r=o(S)$ and $S e^{-S / r}=o(1)$, we have $r-r z\left(\frac{r}{r+1}\right)^{S}(1+o(1))=r\left(1+\mathcal{O}\left(e^{-S / r}\right)\right)$ and (7.8) yields:

$$
\begin{aligned}
(S+1) \arg (\tau) & =(S+1) \arg (r)+\mathcal{O}\left(S e^{-S / r}\right)=o(1) \\
S \arg (\tau+1) & =S \arg (r+1)+\mathcal{O}\left(S e^{-S / r}\right)=o(1)
\end{aligned}
$$

Moreover

$$
\arg (r-\tau)=\arg \left(r z\left(\frac{r}{r+1}\right)^{S}\right)+o(1)=\arg (z)+o(1)
$$

since the cut we have made on $\arg (r-t)$ is not for $\arg (r-t)=\arg (z) \bmod 2 \pi$ (here we use the alternative definition of Ω when $\arg (z)=\pi$, intended to have $\frac{-7 \pi}{8}<\arg (r-t)<\frac{9 \pi}{8}$ in this case). Therefore $\tau \in \Omega$ provided S is large enough. Moreover $\frac{1}{i} \varphi^{\prime}(z, \tau)$ tends to 0 as $S \rightarrow \infty$, and belongs to $2 \pi \mathbb{Z}$: it is 0 if S is large enough with respect to the choice of $r(S)$.

Step 4. We now prove that $g_{j}\left(\tau_{S, r}(z)\right) \neq 0$ and $\varphi^{\prime \prime}\left(z, \tau_{S, r}(z)\right) \neq 0$ provided r is any fixed increasing function of S such that $r=o(S)$ as $n \rightarrow+\infty$, and S is large enough (with respect to the choice of $r(S)$).

Since $\left(\frac{r}{r+1}\right)^{S}=o(1),(7.8)$ yields

$$
\begin{equation*}
g_{j}(\tau)=\frac{1}{\tau^{\beta_{j}+(S+1) / 2}(\tau+1)^{3 S / 2}(r-\tau)^{1 / 2}}=\frac{1+o(1)}{z^{1 / 2} r^{\beta_{j}+S+1}(r+1)^{S}} \tag{7.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi^{\prime \prime}(z, \tau)=\frac{S+1}{\tau}+\frac{1}{r-\tau}-\frac{S}{\tau+1}=\frac{(r+1)^{S}}{r^{S+1} z}(1+o(1)) \tag{7.10}
\end{equation*}
$$

provided $S e^{-S / r}=o(1)$ for (7.10). The right-hand sides of (7.9) and (7.10) are both non-zero if S is large enough with respect to the choice of $r(S)$.
Step 5. In this step we choose $r(S)$ as in the statement of the lemma, so that all the previous steps are simultaneously valid provided S is large enough with respect to the choice of $r(S)$. We want to determine an admissible path passing through $\tau_{S, r}(z)$, i.e. a path along which $t \mapsto \operatorname{Re}(\varphi(z, t))$ has a unique global maximum at $t=\tau_{S, r}(z)$. This determination process is rather lengthy as we have to consider three cases: $\operatorname{Re}(z)>0$, $\operatorname{Re}(z)<0$ and $\operatorname{Im}(z) \neq 0$, and $\operatorname{Re}(z)<0$ and $\operatorname{Im}(z)=0$. Note that similar computations are done in $[27,37]$ for the same kind of purpose. In particular, analogues of the contours $\mathcal{L}_{0}, \widetilde{\mathcal{L}}$ and $\widehat{\mathcal{L}}$ constructed below are also considered in these papers. Throughout the computations we always assume S to be sufficiently large.

- Case $\operatorname{Re}(z)>0$. Eq. (7.8) yields $0<\operatorname{Re}(\tau)<r$ so that the vertical line \mathcal{L}_{0} passing through τ is inside the strip $0<\operatorname{Re}(t)<r$ and we are going to prove that it is admissible. See Figure 2.

We set $v=\operatorname{Re}(\tau), \mathcal{L}_{0}=\{v+i y, y \in \mathbb{R}\}$ and $w_{0}(y)=\operatorname{Re}(\varphi(z, v+i y))$. We have
$w_{0}^{\prime}(y)=-\operatorname{Im}\left(\varphi^{\prime}(z, v+i y)\right)=-\arg (z)-(S+1) \arg (v+i y)+\arg (r-v-i y)+S \arg (1+v+i y)$.
Hence

$$
\begin{equation*}
\lim _{y \rightarrow-\infty} w_{0}^{\prime}(y)=\pi-\arg (z) \geq 0, \quad \lim _{y \rightarrow+\infty} w_{0}^{\prime}(y)=-\pi-\arg (z) \leq 0 \tag{7.11}
\end{equation*}
$$

Moreover $\operatorname{Re}(r-v-i y)=r\left(\frac{r}{r+1}\right)^{S} \operatorname{Re}(z)(1+o(1))>0, \operatorname{Re}(v+i y)=r(1+o(1))>0$, $\operatorname{Re}(v+1+i y)=(r+1)(1+o(1))>0$ so that

$$
w_{0}^{\prime}(y)=-\arg (z)-(S+1) \arctan \left(\frac{y}{v}\right)-\arctan \left(\frac{y}{r-v}\right)+S \arctan \left(\frac{y}{1+v}\right)
$$

