
Linear independence of values of G-functions

S. Fischler and T. Rivoal

February 25, 2018

Abstract

Given any non-polynomial G-function F (z) =
∑∞

k=0Akz
k of radius of conver-

gence R, we consider the G-functions F
[s]
n (z) =

∑∞
k=0

Ak
(k+n)s z

k+n for any integers

s ≥ 0 and n ≥ 1. For any fixed algebraic number α such that 0 < |α| < R and
any number field K containing α and the Ak’s, we define Φα,S as the K-vector

space generated by the values F
[s]
n (α), n ≥ 1 and 0 ≤ s ≤ S. We prove that

uK,F log(S) ≤ dimK(Φα,S) ≤ vFS for any S, with effective constants uK,F > 0 and

vF > 0, and that the family
(
F

[s]
n (α)

)
1≤n≤vF ,s≥0

contains infinitely many irrational
numbers. This theorem applies in particular when F is an hypergeometric series
with rational parameters or a multiple polylogarithm, and it encompasses a previous
result by the second author and Marcovecchio in the case of polylogarithms. The
proof relies on an explicit construction of Padé-type approximants. It makes use of
results of André, Chudnovsky and Katz on G-operators, of a new linear independence
criterion à la Nesterenko over number fields, of singularity analysis as well as of the
saddle point method.

1 Introduction

The class of G-functions was defined by Siegel [33] to generalize the Diophantine properties
of the logarithmic function, by opposition to the exponential function which he generalized
with the class of E-functions. A series F (z) =

∑∞
k=0Akz

k ∈ Q[[z]] is a G-function if the
following three conditions are met (we fix an embedding of Q into C):

1. There exists C > 0 such that for any σ ∈ Gal(Q/Q) and any k ≥ 0, |σ(Ak)| ≤ Ck+1.
2. Define Dn as the smallest positive integer such that DnAk is an algebraic integer for

any k ≤ n. There exists D > 0 such that for any n ≥ 0, Dn ≤ Dn+1.
3. F (z) is a solution of a linear differential equation with coefficients in Q(z).

The first property implies that the radius of convergence of F is positive. In the second
property, the existence of D is enough for the purpose of this paper, but we mention that
a famous conjecture of Bombieri implies that Dn always divides cn+1dban for some integers
a, b ≥ 0, c ≥ 1, where dn := lcm{1, 2, . . . , n} = en+o(n) (see [20]). The third property shows
that there is a number field containing all the coefficients Ak. In the case where they are
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all rational numbers, the three conditions become |Ak| ≤ Ck+1, DnAk ∈ Z for k ≤ n and
Dn ≤ Dn+1, and F (z) is in fact a solution of a linear differential equation with coefficients
in Q(z).

G-functions can be either algebraic over Q(z), like

∞∑
k=0

zk =
1

1− z
,

∞∑
k=0

(
2k
k

)
k + 1

zk =
2

1 +
√

1− 4z
,

∞∑
k=0

(
4k

2k

)
zk =

√
1 +
√

1− 16z√
2− 32z

,

∞∑
k=0

(
3k

2k

)
zk =

2 cos
(

1
3

arcsin(3
2

√
3z)
)

√
4− 27z

,
∞∑
k=0

(30k)!k!

(15k)!(10k)!(6k)!
zk, (1.1)

or transcendental over C(z), like

∞∑
k=0

zk+1

k + 1
= − log(1− z),

∞∑
k=0

(
2k
k

)
(k + 1)2

zk+1 = 1−
√

1− 4z + log
(1 +

√
1− 4z

2

)
,

∞∑
k=0

(
2k
k

)
2k + 1

z2k+1 =
1

2
arcsin(2z),

∞∑
k=0

z2k+2

(k + 1)2
(

2k+2
k+1

) = 2 arcsin
(z

2

)2

. (1.2)

Transcendental G-functions also include the polylogarithms Lis(z) =
∑∞

k=1
zk

ks
for s ≥ 1.

All the above examples are special cases of the generalized hypergeometric series with
rational parameters, which is a G-function:

p+1Fp

[
a1, a2, . . . , ap+1

b1, b2, . . . , bp
; z

]
=
∞∑
k=0

(a1)k(a2)k · · · (ap+1)k
(1)k(b1)k · · · (bp)k

zk, (1.3)

where (α)0 = 1 and (α)k = α(α + 1) · · · (α + k − 1) for k ≥ 1; we assume that −bj 6∈
N = {0, 1, 2, . . .} for any j. Not all G-functions are hypergeometric, for instance the
algebraic function 1√

1−6z+z2
=
∑∞

k=0

(∑k
j=0

(
k
j

)(
k+j
j

))
zk or the transcendental functions∑∞

k=0

(∑k
j=0

(
k
j

)2(k+j
j

)2)
zk, 1

2
log(1−z)2 =

∑∞
k=1( 1

k

∑k−1
j=1

1
j
)zk, and more generally multiple

polylogarithms Lis1,s2,...,sk(z) =
∑

n1>···>nk≥1
zn1

n
s1
1 n

s2
2 ···n

sk
k

with s1, s2, . . . , sk ∈ Z.

In this paper, we are interested in the Diophantine properties of the values of G-
functions at algebraic points. We first recall that there is no definitive theorem about
the irrationality or transcendance of values of G-functions, like the Siegel-Shidlovsky The-
orem for values of E-functions: transcendental G-functions may take rational values or
algebraic values at some non-zero algebraic points, see [6, 10, 36] for examples related to
Gauss 2F1 hypergeometric function. Moreover, very few values of classical G-functions
are known to be irrational: apart from logarithms of algebraic numbers (proved to be
transcendental by other methods, namely the Hermite-Lindemann theorem), we may cite
Apéry’s Theorem [5] that ζ(3) = Li3(1) /∈ Q, and the Chudnovsky-André Theorem [3] on
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the algebraic independence over Q of the values 2F1[1
2
, 1

2
; 1;α] and 2F1[−1

2
, 1

2
; 1;α] for any

α ∈ Q, 0 < |α| < 1 (1).

Up to now, known results on values of G-functions can be divided into two families.
The first one gathers theorems on F (α), where α ∈ Q ⊂ C is sufficiently close to 0 in terms
of F (and, often, of other parameters including the degree and height of α). One of the
most general results of this family is the following.

Theorem 1 (Chudnovsky [13, 14]). Let Y (z) = t(F1(z), . . . , FS(z)) be a vector of G-
functions solution of a differential system Y ′(z) = A(z)Y (z), where A(z) ∈ MS(Q(z)).
Assume that 1, F1(z), . . . , FS(z) are Q(z)-algebraically independent. Then for any integer
d ≥ 1, there exists C = C(Y, d) > 0 such that, for any algebraic number α 6= 0 of degree d

with |α| < exp(−C log (H(α))
4S

4S+1 ), there does not exist a polynomial relation of degree d
and coefficients in Q(α) between the values 1, F1(α), . . . , FS(α).

Here, H(α) is the naive height of α, i.e. the maximum of the modulus of the integer
coefficients of the (normalized) minimal polynomial of α over Q. See [1] for a general
strategy recently obtained to prove algebraic independence of G-functions. Chudnovsky’s
theorem refines the works of Bombieri [12] and Galochkin [22]. André [2] generalized
Chudnovsky’s theorem to the case of an inhomogenous system Y ′(z) = A(z)Y (z) + B(z).
Thus, if we consider the case where α = a/b ∈ Q and d = 1, the values 1, F1(α), . . . , FS(α)
are Q-linearly independent provided b ≥ (c1|a|)c2 > 0, for some constants c1 > 0 and
c2 > 1 depending on the vector Y . The best value known so far for c2 is quadratic in
S; see [21, 38] for related results. When (1, F1(z), . . . , FS(z)) = (1,Li1(z), . . . ,LiS(z)), we
refer to [23, 28] for the best linear independence results, where c2 is “only” linear in S.

The second family consists in more recent results where α is a fixed algebraic point in
the disk of convergence: lower bounds are obtained for the dimension of the vector space
generated over a given number field by F (α), where F ranges through a suitable set of
G-functions. In general, this lower bound is not large enough to imply that all these values
F (α) are irrational. In this family, we quote the theorem that infinitely many odd zeta
values ζ(2n + 1) = Li2n+1(1), n ≥ 1, are irrational (see [7, 30]). Let us also quote the
following result, first proved in [31] when α is real.

Theorem 2 (Marcovecchio [25]). Let α ∈ Q, 0 < |α| < 1. The dimension of the Q(α)-

vector space spanned by 1,Li1(α), . . . ,LiS(α) is larger than 1+o(1)
[Q(α):Q] log(2e)

log(S) as S → +∞.