Figure 2: The path \mathcal{L}_{0}
and

$$
\begin{aligned}
w_{0}^{\prime \prime}(y) & =-\frac{(S+1) v}{v^{2}+y^{2}}-\frac{r-v}{(r-v)^{2}+y^{2}}+S \frac{(1+v)}{(1+v)^{2}+y^{2}} \\
& =\frac{-N\left(y^{2}\right)}{\left(v^{2}+y^{2}\right)\left((r-v)^{2}+y^{2}\right)\left((1+v)^{2}+y^{2}\right)}
\end{aligned}
$$

upon letting $N(x)=a x^{2}+b x+c$ where

$$
\begin{gathered}
a=r-S<0, \quad b=-S r^{2}+r^{2} v+2 S r v+2 r v+S v+r, \\
c=v(1+v)(r-v)(S r+r v-S v+r)>0 .
\end{gathered}
$$

The equation $N(x)=0$ as a negative root (because $a c<0$) and another one asymptotically equal to $r^{2}(1+o(1))$. This root is $>\operatorname{Im}(\tau)^{2}$ because (7.8) yields $\operatorname{Im}(\tau)=o(1)$. Hence $w_{0}^{\prime \prime}(y)=0$ has exactly two solutions: a positive and negative one, with $\operatorname{Im}(\tau)$ strictly in between. Since $w_{0}^{\prime}(\operatorname{Im}(\tau))=0$, (7.11) ensures that $w_{0}^{\prime}(y)$ vanishes at $\operatorname{Im}(\tau)$, is positive for $y<\operatorname{Im}(\tau)$ and negative for $y>\operatorname{Im}(\tau)$. Hence $w_{0}(y)$ is maximal at $\operatorname{Im}(\tau)$; this completes the proof of this case.

- Case $\operatorname{Re}(z)<0$ and $\operatorname{Im}(z) \neq 0$. In this case, the vertical line passing through τ is no longer inside the strip $0<\operatorname{Re}(t)<r$ and we have to deform it. We assume that $\operatorname{Im}(z)<0$, the other case being delt with similarly; then $\operatorname{Im}(\tau)>0$.

We first want to determine a segment passing through τ along which $t \mapsto \operatorname{Re}(\varphi(z, t))$ admits a local maximum at $t=\tau$. Let $\beta=\arg \left(\varphi^{\prime \prime}(z, \tau)\right) \in(-\pi, \pi]$ and $z=\rho e^{i \delta}$ with $\rho>0$ and $\delta \in(-\pi,-\pi / 2)$ because $\operatorname{Re}(z)<0$ and $\operatorname{Im}(z)<0$. Then, from (7.10) in Step 4, we have

$$
\varphi^{\prime \prime}(z, \tau)=\frac{1}{r \rho}\left(\frac{r+1}{r}\right)^{S} e^{-i \delta}(1+o(1))
$$

so that $\beta=-\delta+o(1)$. Therefore any $\theta \in \mathbb{R}$ such that $\cos (2 \theta-\delta)<0$ satisfies also $\cos (2 \theta+\beta)<0$ provided S is large enough (in terms of θ); then θ is said to be admissible. Obviously $\theta=0$ and any θ sufficiently close to $\pi+\delta$ are admissible. By the theory of steepest paths of analytic functions (see [11, pp. 255-258]), for any admissible θ there exists $\eta>0$ such that the function $t \mapsto \operatorname{Re}(\varphi(z, t))$ admits a unique global maximum at $t=\tau$ where t is on the segment $\left\{\tau+e^{i \theta} y,|y| \leq \eta\right\}$.

This suggests to define a polygonal path $\widetilde{\mathcal{L}}$ as the union $\widetilde{\mathcal{L}}=\mathcal{L}_{1} \cup \mathcal{L}_{2} \cup \mathcal{L}_{3}$ where $\mathcal{L}_{1}=\{r-i y, y \geq 0\}, \mathcal{L}_{2}=[r, \tau]$ and $\mathcal{L}_{3}=\{\tau+y, y \geq 0\}: \mathcal{L}_{1}$ is a vertical half-line, \mathcal{L}_{2} is a segment and \mathcal{L}_{3} is an horizontal half-line. We claim that $t \mapsto \operatorname{Re}(\varphi(z, t))$ admits a unique global maximum at $t=\tau$ when t varies in $\widetilde{\mathcal{L}}$; this function is continuous on $\widetilde{\mathcal{L}}$ and can be differentiated on $\widetilde{\mathcal{L}} \backslash\{r, \tau\}$.

First, $w_{1}(y)=\operatorname{Re}(\varphi(z, r-i y))$ is decreasing on $[0,+\infty)$ since for any $y>0$:

$$
\begin{aligned}
w_{1}^{\prime}(y)=\operatorname{Im}\left(\varphi^{\prime}(z, r-i y)\right) & =\arg (z)+(S+1) \arg (r-i y)-\arg (i y)-S \arg (1+r-i y) \\
& =\arg (z)-(S+1) \arctan \left(\frac{y}{r}\right)-\frac{\pi}{2}+S \arctan \left(\frac{y}{r+1}\right)<0
\end{aligned}
$$

because $\arg (z) \leq-\frac{\pi}{2}$.
Let us now prove that $w_{3}(y)=\operatorname{Re}(\varphi(z, \tau+y))$ is decreasing on $[0,+\infty)$. We have

$$
w_{3}^{\prime}(y)=\operatorname{Re}\left(\varphi^{\prime}(z, \tau+y)\right)=\log \left|\frac{z(\tau+y)^{S+1}}{(r-\tau-y)(\tau+y+1)^{S}}\right| \neq 0
$$

for any $y>0$ using Step 1 : the only t in $\operatorname{Re}(t) \geq 0$ such that $\frac{z t t^{S+1}}{(r-t)(t+1)^{s}}=1$ is $t=\tau$. Therefore w_{3} is monotonic; since $\theta=0$ is admissible it is decreasing.

It remains to prove that $t \mapsto \operatorname{Re}(\varphi(z, t))$ admits a unique global maximum at $t=\tau$ when t varies in \mathcal{L}_{2}. We parametrize \mathcal{L}_{2} as $\left\{\tau+y e^{i \gamma}, y \in[0,|U|]\right\}$ with (by definition) $U=r-\tau$ and $\gamma=\arg (U)=\delta+o(1)$ using (7.8); then $\gamma \in(-\pi,-\pi / 2)$. Let $w_{2}(y)=\operatorname{Re}\left(\varphi\left(z, \tau+y e^{i \gamma}\right)\right)$. Then

$$
w_{2}^{\prime}(y)=\cos (\gamma) \operatorname{Re}\left(\varphi^{\prime}\left(z, \tau+y e^{i \gamma}\right)\right)-\sin (\gamma) \operatorname{Im}\left(\varphi^{\prime}\left(z, \tau+y e^{i \gamma}\right)\right)
$$

The function $\ell(y)=\operatorname{Re}\left(\varphi^{\prime}\left(z, \tau+y e^{i \gamma}\right)\right)=\log \left|\frac{z\left(\tau+y e^{i \gamma}\right)^{S}}{\left(r-\tau-y e^{i \gamma}\right)\left(\tau+1+y e^{i \gamma}\right)^{S}}\right|$ satisfies $\ell(0)=0$ and $\ell(y) \neq 0$ for any $y \in[0,|U|)$ (using Step 1 again); moreover $\lim _{y \rightarrow|U|} \ell(y)=+\infty$. Therefore we have $\ell(y)>0$ for any $y \in[0,|U|)$. We now analyse the term $a(y)=\operatorname{Im}\left(\varphi^{\prime}\left(z, \tau+y e^{i \gamma}\right)\right)$; we have

$$
\begin{aligned}
a(y) & =\arg (z)+(S+1) \arg \left(\tau+y e^{i \gamma}\right)-S \arg \left(\tau+1+y e^{i \gamma}\right)-\arg \left(r-\tau-y e^{i \gamma}\right) \\
& =\delta+(S+1)\left(\gamma+\arg \left(\tau e^{-i \gamma}+y\right)\right)-S\left(\gamma+\arg \left((\tau+1) e^{-i \gamma}+y\right)\right)-\arg \left(|U| e^{i \gamma}-y e^{i \gamma}\right) \\
& =\pi+\delta-(S+1) \arctan \left(\frac{r \sin (\gamma)}{r \cos (\gamma)+y-|U|}\right)+S \arctan \left(\frac{(r+1) \sin (\gamma)}{(r+1) \cos (\gamma)+y-|U|}\right)
\end{aligned}
$$

since for $\zeta=\tau e^{-i \gamma}+y$ we have $\arg (\zeta)=\pi+\arctan \left(\frac{\operatorname{Im}(\zeta)}{\operatorname{Re}(\zeta)}\right)$. This function is decreasing on

Figure 3: The path $\widetilde{\mathcal{L}^{\prime}}$
[0, |U|] because

$$
\begin{aligned}
a^{\prime}(y)= & (S+1) \frac{r \sin (\gamma)}{r^{2} \sin ^{2}(\gamma)+(r \cos (\gamma)+y-|U|)^{2}} \\
& -S \frac{(r+1) \sin (\gamma)}{(r+1)^{2} \sin ^{2}(\gamma)+((r+1) \cos (\gamma)+y-|U|)^{2}} \\
\leq & \frac{(S+1) r \sin \gamma}{(r+|U|)^{2}}-\frac{S(r+1) \sin \gamma}{(r+1)^{2}}<0
\end{aligned}
$$

since $\frac{r}{(r+|U|)^{2}}>\frac{1}{r+1}$ because $|U|<\frac{1}{4}$ (using Step 2). In Step 3, we proved that $a(0)=0$, so that $a(y) \leq 0$ for any $y \in[0,|U|]$. It follows that