It seems that all known results in this second family concern only specific G-functions,
essentially polylogarithms. This is not the case of our main result, Theorem 3 below, which
is very general. Starting from a G-function F (z) =

∑∞
k=0 Akz

k with radius of convergence
R, we define for any integers n ≥ 1 and s ≥ 0 the G-functions

F [s]
n (z) =

∞∑
k=0

Ak
(k + n)s

zk+n (1.4)

1This result was first proved by G. Chudnovsky in the 70’s by an indirect method not related to
G-functions, and it was reproved by André in the 90’s by a method designed for certain G-functions
(simultaneous adelic uniformization), but which has been applied so far only to these 2F1 functions.
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which all have R as radius of convergence.
Let K be a number field that contains all the Taylor coefficients Ak of F . For any integer

S ≥ 0 and any α ∈ K such that 0 < |α| < R, let Φα,S denote the K-vector space spanned

by the numbers F
[s]
n (α) for n ≥ 1 and 0 ≤ s ≤ S; of course Φα,S depends also implicitly on

F and K. If F is a polynomial, then Φα,S ⊂ K for any S. We shall obtain lower and upper
bounds on dimK(Φα,S) when F is not a polynomial. To state them precisely, we need to
introduce some notations.

We consider a differential operator L =
∑µ

j=0 Pj(z)( d
dz

)j ∈ Q[z, d
dz

] such that LF (z) = 0
and L is of minimal order for F ; then L is a G-operator and in particular it is fuchsian by a
result of Chudnovsky [13, 14]. We denote by δ the degree of L and by ω ≥ 0 the multiplicity
of 0 as a singularity of L, i.e. the order of vanishing of Pµ at 0. We have δ = deg(Pµ)

because ∞ is a regular singularity of L. We let ` = δ − ω, and `0 = max(`, f̂1, . . . , f̂η)

where f̂1, . . . , f̂η are the integer exponents of L at ∞ (so that `0 = ` if no exponent at ∞
is an integer). We refer to [24] for the definitions and properties of these classical notions,
and to [4, §3] for those of G-operators.

Theorem 3. If F is not a polynomial, then there exists an effective constant C(F ) > 0
such that for any α ∈ K, 0 < |α| < R, we have

1 + o(1)

[K : Q]C(F )
log(S) ≤ dimK(Φα,S) ≤ `0S + µ. (1.5)

The second inequality holds for all S ≥ 0 while in the first one, o(1) is for S → +∞.

The upper bound in (1.5) depends only on F . The constant C(F ) is independent from
the number field K, which is assumed to contain α and all the Taylor coefficients Ak of F ;
its expression involves certain quantities introduced in Proposition 1 in §5.1.

We have the following corollary, in a case where `0 = 1. The proof is given in §2,
together with many examples and other applications of Theorem 3.

Corollary 1. Let us fix some rational numbers a1, . . . , ap+1 and b1, . . . , bp such that ai 6∈
Z \ {1} and bj 6∈ −N for any i, j. Then for any α ∈ Q such that 0 < |α| < 1, infinitely
many of the hypergeometric values

∞∑
k=0

(a1)k(a2)k · · · (ap+1)k
(1)k(b1)k · · · (bp)k

αk

(k + 1)s
, s ≥ 0 (1.6)

are linearly independent over Q(α).

The numbers in (1.6) are hypergeometric because they are equal to

p+s+1Fp+s

[
a1, a2, . . . , ap+1, 1, . . . , 1
b1, b2, . . . , bp, 2, . . . , 2

;α

]
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where 1 and 2 are both repeated s times. It seems to be the first general Diophantine result
of this type for values of hypergeometric functions. Of course the conclusion of Corollary 1
can be stated more precisely as

dimQ(α) SpanQ(α)

{ ∞∑
k=0

(a1)k(a2)k · · · (ap+1)k
(1)k(b1)k · · · (bp)k

αk

(k + 1)s
, 0 ≤ s ≤ S

}
≥ 1 + o(1)

[Q(α) : Q]C
log(S),

where C > 0 depends on a1, . . . , ap+1 and b1, . . . , bp. The special case p = 0, a1 = 1
corresponds to Theorem 2 stated above, except that log(2e) is replaced with C. An ad hoc
analysis in this special case would give C = log(2e), thereby providing Theorem 2 again
(with a new proof, see below).

The strategy to prove Theorem 3 is as follows. First, we construct certain algebraic
numbers κj,t,s,n ∈ K and polynomials Kj,s,n(z) ∈ K[z] such that for any s, n ≥ 1:

F [s]
n (z) =

s∑
t=1

`0∑
j=1

κj,t,s,nF
[t]
j (z) +

µ−1∑
j=0

Kj,s,n(z)
(
z
d

dz

)j
F (z), (1.7)

with geometric bounds on denominators and moduli of Galois conjugates (see Proposition 1
in §5.1 for a precise statement). Eq. (1.7) is a far reaching generalization of a property
trivially satisfied by polylogarithms: for any n ≥ 1,

∞∑
k=0

zk+n

(k + n)s
= Lis(z)−

n−1∑
k=1

zk

ks
.

To obtain this result we study linear recurrences associated with G-operators, and make use
in a crucial way of the results of André, Chudnovsky and Katz [4, 19]. With z = α, (1.7)
proves the inequality on the right-hand side of (1.5). This part of the proof of Theorem 3
uses only methods with an algebraic flavor.

To prove the inequality on the left-hand side of (1.5), we use methods with a more
Diophantine flavor. We consider the series

TS,r,n(z) = n!S−r
∞∑
k=0

k(k − 1) · · · (k − rn+ 1)

(k + 1)S(k + 2)S · · · (k + n+ 1)S
Ak z

−k

where |z| > 1/R, r and n are integer parameters such that r ≤ S and n→ +∞. If Ak = 1
for any k, this is essentially the series used in [31] and [25] to prove Theorem 2. Using

(1.7) again, we prove that TS,r,n(1/α) is a K-linear combination of the numbers F
[t]
j (α)

(1 ≤ t ≤ S, 1 ≤ j ≤ `0) and (z d
dz

)jF (α) (0 ≤ j ≤ µ − 1). In fact, the series TS,r,n(z) can

be interpreted has an explicit Padé-type approximant at z =∞ for the functions F
[t]
j (1/z)

and (z d
dz

)jF (1/z).
We apply singularity analysis and the saddle point method to prove that

TS,r,n(1/α) = annκ log(n)λ
( Q∑
q=1

cqζ
n
q + o(1)

)
as n→∞, (1.8)
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for some integers Q ≥ 1 and λ ≥ 0, real numbers a > 0 and κ, non-zero complex numbers
c1,. . . , cQ and pairwise distinct complex numbers ζ1, . . . , ζQ such that |ζq| = 1 for any q.
These parameters are effectively computed in terms of the finite singularities of F .

To conclude the proof we apply a linear independence criterion, as for all results of the
second family mentioned above. Such a criterion enables one to deduce a lower bound on
the dimension of the K-vector space spanned by complex numbers ϑ1, . . . , ϑJ from the
existence of linear forms Tn =

∑J
j=1 pj,nϑj with coefficients pj,n ∈ OK. This lower bound

is non-trivial if |Tn| is very small, and pj,n is not too large. However one more assumption
is needed. In Siegel-type criteria this assumption is the non-vanishing of a determinant;
Theorem 2 is proved in this way in [25], by constructing several sequences (T

(k)
n ). On the

opposite, Nesterenko’s criterion [26] (and its generalizations [35, 9] to number fields) enables
one to construct only one sequence (Tn), but it requires a lower bound on |Tn|1/n; this is how
Theorem 2 is proved in [31] if α is real. If lim infn |Tn|1/n is smaller than lim supn |Tn|1/n,
this lower bound is weaker. In fact, in our situation, namely with the asymptotics (1.8),
it is not even clear that lim infn |Tn|1/n is positive so that these criteria do not apply. We
solve this problem by generalizing Nesterenko’s criterion (over any number field) to linear
forms (Tn) with asymptotics given by (1.8); our lower bound is best possible (see §3 for
precise statements). In the special case of polylogarithms, this provides a new proof of
Theorem 2 when α is not real.

The structure of this paper is as follows. In §2 we deduce Corollary 1 from Theorem
3, and give applications of these results. In §3 we state and prove the generalization of
Nesterenko’s linear independence criterion to linear forms with asymptotics given by (1.8).
Then in §4 we prove a general result, of independent interest, on linear recurrences related
to G-operators (using in a crucial way the André-Chudnovsky-Katz theorem). This result
allows us to prove (1.7) in §5, with geometric bounds on denominators and moduli of Galois
conjugates. We conclude the proof of Theorem 3 in §6, except for the asymptotic estimate
(1.8) that we obtain in §7 using singularity analysis and the saddle point method. At last,
we mention in §8 how to simplify the proof in the special case where Ak ≥ 0 for any k, and
α > 0.

2 Examples

The generalized hypergeometric series defined by (1.3), if bj 6∈ −N for any j, is solution of
the differential equation Lhy(z) = 0 where

Lh = θ(θ + b1 − 1) · · · (θ + bp − 1)− z(θ + a1) · · · (θ + ap+1), θ = z
d

dz
.

It is a G-function if and only if the aj’s and bj’s are rational numbers, in which case Lh is
a G-operator. Assuming ai 6∈ −N, it is not a polynomial. We now compute the quantities
defined before Theorem 3, especially `0. The degree δ of Lh is p+ 2 and the multiplicity ω
of 0 as a singularity of Lh is p+ 1. Hence, ` = δ − ω = 1 (consistently with the expression

6



of Lh and Lemma 1 below). Moreover, the exponents of Lh at 0 are 0, 1 − b1, . . . , 1 − bp,
while those at ∞ are a1, . . . , ap+1, so that `0 = max(1, â1, . . . , âη) where the âj are the
integer parameters amongst a1, . . . , ap+1. If none of the aj’s is an integer greater than 1
then `0 = 1. This proves Corollary 1.

We now list the hypergeometric parameters of the examples stated in the Introduction:

1

k + 1
←→

[
1, 1
2

] (
2k
k

)
k + 1

←→
[

1
2
, 1
2

] (
3k

2k

)
←→

[
1
3
, 2

3
1
2

]
(

4k

2k

)
←→

[
1
4
, 3

4
1
2

] (
2k
k

)
(k + 1)2

←→
[

1
2
, 1, 1
2, 2

]
1

(k + 1)2
(

2k+2
k+1

) ←→ [
1, 1, 1

3
2
, 2

]
(

2k
k

)
2k + 1

←→
[

1
2
, 1

2
3
2

]
(30k)!k!

(15k)!(10k)!(6k)!
←→

[
1
30
, 7

30
, 11

30
, 13

30
, 17

30
, 19

30
, 23

30
, 29

30
1
5
, 1

3
, 2

5
, 1

2
, 3

5
, 2

3
, 4

5

]
.

In these eight cases, we have `0 = 1 so that Corollary 1 applies (separately) to them.

Let us now compute `0 for non-hypergeometric examples. The function 1√
1−6z+z2

=∑∞
k=0(

∑k
j=0

(
k
j

)(
k+j
j

)
)zk is solution of the differential equation

(z2 − 6z + 1)y′(z) + (z − 3)y(z) = 0

which is minimal for this function; its exponent at∞ is 1. Hence `0 = ` = 2 and Theorem 3
provides 1+o(1)

[K:Q]C
log(S) K-linearly independent numbers amongst the numbers

∞∑
k=0

( k∑
j=0

(
k

j

)(
k + j

j

)) αk

(k + 1)s
and

∞∑
k=0

( k∑
j=0

(
k

j

)(
k + j

j

)) αk

(k + 2)s
, 0 ≤ s ≤ S.

The function log(1−z) log(1+z) =
∑∞

k=1( 1
k

∑2k−1
j=1

(−1)j

j
)z2k is solution of the differential

equation

z(z2 − 1)2y(4)(z) + (z2 − 1)(7z2 + 1)y(3)(z) + 2z(5z2 − 1)y(2)(z) + 2(z2 + 1)y(1)(z) = 0

which is minimal for this function; its exponents at ∞ are 0, 0, 0, 1, and `0 = ` = 4.

The function Li1,1(z) = 1
2

log(1− z)2 =
∑∞

k=0( 1
k+1

∑k
j=1

1
j
)zk+1 is solution of the differ-

ential equation
(z − 1)2y′′′(z) + 3(z − 1)y′′(z) + y′(z) = 0

which is minimal for this function; its exponents at ∞ are 0, 0, 0. Hence `0 = ` = 2 and
Theorem 3 applies to the numbers

∞∑
k=1

( k−1∑
j=1

1

j

) αk

ks+1
and

∞∑
k=1

( k−1∑
j=1

1

j

) αk

k(k + 1)s
, s ≥ 0.
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More generally, the multiple polylogarithm function Lis1,s2,...,sn(z), with sj ≥ 1, is solution
of the differential equation d

dz
δsn · · · δs1y(z) = 0, where δs = 1−z

z
θs. This equation is a

G-operator (being a product of G-operators) of order 1 +
∑n

j=1 sj. Its leading coefficient

is (1− z)nzs1+···+sn−n and its indicial polynomial at ∞ is xs1+···+sn+1, so that `0 = n.

The generating function of the Apéry numbers
∑∞

k=0(
∑k

j=0

(
k
j

)2(k+j
j

)2
)zk is solution of

the minimal differential equation

z2(1− 34z + z2)y′′′(z) + z(3− 153z + 6z2)y′′(z) + (1− 112z + 7z2)y′(z) + (z − 5)y(z) = 0.

Its exponents at ∞ are 1, 1, 1. Hence `0 = ` = 2 and Theorem 3 applies again to the
numbers

∞∑
k=0

( k∑
j=0

(
k

j

)2(
k + j

j

)2) αk

(k + 1)s
and

∞∑
k=0

( k∑
j=0

(
k

j

)2(
k + j

j

)2) αk

(k + 2)s
, s ≥ 0.

We conclude this section with the case of the series Gb(z) =
∑∞

k=1
χ(k)
kb
zk where b

is any fixed positive integer and χ is the unique non-principal character mod 4. Since

Gb(z) =
∑∞

k=0
(−1)k

(2k+1)b
z2k+1, it is a G-function. Moreover, θ

(
(1 + z2)θb

)
Gb(z) = 0, which is

of minimal order for Gb(z). Hence θ
(
(1 + z2)θb

)
is a G-operator: it is such that µ = b+ 1,

δ = b+3, ω = b+2, ` = 1 and its exponents at infinity are 0, 0, . . . , 0, 2, where 0 is repeated
b times. Hence `0 = 2 and Theorem 3 applies to the numbers

∞∑
k=1

χ(k)

kb+s
αk and

∞∑
k=1

χ(k)

kb(k + 1)s
αk, s ≥ 0.

More generally, Theorem 3 applies to any G-function of the form
∑∞

k=1
χ(k)
A(k)

zk where χ is

a Dirichlet character and A(X) ∈ Q[X] is split over Q and such that A(k) 6= 0 for any
positive integer k.

3 Generalization of Nesterenko’s linear independence

criterion

The following version of Nesterenko’s linear independence criterion will be used in the proof
of Theorem 3.

Let K be a number field embedded in C. We let L = R if K ⊂ R, and L = C otherwise.
We denote by o(1) any sequence that tends to 0 as n→∞.

Theorem 4. Let (Qn) be an increasing sequence of positive real numbers, with limit +∞,

such that Qn+1 = Q
1+o(1)
n . Let T ≥ 1, c1,. . . , cT be non-zero complex numbers, and ζ1, . . . ,

ζT be pairwise distinct complex numbers such that |ζt| = 1 for any t.
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Consider N numbers ϑ1, . . . , ϑN ∈ L. Assume that for some τ > 0 there exist N se-
quences (pj,n)n≥0, j = 1, . . . , N , such that for any j and n, pj,n ∈ OK, all Galois conjugates

of pj,n have modulus less than Q
1+o(1)
n , and

N∑
j=1

pj,nϑj = Q−τ+o(1)
n

( T∑
t=1

ctζ
n
t + o(1)

)
. (3.1)

Then

dimK SpanK(ϑ1, . . . , ϑN) ≥ τ + 1

[K : Q]
.

Given 0 < α < 1 < β and κ, λ ∈ R, this theorem can be applied when all Galois
conjugates of pj,n have modulus less than βn(1+o(1)) and

N∑
j=1

pj,nϑj = αnnκ(log n)λ
( T∑
t=1

ctζ
n
t + o(1)

)
; (3.2)

then the conclusion reads

dimK SpanK(ϑ1, . . . , ϑN) ≥ 1

[K : Q]

(
1− log(α)

log(β)

)
.

Nesterenko’s original linear independence criterion [26] is a general quantitative result,
of which Theorem 4 is a special case if K = Q, T = 1, ζ1 = ±1. The case where K = Q,
T = 2, ζ2 = ζ1 and c2 = c1 follows using either lower bounds for linear forms in logarithms
(if c1, ζ1 ∈ Q, see [34] or [17, §2.2]) or Kronecker-Weyl’s equidistribution theorem [17].

Nesterenko’s criterion has been extended to any number field K by Töpfer [35] and
Bedulev [9]; their results are similar, but different in several aspects. The case T = 1 of
Theorem 4 follows from Töpfer’s Korollar 2 [35], but does not seem to follow directly from
Bedulev’s result since he uses the exponential Weil height relative to K instead of the house
of pj,n (i.e., the maximum of the moduli of all Galois conjugates of pj,n).