$$
w_{2}^{\prime}(y)=\cos (\gamma) \ell(y)-\sin (\gamma) a(y)<0
$$

for any $y \in[0,|U|]$.
We have thus proved that $t \mapsto \operatorname{Re}(\varphi(z, t))$ admits a unique global maximum at $t=\tau$ when t varies in $\widetilde{\mathcal{L}}$. We cannot integrate directly over $\widetilde{\mathcal{L}}$ because r is a singularity of $g_{j}(t)$. Hence, we slightly deform $\widetilde{\mathcal{L}}$ around the "corner" of the path at r : we replace that corner with an arc of circle of center r and small positive radius κ, in which $\arg (r-t)$ varies in $[\gamma, \pi / 2]$. We connect this arc with the remaining parts of \mathcal{L}_{1} and \mathcal{L}_{2}, and with \mathcal{L}_{3}, to get a new path $\widetilde{\mathcal{L}^{\prime}}$. By continuity of $t \mapsto \operatorname{Re}(\varphi(z, t))$ in this region, we can take κ small enough so that it still admits a unique global maximum at $t=\tau$ when t varies in $\widetilde{\mathcal{L}}^{\prime}$. See Figure 3 .

- Case $\operatorname{Re}(z)<0$ and $\operatorname{Im}(z)=0$. In this case, τ is a real number greater than r. As in the previous case we obtain $\arg \left(\varphi^{\prime \prime}(z, \tau)\right)=-\pi+o(1) \bmod 2 \pi$: the angles θ such that

Figure 4: The path $\widehat{\mathcal{L}^{\prime}}$
$\cos (2 \theta-\pi)<0$ are admissible, for instance $\theta=0$. This suggests to define a polygonal path $\widehat{\mathcal{L}}$ as the union $\widehat{\mathcal{L}}=\mathcal{L}_{4} \cup \mathcal{L}_{5}$ where $\mathcal{L}_{4}=\{r+i y, y \geq 0\}$ and $\mathcal{L}_{5}=\{r+y, y \geq 0\}$. Since $\Omega=\mathbb{C} \backslash\left((-\infty, 0) \cup\left(r+e^{i \pi / 8} \mathbb{R}_{+}\right)\right)$in the present case, \mathcal{L}_{4} and \mathcal{L}_{5} are contained in $\Omega \cup\{r\}$. We claim that $t \mapsto \operatorname{Re}(\varphi(z, t))$ admits a unique global maximum at $t=\tau>r$ when t varies in $\widehat{\mathcal{L}}$.

Letting $w_{5}(y)=\varphi(z, y)$ we obtain (as for w_{3} in the previous case) that $w_{5}^{\prime}(y)$ vanishes at $y=\tau$, is positive for $r<y<\tau$ and negative for $y>\tau$. Hence, $y \mapsto \operatorname{Re}(\varphi(z, y))$ admits a unique maximum on $[r,+\infty)$ achieved at $y=\tau$. Thus to prove the claim, it remains to prove that $w_{4}(y)=\operatorname{Re}(\varphi(z, r+i y))$ is decreasing on $[0,+\infty)$. Now, as for w_{0} in the case $\operatorname{Re}(z)>0$ we have for any $y>0$:

$$
\begin{aligned}
w_{4}^{\prime}(y) & =-\arg (z)-(S+1) \arg (r+i y)+\arg (-i y)+S \arg (1+r+i y) \\
& =-\frac{3 \pi}{2}-(S+1) \arctan \left(\frac{y}{r}\right)+S \arctan \left(\frac{y}{r+1}\right)<0
\end{aligned}
$$

and the claim is completely proved. Again, we cannot integrate directly over $\widehat{\mathcal{L}}$ because r is a singularity of $g_{j}(t)$. Hence, we slightly deform $\widehat{\mathcal{L}}$ around the "corner" of the path at r : we replace that corner with an arc of circle of center r and small positive radius κ, contained in the cut plane Ω. We connect this arc with the remaining parts of \mathcal{L}_{4} and \mathcal{L}_{5} to get a new path $\widehat{\mathcal{L}}^{\prime}$. By continuity of $t \mapsto \operatorname{Re}(\varphi(z, t))$ in this region, we can take κ small enough and ensure that it still admits a unique global maximum at $t=\tau$ when t varies in $\widehat{\mathcal{L}}^{\prime}$. See Figure 4.

Step 6. We are now in position to conclude the proof of Lemma 10. We recall that

$$
\mathcal{B}_{S, r, n, j}(\alpha)=(2 \pi)^{(S-r+2) / 2} \kappa_{j} \cdot \frac{\log (n)^{s_{j}}}{n^{(S+r) / 2+\beta_{j}}} \int_{c-i \infty}^{c+i \infty} g_{j}(t) e^{n \varphi\left(-\alpha / \xi_{j}, t\right)}\left(1+\mathcal{O}\left(\frac{1}{\log (n)}\right)\right) d t
$$

where the constant in \mathcal{O} is uniform in t. Depending on the location of $-\alpha / \xi_{j}$ in the open unit disk (with respect to the three cases in Step 5), we move the integration path from the vertical line $\operatorname{Re}(t)=c$ to the path $\mathcal{L}_{0}, \widetilde{\mathcal{L}^{\prime}}$ or $\widehat{\mathcal{L}^{\prime}}$ where the orientation is from $\operatorname{Im}(t) \leq 0$ to $\operatorname{Im}(t)>0$. In the previous steps, we have done everything to ensure that the saddle point method (see [15, Chapitre IX] or [19, Proposition 7]) can be applied to this path and we get