We shall deduce the general case of Theorem 4 from Töpfer’s result using Vandermonde
determinants (as in the proof of [19, Lemma 6]). This provides also a new and simpler
proof of the above-mentioned case K = Q, T = 2, ζ2 = ζ1 and c2 = c1.

Even in the special case where T = 1 and K = Q, the lower bound in Theorem 4 is best
possible (see [18]). We have the following corollary, which we shall not use in this paper
but which can be useful in other contexts.

Corollary 2. Let α, β ∈ R be such that 0 < α < 1 < β. Consider N numbers ϑ1, . . . , ϑN ∈
L. Assume that there exist N sequences (pj,n)n≥0, j = 1, . . . , N , such that for any j and
n, pj,n ∈ OK, all Galois conjugates of pj,n have modulus less than βn(1+o(1)), and

lim sup
n→∞

∣∣∣ N∑
j=1

pj,nϑj

∣∣∣1/n ≤ α.
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Assume also that
∑N

j=1 pj,nϑj 6= 0 for infinitely many n, and that for any j the function∑∞
n=0 pj,nz

n is solution of a homogeneous linear differential equation with coefficients in
Q(z). Then

dimK SpanK(ϑ1, . . . , ϑN) ≥ 1

[K : Q]

(
1− log(α)

log(β)

)
.

The point in Corollary 2 is that no lower bound is needed on |
∑N

j=1 pj,nϑj|. This re-
sult fits in the context of G-functions, since its assumptions imply that

∑∞
n=0 pj,nz

n is a
G-function for any j. To deduce Corollary 2 from Theorem 4, it is enough to notice that∑∞

n=0

∑N
j=1 pj,nϑjz

n =
∑N

j=1 ϑj
∑∞

n=0 pj,nz
n is solution of a homogeneous linear differen-

tial equation with coefficients in Q(z). We can then apply classical transfer results from
Singularity Analysis: an asymptotic estimate like (3.2) holds.

Proof of Theorem 4. For any n ≥ 0 we consider the following determinant:

∆n =

∣∣∣∣∣∣∣
ζn1 . . . ζnT
...

...
ζn+T−1

1 . . . ζn+T−1
T

∣∣∣∣∣∣∣ .
We have |∆n| = |ζn1 . . . ζnT∆0| = |∆0| 6= 0 since ∆0 is the Vandermonde determinant built
on the pairwise distinct complex numbers ζ1, . . . , ζT . We claim that for any n ≥ 0 there
exists δn ∈ {0, . . . , T − 1} such that

∣∣∣ T∑
t=1

ctζ
n+δn
t

∣∣∣ ≥ |c1∆0|
T !

. (3.3)

Indeed if this equation holds for no integer δn ∈ {0, . . . , T−1} then upon replacing C1,n with
1
c1

∑T
t=1 ctCt,n (where Ct,n is the t-th column of the matrix of which ∆n is the determinant)

we obtain:

|∆0| = |∆n| <
T

c1

|c1∆0|
T !

(T − 1)! = |∆0|,

since all minors of size T−1 have modulus less than or equal to (T−1)!. This contradiction
proves the claim (3.3) for some δn ∈ {0, . . . , T − 1}.

Now let p′j,n = pj,n+δn . Since Qn+1 = Q
1+o(1)
n and 0 ≤ δn ≤ T − 1 (where T − 1 does

not depend on n), all Galois conjugates of pj,n have modulus less than Q
1+o(1)
n . Moreover

(3.3) yields |
∑N

j=1 p
′
j,nϑj| = Q

−τ+o(1)
n . Therefore Töpfer’s Korollar 2 [35] applies to the

sequences (p′j,n): this concludes the proof of Theorem 4.

Remark 1. In the proof of Theorem 4 the sequences (p′j,n) may be such that p′j,n = p′j,n′

for some n < n′ even if this does not happen with pj,n. This is not a problem since in this
case n′ − n ≤ T − 1, where T is independent from n.

10



4 Linear recurrences associated with G-operators

In this section we apply some results of André, Chudnovsky and Katz to prove a few
general properties of G-operators (stated in §4.1). We recall that for any G-function F ,
any non-zero differential operator L ∈ Q[z, d

dz
] of minimal order such that LF = 0 is a

G-operator. We refer to [4, §3] for the definition and properties of G-operators.

4.1 Setting and statements

Lemma 1. Let K be a number field, and L =
∑µ

j=0 Pj(z)
(
d
dz

)j
a G-operator with Pj ∈

K[X] and Pµ 6= 0; denote by δ the degree of L, and by ω ≥ 0 the multiplicity of 0 as a
singularity of L; let ` = δ − ω.

Then there exist some polynomials Qj(X) ∈ OK[X] and a positive rational integer α
such that

αzµ−ωL =
∑̀
j=0

zjQj(θ + j) where θ = z
d

dz
.

Moreover letting dj = deg(Qj) we have

dj ≤ µ for any 0 ≤ j ≤ `, and d0 = d` = µ.

At last, Q0(X) = 0 and Q`(−X + `) = 0 are (up to a multiplicative constant) the indicial
equations of L at 0 and ∞, respectively.

This lemma belongs to folklore (see for instance [8, §4.1] for a part of it) but for the
sake of completeness we provide a proof in §4.2 below.

In what follows we keep the notation and assumptions of Lemma 1. We denote by ê1,
. . . , êκ and f̂1, . . . , f̂η the integer exponents of L at 0 and ∞, respectively; they are the
integer roots of the indicial equations at 0 and∞, namely Q0(X) = 0 and Q`(−X+`) = 0.
We let m ≥ 1 be such that

m > −êi and m > f̂j − ` for all 1 ≤ i ≤ κ, 1 ≤ j ≤ η;

of course the condition on êi (resp. f̂j) is always satisfied if κ = 0 (resp. η = 0). Then
Q0(−n) 6= 0 and Q`(−n) 6= 0 for any integer n ≥ m, so that the linear recurrence relation∑̀

j=0

Qj(−n)U(n+ j) = 0, n ≥ m (4.1)

(satisfied by the Taylor coefficients of any power series in 1/z annihilated by L, see Step 1 in
the proof of Lemma 2) has a C-basis of solutions (u1(n))n≥m, . . . , (u`(n))n≥m with uj(n) ∈ K
for any 1 ≤ j ≤ ` and any n ≥ m. The determinant

W (n) =

∣∣∣∣∣∣∣∣∣
u1(n+ `− 1) · · · u`(n+ `− 1)
u1(n+ `− 2) · · · u`(n+ `− 2)

...
...

...
u1(n) · · · u`(n)

∣∣∣∣∣∣∣∣∣ (4.2)
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is called a wronskian (or casoratian) of the recurrence.

Now let us consider an inhomogeneous linear recurrence relation∑̀
j=0

Qj(−n)V (n+ j) = g(n), n ≥ m (4.3)

where g(n) is defined for any n ≥ m. We let ∆j(n) = Dj(n) g(n−1)
Q`(1−n)

for n ≥ m+ 1, where

Dj(n) = (−1)j

∣∣∣∣∣∣∣
u1(n+ `− 2) · · · uj−1(n+ `− 2) uj+1(n+ `− 2) · · · u`(n+ `− 2)

...
...

...
...

...
...

u1(n) · · · uj−1(n) uj+1(n) · · · u`(n)

∣∣∣∣∣∣∣ .
(4.4)

Lemma 2. The general solution of the recurrence (4.3) is

V (n) =
∑̀
j=1

(
χj +

n∑
k=m+1

∆j(k)

W (k)

)
uj(n), n ≥ m,

where χ1, . . . , χ` are arbitrary complex numbers. Moreover we have W (n) 6= 0 for any

n ≥ m, and the power series
∑∞

n=m
zn

W (n)
,
∑∞

n=m uj(n)zn and
∑∞

n=m+1
Dj(n)

Q`(1−n)
zn (with

1 ≤ j ≤ `) are G-functions.

The first part of this lemma (namely, the expression of V (n)) is valid as soon as
Q0(−n)Q`(−n) 6= 0 for any n ≥ m: it does not rely on the assumption that L is a
G-operator.

4.2 Proofs

Proof of Lemma 1. Since ∞ is a regular singularity of L we have deg(Pk) ≤ δ − (µ − k)
for any k and deg(Pµ) = δ; since 0 is a regular singularity the order of vanishing of each
Pk at 0 is at least max(0, ω − (µ− k)). Therefore we may write

Pk(z) =

δ−µ+k∑
i=max(0,ω−µ+k)

pk,iz
i.

Now observe that for any n ≥ 1,

zn
( d
dz

)n
=

n∑
j=1

cj,nθ
j with cj,n ∈ Q and cn,n = 1.

Then we let p0,i = 0 if i ≤ −1, and

Sk(X) = p0,k−µ +

µ∑
j=1

( k∑
i=max(0,k+j−µ)

pi+µ−k,icj,i+µ−k

)
Xj
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for ω ≤ k ≤ δ, so that deg(Sω) = deg(Sδ) = µ and

L =
δ∑

k=ω

zk−µSk(θ).

Let α ≥ 1 denote a common denominator of the (algebraic) coefficients of all polynomials
Sk, and put Qj(X) = αSj+ω(X − j). Then we have

αzµ−ωL =
∑̀
j=0

zjQj(θ + j).

At last, since θzp = pzp for any p ∈ Z we have

Lzp =
1

α

∑̀
j=0

Qj(p+ j)zp+j+ω−µ.

Since Q0 and Q` have degree µ, they are non-zero and (up to the multiplicative constant 1
α

)
the indicial equations at 0 and infinity are respectively Q0(p) = 0 and Q`(−p+ `) = 0.

Proof of Lemma 2. We split the proof into four steps. Step 3 and a part of Step 2 are some-
what classical, and do not rely on the assumption that L is a G-operator (see for instance
[29, pp. 5 and 22]). However we provide a complete proof for the reader’s convenience.

Step 1: Proof that
∑∞

n=m uj(n)zn is a G-function.
For any power series U(z) =

∑∞
n=m unz

−n, Lemma 1 yields

αzµ−ωLU(z) =
+∞∑

k=m−`

( ∑̀
j=max(0,m−k)

uk+jQj(−k)
)
z−k.

Therefore (un)n≥m is a solution of (4.1) if, and only if, αzµ−ωLU(z) = z1−mU0(z) where
U0 is a polynomial of degree at most ` − 1. In this case ( d

dz
)`zµ−ω+m−1L is a G-operator

that annihilates U(z); notice that zµ−ωL ∈ K[z, d
dz

] even if ω > µ, since 0 is a regular
singularity of L. Applying the André-Chudnovsky-Katz theorem (see [4, p. 719] or [19,
§4.1]), we deduce that if un ∈ K for any n then U(z) is a G-function in 1/z.

Step 2: Computation of the wronskian W (n).
First of all, if W (n0) = 0 for some n0 ≥ m then we obtain λ1, . . . , λ` ∈ C, not all zero,

such that λ1u1(n) + . . . + λ`u`(n) = 0 for any n0 ≤ n ≤ n0 + ` − 1; by induction this
equality holds for any n ≥ m, which is a contradiction. Therefore we have W (n) 6= 0 for
any n ≥ m. Moreover W (n) is solution of the linear recurrence of order 1

Q`(−n)W (n+ 1) = (−1)`Q0(−n)W (n), (4.5)
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since the left hand side is equal to∣∣∣∣∣∣∣∣∣
−
∑`−1

j=0Qj(−n)u1(n+ j) . . . −
∑`−1

j=0 Qj(−n)u`(n+ j)

u1(n+ `− 1) . . . u`(n+ `− 1)
...

...
u1(n+ 1) . . . u`(n+ 1)

∣∣∣∣∣∣∣∣∣ .
By Lemma 1 we have

Q0(X) = γ0

µ∏
i=1

(X − ei) and Q`(X) = γ`

µ∏
i=1

(X + fi − `),

where γ0, γ` are non-zero elements of K and e1, . . . , eµ (resp. f1, . . . , fµ) are the exponents
of L at 0 (resp. at∞). By Katz’ theorem [4, p. 719], these exponents are rational numbers.
The recurrence (4.5) is easily solved: for n ≥ m, we have

W (n) = (−1)`(n−m)Q0(1− n) · · ·Q0(−m)

Q`(1− n) · · ·Q`(−m)
W (m)

= W (m)
(
(−1)`γ0/γ`

)n−m µ∏
i=1

(n− 1 + ei) · · · (m+ ei)

(n− 1− fi + `) · · · (m− fi + `)

= W (m)
(
(−1)`γ0/γ`

)n−m µ∏
i=1

(m+ ei)n−m
(m− fi + `)n−m

.

Therefore
∑∞

n=m
zn

W (n)
is a d+1Fd hypergeometric series with rational parameters, and ac-

cordingly a G-function.

Step 3: Computation of the solutions of (4.3).
Since W (n) 6= 0 for any n ≥ m, given any sequence (v(n))n≥m there exist sequences

(cj(n))n≥m, 1 ≤ j ≤ `, such that

v(n+ k) =
∑̀
j=1

cj(n)uj(n+ k), k = 0, . . . , `− 1. (4.6)

This equation with n+ 1 and k − 1 reads

v(n+ k) =
∑̀
j=1

cj(n+ 1)uj(n+ k), k = 1, . . . , `− 1,

so that ∑̀
j=1

(∆cj(n))uj(n+ k) = 0, k = 1, . . . , `− 1, (4.7)

where we define as usual the difference operator ∆xn := xn+1 − xn.
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Now let us assume that (v(n))n≥m is a solution of the inhomogeneous linear recurrence
relation (4.3). Since (4.6) with n+ 1 and `− 1 yields

v(n+ `) =
∑̀
j=1

(∆cj(n))uj(n+ `) +
∑̀
j=1

cj(n)uj(n+ `),

we obtain using also (4.6) and the fact that (uj(n))n≥m is a solution of (4.1) for any j:

∑̀
j=1

(∆cj(n))uj(n+ `) =
g(n)

Q`(−n)
. (4.8)

The ` equations given by (4.7) and (4.8) form a system of linear equations which enables
us to find ∆cj(n) by Cramér’s rule because the determinant of the system is the wronskian

W (n + 1) defined by (4.2). We have W (n + 1) 6= 0 (by Step 2) so that ∆cj(n) =
∆j(n+1)

W (n+1)

since ∆j(n) = Dj(n) g(n−1)
Q`(1−n)

is equal to the following determinant:∣∣∣∣∣∣∣∣∣
u1(n+ `− 1) · · · uj−1(n+ `− 1) g(n−1)

Q`(1−n)
uj+1(n+ `− 1) · · · u`(n+ `− 1)

u1(n+ `− 2) · · · uj−1(n+ `− 2) 0 uj+1(n+ `− 2) · · · u`(n+ `− 2)
...

...
...

...
...

...
...

u1(n) · · · uj−1(n) 0 uj+1(n) · · · u`(n)

∣∣∣∣∣∣∣∣∣ .
Therefore we obtain

cj(n) = cj(m) +
n−1∑
k=m

∆cj(k) = cj(m) +
n∑

k=m+1

∆j(k)

W (k)
, n ≥ m,

and finally

v(n) =
∑̀
j=1

(
cj(m) +

n∑
k=m+1

∆j(k)

W (k)

)
uj(n).

Conversely, the same computations prove that any sequence defined in this way (with
arbitrary constants cj(m), 1 ≤ j ≤ `) is a solution of the inhomogeneous linear recurrence
relation (4.3).

Step 4: Proof that
∑∞

n=m+1
Dj(n)

Q`(1−n)
zn is a G-function.

Expanding the determinant in (4.4) we see that
∑∞

n=m+1Dj(n)zn is a Z-linear combi-
nation of Hadamard (i.e., coefficientwise) products of G-functions

∑∞
n=m+1 uh(n+ i)zn, so

that it is a G-function. On the other hand
∑∞

n=m+1
zn

Q`(1−n)
is a G-function because Q` is

split over the rationals (see Step 2) so that finally
∑∞

n=m+1
Dj(n)

Q`(1−n)
zn is a G-function for

any j.
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5 Properties of F
[s]
n (z)

Throughout this section, let K be a number field, and L =
∑µ

j=0 Pj(z)
(
d
dz

)j
a G-operator

with Pj ∈ K[X] and Pµ 6= 0. We denote by δ the degree of L (i.e., δ = deg(Pµ) since ∞
is a regular singularity of L), by ω ≥ 0 the multiplicity of 0 as a singularity of L (i.e., the
order of vanishing of Pµ at 0), and we let ` = δ − ω.

Let F (z) =
∑∞

k=0Akz
k, with Ak ∈ K, be such that LF = 0; then F is a G-function. Of

course, starting with such a G-function F , one may choose for L a differential operator, of
minimal order, such that LF = 0; then L is a G-operator.

Recall that we let θ = z d
dz

and that

F [s]
n (z) =

∞∑
k=0

Ak
(k + n)s

zk+n.

5.1 The main proposition

As in the introduction, we denote by f̂1, . . . , f̂η the integer exponents of L at ∞, with
η = 0 if there isn’t any.