$$
\int_{c-i \infty}^{c+i \infty} g_{j}(t) e^{n \varphi\left(-\alpha / \xi_{j}, t\right)}\left(1+\mathcal{O}\left(\frac{1}{\log (n)}\right)\right) d t=\gamma_{j} \cdot \sqrt{\frac{2 \pi}{-n \psi_{j}}} \cdot e^{\varphi_{j} n} \cdot(1+o(1))
$$

provided $r(S)$ is chosen as in the statement of Lemma 10 and S is large enough. This concludes the proof of Lemma 10, since $\kappa_{j} \neq 0$ (using Lemma 8).

7.3 Asymptotic behavior of $T_{S, r, n}(1 / \alpha)$

We now state our final resut, the first part of which immediately comes from combining Lemmas 9 and 10. Recall that $s_{j}, \beta_{j}, \kappa_{j}$ have been defined in Lemma 8, and $\gamma_{j}, \varphi_{j}, \psi_{j}$ just before Lemma 10.

Proposition 2. Let us assume that $0<|\alpha|<R$, and $r=r(S)$ is an increasing function of S such that $r=o(S)$ and $S e^{-S / r}=o(1)$ as $S \rightarrow+\infty$. Then if S is large enough (with respect to the choice of the function $r(S)$), the following estimate holds: for any $j=1, \ldots, p$, we have $\kappa_{j} \gamma_{j} \psi_{j} \neq 0$ and as $n \rightarrow+\infty$

$$
\begin{equation*}
T_{S, r, n}(1 / \alpha)=\frac{(2 \pi)^{(S-r+1) / 2}(-1)^{r n}}{n^{(S+r-1) / 2}} \sum_{j=1}^{p}\left(\frac{\kappa_{j} \gamma_{j}}{\sqrt{\psi_{j}}} \cdot n^{-\beta_{j}} \log (n)^{s_{j}} e^{\varphi_{j} n} \cdot(1+o(1))\right) \tag{7.12}
\end{equation*}
$$

Moreover, if $r^{\omega} e^{-S / r}=o(1)$ for any $\omega>0$ then the numbers $e^{\varphi_{j}}$ (for $j=1, \ldots, p$) are pairwise distinct.

The only new property in Proposition 2 is that the numbers $e^{\varphi_{j}}$ are pairwise distinct; we shall prove it below. All the conditions on r are satisfied if $r=\left[S / \log (S)^{1+\varepsilon}\right]$ for any fixed $\varepsilon>0$. Let us now deduce Lemma 7 (stated in $\S 6.3$) from Proposition 2. Let $a=\max \left(\operatorname{Re}\left(\varphi_{1}\right), \ldots, \operatorname{Re}\left(\varphi_{p}\right)\right)$, and denote by J the non-empty set of all $j \in\{1, \ldots, p\}$ such that $\operatorname{Re}\left(\varphi_{j}\right)=a$. Let (κ, λ) denote the maximal value of $\left(-\beta_{j}-\frac{1}{2}(S+r-1), s_{j}\right), j \in J$, with respect to lexicographical order. Denote by j_{1}, \ldots, j_{Q} (with $Q \geq 1$) the pairwise distinct elements $j \in J$ such that $\left(-\beta_{j}-\frac{1}{2}(S+r-1), s_{j}\right)=(\kappa, \lambda)$. Then in the sum (7.12) we may restrict to $j \in\left\{j_{1}, \ldots, j_{Q}\right\}$. The numbers $\zeta_{q}=(-1)^{r} \exp \left(i \operatorname{Im}\left(\varphi_{j_{q}}\right)\right), 1 \leq q \leq Q$, are pairwise distinct because $\varphi_{j_{1}}, \ldots, \varphi_{j_{Q}}$ are; and the numbers $c_{q}=(2 \pi)^{(S-r+1) / 2} \kappa_{j_{q}} \gamma_{j_{q}} / \sqrt{\psi_{j_{q}}}$ are non-zero. At last, we have $0<a:=\left|e^{\varphi_{j q}}\right| \leq \frac{r^{r}}{r^{S}}$ if S is large enough, using the first expression in (7.7) and the fact that $\tau_{j_{q}}$ tends to r as $S \rightarrow \infty$. This concludes the proof of Lemma 7.

Proof. We only need to prove the assertion on the numbers $e^{\varphi_{j}}$. There is nothing to prove if $p=1$ and we now assume that $p \geq 2$. Letting $z_{j}=-\alpha / \xi_{j},(7.8)$ and the second expression of (7.7) yield

$$
\begin{align*}
e^{\varphi_{j}} & =\frac{z_{j}^{r} r^{r(S+1)}}{(r+1)^{S(r+1)}}\left(\frac{\tau_{j}}{r}\right)^{r(S+1)}\left(\frac{\tau_{j}+1}{r+1}\right)^{-S(r+1)} \\
& =\frac{z_{j}^{r} r^{r(S+1)}}{(r+1)^{S(r+1)}}\left(1-r z_{j}\left(\frac{r}{r+1}\right)^{S}(1+o(1))\right) \tag{7.13}
\end{align*}
$$

where the error term $o(1)$ depends on j (and tends to 0 as $S \rightarrow \infty$). Now assume that $e^{\varphi_{j}}=e^{\varphi_{\ell}}$ with $j \neq \ell$ (so that $z_{j} \neq z_{\ell}$). Taking the limit of $\left|e^{\varphi_{j}}(r+1)^{S(r+1)} r^{-r(S+1)}\right|^{1 / r}$ yields $\left|z_{j}\right|=\left|z_{\ell}\right|$ (provided S is large enough). Considering the next term in the expansion given by (7.13), the equality $\left|e^{\varphi_{j}}\right|=\left|e^{\varphi_{\ell}}\right|$ then yields $\operatorname{Re}\left(z_{j}\right)=\operatorname{Re}\left(z_{\ell}\right)$, so that $z_{\ell}=\overline{z_{j}}$. This implies $\tau_{\ell}=\overline{\tau_{j}}$, and $e^{\varphi_{\ell}}=\overline{e^{\varphi_{j}}}$ using (7.7), so that $e^{\varphi_{j}}=e^{\varphi_{\ell}}$ is real. Let $\theta_{j}=\arg \left(z_{j}\right)$; then (7.13) yields $r \theta_{j}-k \pi=\mathcal{O}\left(r e^{-S / r}\right)$ for some $k \in \mathbb{Z}$. By assumption this implies $r \theta_{j}-k \pi=o\left(r^{-\omega}\right)$ for any $\omega>0$. However z_{j} is algebraic, and the theory of linear forms in logarithms shows that θ_{j} / π is not a Liouville number (see for instance [16, Chapter 4]). Therefore θ_{j} / π is rational, and $r \theta_{j}-k \pi=0$. Using (7.13) again we obtain that z_{j} is real, so that $z_{\ell}=\overline{z_{j}}=z_{j}$. This contradiction completes the proof of Proposition 2.

8 Remark on the case of non-negative coefficients

We conclude this paper with a methodological remark. The saddle point method is a very powerful and general method, but its effective implementation can be long and difficult. This is undoubtedly the case in our situation as $\S 7$ shows. Hence, it is useful to have alternative methods that can be applied at least in special (and still important) cases. Such a method exists when $A_{k} \geq 0$ for all large enough k : the conclusion of Theorem 3 can then be obtained faster, at least if α is also assumed to be a positive algebraic number. For this, we use a representation of $T_{S, r, n}(z)$ as a real integral instead of the complex integral representation of Lemma 9. In (8.1) and (8.2) below, we make no assumption on the A_{k} 's.

Proposition 3. Let z be such that $|z|>1 / R$. We have

$$
\begin{equation*}
T_{S, r, n}(z)=\frac{z^{-r n}}{n!^{r}} \int_{[0,1]^{S}} F^{(r n)}\left(\frac{t_{1} \cdots t_{S}}{z}\right) \prod_{j=1}^{S} t_{j}^{r n}\left(1-t_{j}\right)^{n} d t_{j}, \quad n \geq 0 \tag{8.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\limsup _{n \rightarrow+\infty}\left|T_{S, r, n}(z)\right|^{1 / n} \leq \frac{1}{r^{S-r}} \tag{8.2}
\end{equation*}
$$

Moreover, if F is not a polynomial, $z>1 / R$, and $A_{k} \geq 0$ for all k large enough, then

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} T_{S, r, n}(z)^{1 / n} \geq \frac{1}{D^{r} z^{r}}\left(\frac{r}{r+1}\right)^{r S} \frac{1}{(r+1)^{S-r}}>0 \tag{8.3}
\end{equation*}
$$

with D such that $D_{n} \leq D^{n+1}$ for any n, where D_{n} is the smallest positive integer such that $D_{n} A_{k}$ is an algebraic integer for any $k \leq n$.

Remark 3. If $A_{k}=1$ for all $k \geq 0$, we have $F^{(r n)}(x)=\frac{(r n)!}{(1-x)^{r n+1}}$ and (8.1) coincides with (1) of [31, Lemme 1] (up to a factor of z).

Proof. For any x such that $|x|<R$, we have

$$
\begin{equation*}
F^{(r n)}(x)=\sum_{k=0}^{\infty}(k-r n+1)_{r n} A_{k} x^{k-r n} \tag{8.4}
\end{equation*}
$$

and the series converges absolutely. Since $\left|t_{1} \cdots t_{S} / z\right|<R$, we can thus exchange integral and summation below:

$$
\begin{aligned}
\frac{z^{-r n}}{n!^{r}} \int_{[0,1]^{S}} F^{(r n)}\left(\frac{t_{1} \cdots t_{S}}{z}\right) & \prod_{j=1}^{S} t_{j}^{r n}\left(1-t_{j}\right)^{n} d t_{j}=\sum_{k=0}^{\infty} \frac{(k-r n+1)_{r n}}{n!^{r}} A_{k} z^{-k}\left(\int_{0}^{1} t^{k}(1-t)^{n} d t\right)^{S} \\
& =\sum_{k=0}^{\infty} \frac{(k-r n+1)_{r n} n!^{S} k!^{S}}{n!^{r}(n+k+1)!^{S}} A_{k} z^{-k}
\end{aligned}
$$