Proposition 1. Let m ≥ 1 be such that

m > f̂j − ` for all 1 ≤ j ≤ η. (5.1)

Then for any s, n ≥ 1:
(i) There exist some algebraic numbers κj,t,s,n ∈ K, and some polynomials Kj,s,n(z) ∈

K[z] of degree at most n+ s(`− 1), such that

F [s]
n (z) =

s∑
t=1

`+m−1∑
j=1

κj,t,s,nF
[t]
j (z) +

µ−1∑
j=0

Kj,s,n(z)(θjF )(z). (5.2)

(ii) All Galois conjugates of all the numbers κj,t,s,n (j ≤ `+m−1, t ≤ s), and all Galois
conjugates of all the coefficients of the polynomials Kj,s,n(z) (j ≤ µ−1), have modulus less
than H(F, s, n) > 0 with

lim sup
n→+∞

H(F, s, n)1/n ≤ C1(F )s

for some constant C1(F ) ≥ 1 independent of s.
(iii) Let D(F, s, n) > 0 denote the least common denominator of the algebraic numbers

κj,t,s,n′ (j ≤ ` + m − 1, t ≤ s, n′ ≤ n) and of the coefficients of the polynomials Kj,s,n′(z)
(j ≤ µ− 1, n′ ≤ n); then

lim sup
n→+∞

D(F, s, n)1/n ≤ C2(F )s

for some constant C2(F ) ≥ 1 independent of s.
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The constants C1(F ) and C2(F ) are effective and could be computed in principle.
However, their values are complicated to write down and do not add much value.

Of course the most interesting case of Proposition 1 is when m = max(1, f̂1 + 1 −
`, . . . , f̂η +1−`), that is m = `0−`+1 where `0 was defined in the introduction: we obtain
in this way (1.7). However, in the proof we shall use greater values of m (see §5.3 below).

Our main tool will be a linear recurrence relation satisfied by F
[s]
n (z).

5.2 A linear recurrence relation satisfied by F
[s]
n (z)

Let Q0, . . . , Q` and dj = deg(Qj) be as in Lemma 1.

Lemma 3. For any fixed integer s ≥ 1, the sequence of functions
(
F

[s]
n (z)

)
n≥1

is solution
of the inhomogeneous recurrence relation∑̀

j=0

Qj(−n)F
[s]
n+j(z) =

∑̀
j=0

s−1∑
t=1

βj,n,t,sF
[t]
n+j(z) +

∑̀
j=0

zn+jBj,n,s(θ)F (z), n ≥ 1 (5.3)

where βj,n,t,s ∈ OK and each polynomial Bj,n,s(X) ∈ OK[X] has degree ≤ dj − s.
Moreover, letting Bj,n,s(X) =

∑dj−s
q=0 bj,n,s,qX

q the coefficients βj,n,t,s and bj,n,s,q are poly-
nomials in n, with coefficients in OK (depending on j, t, s, q), such that

deg(βj,n,t,s) ≤ dj + t− s and deg(bj,n,s,q) ≤ dj − q − s.

In particular:

• If s > µ = max(d0, . . . , d`), then Bj,n,s(X) = 0.

• If t < s− dj then βj,n,t,s = 0.

Proof. We prove (5.3) by induction on s ≥ 1, and this will provide expressions for the

various involved quantities. In the case s = 1, we write Qj(x) =
∑dj

m=0 ρj,mx
m with

ρj,m ∈ OK for any j, m. For any integer n ≥ 1, we have

0 =

∫ z

0

xn−1LF (x)dx =
∑̀
j=0

dj∑
m=0

ρj,m

∫ z

0

xn+j−1(θ + j)mF (x)dx

=
∑̀
j=0

dj∑
m=0

ρj,m

m∑
p=0

(
m

p

)
jm−p

∫ z

0

xn+j−1θpF (x)dx

because (θ + j)m =
∑m

p=0

(
m
p

)
jm−pθp. After successive integrations by parts (with respect

to θ; all the integrated parts vanish at x = 0 because n ≥ 1), we see that∫ z

0

xn+j−1θpF (x)dx

= zn+j

p−1∑
q=0

(−1)p−q−1(n+ j)p−q−1θqF (z) + (−1)p(n+ j)p
∫ z

0

xn+j−1F (x)dx.
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Since
∫ z

0
xn+j−1F (x)dx = F

[1]
n+j(z) we deduce that

0 =
∑̀
j=0

F
[1]
n+j(z)

dj∑
m=0

ρj,m

m∑
p=0

(
m

p

)
(−1)p(n+ j)pjm−p

+
∑̀
j=0

zn+j

dj∑
m=0

ρj,m

m∑
p=0

(
m

p

)
jm−p

p−1∑
q=0

(−1)p−q−1(n+ j)p−q−1θqF (z).

We now set for 0 ≤ q ≤ dj − 1

bj,n,1,q = −
dj∑
m=0

ρj,m

m∑
p=q+1

(
m

p

)
jm−p(−1)p−q(n+ j)p−q−1, (5.4)

which is a polynomial in n with coefficients in OK and degree at most dj− q−1. Therefore

Bj,n,1(X) =
∑dj−1

q=0 bj,n,1,qX
q has degree ≤ dj − 1 and coefficients in OK. Since

dj∑
m=0

ρj,m

m∑
p=0

(
m

p

)
(−1)p(n+ j)pjm−p =

dj∑
m=0

ρj,m(−n)m = Qj(−n),

we then deduce that

∑̀
j=0

Qj(−n)F
[1]
n+j(z) =

∑̀
j=0

zn+jBj,n,1(θ)F (z)

for any integer n ≥ 1: this proves (5.3) for s = 1.

Let us assume that Lemma 3 holds for some s ≥ 1. Then, since
∫ z

0
1
x
F

[s]
n+j(x)dx =

F
[s+1]
n+j (z), we have

∑̀
j=0

Qj(−n)F
[s+1]
n+j (z) =

∑̀
j=0

s−1∑
t=1

βj,n,t,sF
[t+1]
n+j (z) +

∑̀
j=0

∫ z

0

xn+j−1Bj,n,s(θ)F (x)dx.

Now recall from the case s = 1 that∫ z

0

xn+j−1θqF (x)dx = zn+j

q−1∑
h=0

(−1)q−h−1(n+ j)q−h−1θhF (z) + (−1)q(n+ j)qF
[1]
n+j(z).
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Hence,

∑̀
j=0

Qj(−n)F
[s+1]
n+j (z)

=
∑̀
j=0

s∑
t=2

βj,n,t−1,sF
[t]
n+j(z) +

∑̀
j=0

F
[1]
n+j(z)

( dj−s∑
q=0

(−1)q(n+ j)qbj,n,s,q

)

+
∑̀
j=0

zn+j

dj−s∑
q=0

bj,n,s,q

q−1∑
h=0

(−1)q−h−1(n+ j)q−h−1θhF (z).

Eq. (5.3) follows for s+ 1 ≥ 2 with

βj,n,t,s+1 =


dj−s∑
q=0

(−1)q(n+ j)qbj,n,s,q for t = 1

βj,n,t−1,s for 2 ≤ t ≤ s

and

Bj,n,s+1(X) =

dj−s−1∑
h=0

( dj−s∑
q=h+1

(−1)q−h−1(n+ j)q−h−1bj,n,s,q

)
Xh.

In particular,

bj,n,s+1,h =

dj−s∑
q=h+1

(−1)q−h−1(n+ j)q−h−1bj,n,s,q, 0 ≤ h ≤ dj − s− 1.

This completes the proof of Lemma 3, with explicit formulas.

5.3 Proof of Proposition 1

Let K, F , L be as in the statement of Proposition 1, and Q0, . . . , Q` be as in Lemma 1.
To begin with, we claim that if m satisfies (5.1) and Proposition 1 holds for m+1, then

Proposition 1 holds for m. Indeed Lemma 1 asserts that the integer roots of Q`(−X + `)

are f̂1, . . . , f̂η so that (5.1) yields Q`(−m) 6= 0. By induction on s ≥ 0, Lemma 3 implies

that F
[s]
m+`(z) is a linear combination of F

[t]
m+j(z) (0 ≤ j ≤ `−1, 1 ≤ t ≤ s, with coefficients

in K) and θjF (z) (0 ≤ j ≤ µ − 1, with coefficients in K[z] of degree at most m + `).