This series is nothing but $T_{S, r, n}(z)$, which proves the first part.
As in the proof of [31, Lemme 3], we now observe that, for any $k \geq r n$,

$$
\left|n!^{S-r} \frac{k(k-1) \ldots(k-r n+1)}{(k+1)^{S}(k+2)^{S} \cdots(k+n+1)^{S}}\right| \leq n^{(S-r) n} \frac{k^{r n}}{k^{S(n+1)}} \leq\left(\frac{n}{k}\right)^{(S-r) n} \frac{1}{k^{S}} \leq \frac{1}{r^{(S-r) n}} \frac{1}{k^{S}} .
$$

Therefore,

$$
\left|T_{S, r, n}(z)\right| \leq \frac{1}{r^{(S-r) n}} \sum_{k=r n}^{\infty} \frac{A_{k}|z|^{-k}}{k^{S}} \leq \frac{1}{r^{(S-r) n}} \sum_{k=0}^{\infty} A_{k}|z|^{-k}
$$

where the series converges because $|z|>1 / R$, and (8.2) follows as claimed.
We now assume that $A_{k} \geq 0$ for all k large enough, and $A_{k} \neq 0$ for infinitely many k. We also assume that $z>1 / R$. We start from (8.4) with $0<x<R$:

$$
\frac{1}{(r n)!} F^{(r n)}(x)=\sum_{k=r n}^{\infty} \frac{(k-r n+1)_{r n}}{(r n)!} A_{k} x^{k-r n}=\sum_{k=0}^{\infty} \frac{(k+1)_{r n}}{(r n)!} A_{k+r n} x^{k} \geq \sum_{k=0}^{\infty} A_{k+r n} x^{k} .
$$

Now the sequence $\left(A_{k}\right)$ satisfies (for k large enough) a linear recurrence of order ℓ (as in the proof of Step 1 of Lemma 2, but expanding at 0 rather than ∞) and it is non-zero infinitely often. Hence, in fact, for any n sufficiently large, there exists $k_{n} \in\{0, \ldots, \ell-1\}$
such that $A_{r n+k_{n}} \neq 0$. In particular, $D_{r n+k_{n}} A_{r n+k_{n}} \geq 1$. It follows that $\frac{1}{(r n)!} F^{(r n)}(x) \geq$ $A_{k_{n}+r n} x^{k_{n}} \geq \frac{x^{k_{n}}}{D^{r n+k_{n}+1}}$. We use this lower bound in (8.1) with $x=t_{1} \cdots t_{S} / z$:

$$
\begin{aligned}
T_{S, r, n}(z) & \geq \frac{1}{D^{\ell+r n} z^{r n} \max (1, z)^{\ell-1}} \frac{(r n)!}{n!r}\left(\int_{0}^{1} t^{r n+\ell-1}(1-t)^{n} d t\right)^{S} \\
& =\frac{1}{D^{\ell+r n} z^{r n} \max (1, z)^{\ell-1}} \frac{(r n)!n!^{S-r}(r n+\ell-1)!^{S}}{((r+1) n+\ell)!^{S}}
\end{aligned}
$$

We then deduce (8.3) by Stirling's formula.
With $r=\left[S / \log (S)^{2}\right]$, these upper and lower bounds for $T_{S, r, n}(z)$ are essentially identical when $S \rightarrow+\infty$. With $z=1 / \alpha$ for some algebraic number α in $(0, R)$, we can conclude directly in $\S 6.4$ with an application of Töpfer's criterion instead of Theorem 4.