Then for any n ≥ 1 we may replace all F
[s]
m+`(z) with this expression in the expansion (5.2)

provided by Proposition 1 with m+ 1. This gives an expansion of the form (5.2) with m,
and the new values of κj,t,s,n and Kj,s,n(z) are easily proved to satisfy also (ii) and (iii).
This concludes the proof of the claim.
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We denote by ê1, . . . , êκ the integer exponents of L at 0; we have κ ≥ 1 because
LF (z) = 0. Recall that f̂1, . . . , f̂η are the integer exponents of L at∞, with η = 0 if there
isn’t any. The claim shows that in proving Proposition 1 we may assume that m is large;
we shall assume from now on that

m > −êi and m > f̂j − ` for all 1 ≤ i ≤ κ, 1 ≤ j ≤ η. (5.5)

Then we are in the setting of §4.1; in particular, Q0(−n) 6= 0 and Q`(−n) 6= 0 for any
integer n ≥ m. As in §4.1 we denote by (u1(n))n≥m, . . . , (u`(n))n≥m a basis of the space

of solutions of the homogeneous recurrence relation
∑`

j=0Qj(−n)U(n + j) = 0, n ≥ m,
such that uj(n) ∈ K for any j and any n. We also define W (n) and Dj(n) as in §4.1 (see

(4.2) and (4.4)). Lemma 2 shows that
∑∞

n=m
zn

W (n)
,
∑∞

n=m uj(n)zn and
∑∞

n=m+1
Dj(n)

Q`(1−n)
zn

(with 1 ≤ j ≤ `) are G-functions. Therefore letting δn > 0 denote a common denominator

of the algebraic numbers 1
W (k)

,
Dj(k)

Q`(1−k)
(m + 1 ≤ k ≤ n, 1 ≤ j ≤ `), uj(k) (m ≤ k ≤ n,

1 ≤ j ≤ `), we have
lim sup
n→∞

δ3/n
n ≤ C2(F ) (5.6)

where C2(F ) is a constant that depends only on F . Since δn ≥ 1, we have C2(F ) ≥ 1. For
the same reason we have

max
m+1≤k≤n

max
(
|uj(k)|, 1

|W (k)|
,
|Dj(k)|
|Q`(1− k)|

)
≤ C1(F )n(1+o(1)) (5.7)

as n → ∞, for any j ≤ `, where C1(F ) is a constant that depends only on F . Increasing
C1(F ) if necessary, we may assume that C1(F ) ≥ 1.

By induction on s ≥ 1 we shall construct algebraic numbers κj,t,s,n ∈ K and polynomials
Kj,s,n(z) ∈ K[z] of degree at most `+ n− 1 such that for any n ≥ 1,

F [s]
n (z) =

s∑
t=1

`+m−1∑
j=1

κj,t,s,nF
[t]
j (z) +

µ−1∑
j=0

Kj,s,n(z)θjF (z) (5.8)

with the additional properties

dsδ3s
n+s(`−1)κj,t,s,n′ ∈ OK and dsδ3s

n+s(`−1)Kj,s,n′(z) ∈ OK[z] for any n′ ≤ n (5.9)

where d ≥ 1 depends only on F but neither on n nor on s. Together with (5.6) this implies
assertion (iii) of Proposition 1; our construction (in which all formulas are explicit) yields
also assertion (ii) using (5.7).

The construction of κj,t,s,n and Kj,s,n(z) is trivial if n ≤ `+m−1: it is enough to choose
Ks,j,n(z) = 0 for any s, j, and κj,t,s,n equal to 1 if j = n and t = s, equal to 0 otherwise.
Therefore we may restrict now to the case n ≥ `+m.

We shall prove at the same time the initial step (s = 1) and the inductive step. With
this aim in mind we let s ≥ 0 and we shall prove the property with s + 1 (i.e., construct
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explicitly κj,t,s+1,n and Kj,s+1,n(z) such that (5.8) and (5.9) hold); if s = 0 the proof is
unconditional, whereas if s ≥ 1 the property with s will be used.

By Lemma 3, the sequence of functions
(
F

[s+1]
n (z)

)
n≥1

is solution of the inhomogeneous
recurrence relation ∑̀

j=0

Qj(−n)F
[s+1]
n+j (z) = gs+1(n), n ≥ 1, (5.10)

with

gs+1(n) =
∑̀
j=0

s∑
t=1

βj,n,t,s+1F
[t]
n+j(z) +

∑̀
j=0

zn+jBj,n,s+1(θ)F (z) (5.11)

where βj,n,t,s+1 ∈ OK and each polynomial Bj,n,s+1(X) ∈ OK[X] has degree ≤ dj − s − 1.
Lemma 2 shows that there exist some functions χs+1,j(z) such that for all n ≥ m,

F [s+1]
n (z) =

∑̀
j=1

χs+1,j(z)uj(n) +
∑̀
j=1

( n∑
k=m+1

∆s+1,j(k)

W (k)

)
uj(n), (5.12)

with (using (5.11))

∆s+1,j(k)

W (k)
=

Dj(k)

W (k)Q`(1− k)

(∑̀
q=0

s∑
t=1

βq,k−1,t,s+1F
[t]
k−1+q(z) +

∑̀
q=0

zk+q−1Bq,k−1,s+1(θ)F (z)
)
.

(5.13)

The point here is that F
[s+1]
n (z), gs+1(n), ∆s+1,j(k) depend on z, whereas Qj(−n) does not:

the homogeneous recurrence relation (4.1) and uj(n), W (k), Dj(k) do not depend on z.
The functions χs+1,j(z) can be determined as follows. We use (5.12) for n = m, . . . ,m+`−1
so that the linear system of ` equations

∑̀
j=1

χs+1,j(z)uj(n) = F [s+1]
n (z)−

∑̀
h=1

( n∑
k=m+1

∆s+1,h(k)

W (k)

)
uh(n)

is solved by Cramér’s rule. Indeed, the determinant of the system is W (m) and accordingly
a non-zero element of K by Lemma 2. Therefore, for any j there exist some αp,j ∈ K
(independent of s) such that

χs+1,j(z) =
`+m−1∑
p=m

αp,j

(
F [s+1]
p (z)−

∑̀
h=1

( p∑
k=m+1

∆s+1,h(k)

W (k)

)
uh(p)

)
. (5.14)

Using this equality and (5.13) into (5.12) yields, for any n ≥ m:

F [s+1]
n (z) = c1 + c2 + c3 + c4 + c5, (5.15)
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where

c1 =
∑̀
j=1

uj(n)
`+m−1∑
p=m

αp,jF
[s+1]
p (z),

c2 = −
∑̀
j=1

uj(n)
`+m−1∑
p=m

αp,j
∑̀
h=1

uh(p)

p∑
k=m+1

∑̀
q=0

s∑
t=1

Dh(k)

W (k)Q`(1− k)
βq,k−1,t,s+1F

[t]
k−1+q(z),

c3 = −
∑̀
j=1

uj(n)
`+m−1∑
p=m

αp,j
∑̀
h=1

uh(p)

p∑
k=m+1

Dh(k)

W (k)Q`(1− k)

∑̀
q=0

zk−1+qBq,k−1,s+1(θ)F (z),

c4 =
∑̀
j=1

uj(n)
n∑

k=m+1

∑̀
q=0

s∑
t=1

Dj(k)

W (k)Q`(1− k)
βq,k−1,t,s+1F

[t]
k−1+q(z),

c5 =
∑̀
j=1

uj(n)
n∑

k=m+1

Dj(k)

W (k)Q`(1− k)

∑̀
q=0

zk−1+qBq,k−1,s+1(θ)F (z).

If s = 0 then c2 and c4 vanish; otherwise we apply (5.8) with each t ∈ {1, . . . , s} and get

c2 = −
∑̀
j=1

uj(n)
`+m−1∑
p=m

αp,j
∑̀
h=1

uh(p)

p∑
k=m+1

∑̀
q=0

s∑
t=1

Dh(k)

W (k)Q`(1− k)
βq,k−1,t,s+1

( t∑
t′=1

`+m−1∑
j′=1

κj′,t′,t,k−1+qF
[t′]
j′ (z) +

µ−1∑
j′=0

Kj′,t,k−1+q(z)θj
′
F (z)

)
,

c4 =
∑̀
j=1

uj(n)
n∑

k=m+1

∑̀
q=0

s∑
t=1

Dj(k)

W (k)Q`(1− k)
βq,k−1,t,s+1

( t∑
t′=1

`+m−1∑
j′=1

κj′,t′,t,k−1+qF
[t′]
j′ (z) +

µ−1∑
j′=0

Kj′,t,k−1+q(z)θj
′
F (z)

)
.

We shall now define the coefficients κp,t′,s+1,n and Kj′,s+1,n(z) in such a way that (5.15)
reads

F [s+1]
n (z) =

s+1∑
t′=1

`+m−1∑
j′=1

κj′,t′,s+1,nF
[t′]
j′ (z) +

µ−1∑
j′=0

Kj′,s+1,n(z)θj
′
F (z).

Taking c1 into account we let

κp,s+1,s+1,n =

{
0 if 1 ≤ p ≤ m− 1,∑`

j=1 αp,juj(n) if m ≤ p ≤ `+m− 1.