References

[1] B. Adamczewski, J. Bell and E. Delaygue, Algebraic independence of G-functions and congruences "à la Lucas", preprint arxiv 1603.04187 [math.NT] (2016), to appear in Ann. Sci. Ec. Norm. Supér.
[2] Y. André, G-functions and Geometry, Aspects of Mathematics, E13. Friedr. Vieweg \& Sohn, Braunschweig, 1989.
[3] Y. André, G-fonctions et transcendance, J. reine angew. Math. 476 (1996), 95-125.
[4] Y. André, Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité, Annals of Math. 151 (2000), 705-740.
[5] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque 61 (1979), 11-13.
[6] N. Archinard, Exceptional sets of hypergeometric series, J. Number Theory 101.2 (2003), 244-269.
[7] K. M. Ball and T. Rivoal, Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent. Math. 146.1 (2001), 193-207.
[8] V. V. Batyrev and D. van Straten, Generalized hypergeometric functions and rational curves on Calabi-Yau complete intersections in toric varieties, Commun. Math. Phys. 168.3 (1995), 493-533.
[9] E. Bedulev, On the linear independence of numbers over number fields, Mat. Zametki [Math. Notes], 64 (1998), 506-517 [440-449].
[10] F. Beukers, Algebraic values of G-functions, J. reine angew. Math. 434 (1993), 45-65.
[11] N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover Edition (1986).
[12] E. Bombieri, On G-functions, Recent Progress in Analytic Number Theory 2, Acad. Press (1981), 1-67.
[13] G. V. Chudnovsky, On applications of diophantine approximations, Proc. Natl. Acad. Sci. USA 81 (1984), 7261-7265.
[14] D. V. Chudnovsky and G. V. Chudnovsky, Applications of Padé approximations to Diophantine inequalities in values of G-functions, Number theory (New York, 1983/84), Lecture Notes in Math. 1135, Springer, Berlin, 1985, 9-51.
[15] J. Dieudonné, Calcul infinitésimal, Collection"Méthodes", Hermann, 1980.
[16] N. I. Fel'dman and Yu. V. Nesterenko, Transcendental numbers, Number theory IV, A.N. Parshin et I.R. Shafarevich (Eds.), Encyclopaedia Math. Sci. 44, Springer, Berlin, 1998.
[17] S. Fischler, Nesterenko's criterion when the small linear forms oscillate, Archiv der Math. 98.2 (2012), 143-151.
[18] S. Fischler, M. Hussain, S. Kristensen and J. Levesley, A converse to linear independence criteria, valid almost everywhere, Ramanujan Journal 38 (2015), 513-528.
[19] S. Fischler and T. Rivoal, On the values of G-functions, Commentarii Math. Helv. 29.2 (2014), 313-341.
[20] S. Fischler and T. Rivoal, On the denominators of the Taylor coefficients of Gfunctions, Kyushu J. Math. 71.2 (2017), 287-298.
[21] S. Fischler and T. Rivoal, Rational approximation to values of G-functions, and their expansions in integer basis, preprint arxiv 1512.06534 [math.NT] (2015), 18 pages, to appear in Manuscripta Math.
[22] A. I. Galochkin, Lower bounds of polynomials in the values of a certain class of analytic functions, in russian, Mat. Sb. 95 (137) (1974), 396-417, 471.
[23] M. Hata, On the linear independence of the values of polylogarithmic functions, J. Math. Pures Appl., IX. 69.2 (1990), 133-173.
[24] E. Hille, Ordinary differential equations in the complex domain, Pure and Applied Mathematics, Monographs and Texts, Willey, 1976.
[25] R. Marcovecchio, Linear independence of linear forms in polylogarithms, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5) 5.1 (2006), 1-11.
[26] Yu. V. Nesterenko, On the linear independence of numbers, Mosc. Univ. Math. Bull. 40.1 (1985), 69-74, in russian in Vest. Mosk. Univ., Ser. I, no. 1, 108 (1985), 46-49.
[27] M. Nishimoto, On the linear independence of the special values of a Dirichlet series with periodic coefficients, preprint arxiv 1102.3247 [math.NT] (2011), 30 pages.
[28] E. M. Nikishin, On the irrationality of the values of the functions $F(x ; s)$, Mat. Sbornik 37.3 (1979), 381-388.
[29] N. E. Nörlund, Leçons sur les équations linéaires aux différences finies, rédigées par R. Lagrange, Gauthier-Villars, 1929, 152 pp.
[30] T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, CRAS Paris Sér. I Math. 331.4 (2000), 267-270.
[31] T. Rivoal, Indépendance linéaire de valeurs des polylogarithmes, J. Théorie des Nombres de Bordeaux 15.2 (2003), 551-559.
[32] T. Rivoal and J. Roques, Hadamard products of algebraic functions, Journal of Number Theory 145 (2014), 579-603.
[33] C. Siegel, Über einige Anwendungen diophantischer Approximationen, Abhandlungen Akad. Berlin 1929, no. 1, 70 S .
[34] V. Sorokin, On the Zudilin-Rivoal Theorem, Mat. Zametki [Math. Notes], 81 (2007), 912-923 [817-826].
[35] T. Töpfer, Über lineare Unabhängigkeit in algebraischen Zahlkörpern, Results Math., 25 (1994), 139-152.
[36] J. Wolfart, Werte hypergeometrischer Funktionen, Invent. Math. 92 (1988), 187-216.
[37] W. Zudilin, Irrationality of values of the Riemann zeta function, Izv. Math. 66.3 (2002), 489-542.
[38] W. Zudilin, On a measure of irrationality for values of G-functions, Izv. Math. 60.1 (1996), 91-118; translated from the russian version Izv. Ross. Akad. Nauk Ser. Mat. 60.1 (1996), 87-114.
S. Fischler, Laboratoire de Mathématiques d'Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France.
T. Rivoal, Institut Fourier, CNRS et Université Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France

Key words and phrases. G-functions, G-operators, Linear independence criterion, Singularity analysis, Saddle point method.
2010 Mathematics Subject Classification. Primary 11J72, 11J92, Secondary 34M35, 41A60.

[^0]: ${ }^{1}$ This result was first proved by G. Chudnovsky in the 70 's by an indirect method not related to G-functions, and it was reproved by André in the 90 's by a method designed for certain G-functions (simultaneous adelic uniformization), but which has been applied so far only to these ${ }_{2} F_{1}$ functions.