If s ≥ 1 then considering c2 and c4 we let, for any t′, j′ such that 1 ≤ t′ ≤ s and
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1 ≤ j′ ≤ `+m− 1:

κj′,t′,s+1,n =

−
∑̀
j=1

uj(n)
`+m−1∑
p=m

αp,j
∑̀
h=1

uh(p)

p∑
k=m+1

∑̀
q=0

s∑
t=t′

Dh(k)

W (k)Q`(1− k)
βq,k−1,t,s+1κj′,t′,t,k−1+q

+
∑̀
j=1

uj(n)
n∑

k=m+1

∑̀
q=0

s∑
t=t′

Dj(k)

W (k)Q`(1− k)
βq,k−1,t,s+1κj′,t′,t,k−1+q.

Now recall that we assume n ≥ `+m. Then in each term of the sum we have k− 1 + q ≤
n+ `− 1 so that (5.9) yields dsδ3s

n+(s+1)(`−1)κj′,t′,t,k−1+q ∈ OK. By definition of δn+(s+1)(`−1)

we obtain in both cases (s = 0 and s ≥ 1) that

ds+1δ
3(s+1)
n+(s+1)(`−1)κj′,t′,s+1,n′ ∈ OK for any n′ ≤ n, any 1 ≤ j′ ≤ `+m−1 and any 1 ≤ t′ ≤ s+1,

where d ≥ 1 is chosen (in terms of F only, independently from n and s) such that

dαp,juh(p) ∈ OK for any m ≤ p ≤ `+m− 1 and any 1 ≤ j, h ≤ `.

On the other hand, writing Bj,k,s+1(X) =
∑µ−1

q=0 bj,k,s+1,qX
q (so that bj,k,s+1,q = 0 if

degBj,k,s+1 < q ≤ µ − 1) and considering the coefficients of θj
′

in c3, c5, c2 and c4 we let
for any j′ with 0 ≤ j′ ≤ µ− 1:

Kj′,s+1,n(z) = −
∑̀
j=1

uj(n)
`+m−1∑
p=m

αp,j
∑̀
h=1

uh(p)

p∑
k=m+1

Dh(k)

W (k)Q`(1− k)

∑̀
q=0

zk−1+qbq,k−1,s+1,j′

+
∑̀
j=1

uj(n)
n∑

k=m+1

Dj(k)

W (k)Q`(1− k)

∑̀
q=0

zk−1+qbq,k−1,s+1,j′

−
∑̀
j=1

uj(n)
`+m−1∑
p=m

αp,j
∑̀
h=1

uh(p)

p∑
k=m+1

∑̀
q=0

s∑
t=1

Dh(k)

W (k)Q`(1− k)
βq,k−1,t,s+1Kj′,t,k−1+q(z)

+
∑̀
j=1

uj(n)
n∑

k=m+1

∑̀
q=0

s∑
t=1

Dj(k)

W (k)Q`(1− k)
βq,k−1,t,s+1Kj′,t,k−1+q(z).

Then we have

ds+1δ
3(s+1)
n+(s+1)(`−1)Kj′,s+1,n′(z) ∈ OK[X] for any n′ ≤ n and deg(Kj′,s+1,n) ≤ n+(s+1)(`−1)

for any j′.
At last assertion (ii) of Proposition 1 follows also from these formulas, using Lemma 3

and (5.7).
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6 Proof of Theorem 3

In this section, we introduce a power series that will play the usual role of an auxiliary
function in transcendance theory. We denote by R > 0 the radius of convergence of
F (z) =

∑∞
k=0 Akz

k.

Let r, S ≥ 0 be integers such that r ≤ S. Let us define the following auxiliary series,
for n ≥ 0:

TS,r,n(z) = n!S−r
∞∑
k=0

k(k − 1) · · · (k − rn+ 1)

(k + 1)S(k + 2)S · · · (k + n+ 1)S
Ak z

−k

= n!S−r
∞∑
k=0

(k − rn+ 1)rn
(k + 1)Sn+1

Ak z
−k.

It converges for any z such that |z| > 1/R. If Ak = 1 for all k ≥ 0, we recover the series
Nn(z) in [31], up to a factor of z.

As in §5 we let θ = z d
dz

, and as in the introduction we let `0 = max(`, f̂1, . . . , f̂η) where

f̂1, . . . , f̂η are the integer exponents of L at ∞ and ` is defined as in Lemma 1.

6.1 A linear form

We now make the connection between TS,r,n(z) and the functions F
[s]
n (z).

Lemma 4. Let us assume that n ≥ `0. There exist some polynomials Cu,s,n(X) ∈ K[X]

and C̃u,n(X) ∈ K[X] of respective degrees ≤ n + 1 and ≤ n + 1 + S(` − 1) such that, for
any z such that |z| > 1/R, we have

TS,r,n(z) =

`0∑
u=1

S∑
s=1

Cu,s,n(z)F [s]
u (1/z) +

µ−1∑
u=0

C̃u,n(z)z−S(`−1)(θuF )(1/z).

Remark 2. Since the Taylor expansion of TS,r,n(z) has order ≥ rn + 1 at z = ∞, this
lemma shows that TS,r,n(z) can be interpreted has an explicit Padé-type approximant at

z = ∞ for the functions F
[s]
u (1/z) and (θuF )(1/z). We do not know if it is possible to

find an explicit Padé approximation problem of which TS,r,n(z) is the unique solution up
to proportionality.

Proof. We have the partial fractions expansion in k:

n!S−r
k(k − 1) · · · (k − rn+ 1)

(k + 1)S(k + 2)S · · · (k + n+ 1)S
=

n+1∑
j=1

S∑
s=1

cj,s,n
(k + j)s

(6.1)

for some cj,s,n ∈ Q, which also depend on r and S. It follows that

TS,r,n(z) =
n+1∑
j=1

S∑
s=1

cj,s,nz
jF

[s]
j (1/z).
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Since n ≥ `0, by Proposition 1 (with m = `0 − `+ 1) we have

TS,r,n(z) =

`0∑
j=1

S∑
s=1

cj,s,nz
jF

[s]
j (1/z) +

n+1∑
j=`+m

S∑
s=1

cj,s,nz
jF

[s]
j (1/z)

=

`0∑
j=1

S∑
s=1

cj,s,nz
jF

[s]
j (1/z)

+
n+1∑

j=`+m

S∑
s=1

cj,s,nz
j

(
s∑
t=1

`0∑
u=1

κu,t,s,jF
[t]
u (1/z) +

µ−1∑
u=0

Ku,s,j(1/z)(θuF )(1/z)

)

=

`0∑
u=1

S∑
s=1

Cu,s,n(z)F [s]
u (1/z) +

µ−1∑
u=0

C̃u,n(z)z−S(`−1)(θuF )(1/z)

where

Cu,s,n(z) = cu,s,nz
u +

n+1∑
j=`+m

S∑
σ=s

zjcj,σ,nκu,s,σ,j (6.2)

and

C̃u,n(z) =
n+1∑

j=`0+1

S∑
s=1

cj,s,nz
j+S(`−1)Ku,s,j(1/z). (6.3)

The assertion on the degree of these polynomials is clear from their expressions since
Ku,s,j(1/z) is a polynomial in 1/z of degree at most j + s(`− 1).

6.2 Analytic and arithmetic bounds for Cu,s,n(z) and C̃u,n(z)

In this section, we prove two lemmas concerning the coefficients of the polynomials Cu,s,n(z)

and C̃u,n(z). Given ξ ∈ Q we denote by ξ the house of ξ, i.e. the maximum modulus of
the Galois conjugates of ξ.

Lemma 5. For any z ∈ Q, we have

lim sup
n→+∞

(
max
u,s

Cu,s,n(z)
)1/n ≤ C1(F )Srr2S+r+1 max(1, z )

and
lim sup
n→+∞

(
max
u

C̃u,n(z)
)1/n ≤ C1(F )Srr2S+r+1 max(1, z ).

Proof. In [31, Lemma 4], it is proved that the coefficients cj,s,n in (6.1) satisfy

|cj,s,n| ≤ (rn+ 1)2S(rr2S+r+1)n

for all j, s, n. (Our cj,s,n are noted cs,j−1,n in [31]). To conclude the proof, we simply use
this bound in (6.2) and (6.3) together with Proposition 1(ii).
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Lemma 6. Let z ∈ K and q ∈ N? be such that qz ∈ OK. Then there exists a sequence
(∆n)n≥1 of positive rational integers such that for any u, s:

∆nCu,s,n(z) ∈ OK, ∆nC̃u,n(z) ∈ OK, and lim
n→+∞

∆1/n
n = qC2(F )SeS.

Proof. Let dn = lcm{1, 2, . . . , n}. The proof of [31, Lemme 5] shows that dSncj,s,n ∈ Z for

all j, s, n; we recall that limn d
1/n
n = e. On the other hand, in Proposition 1(iii) we may

assume that D(F, S, n) ≥ C2(F )Sn/2, upon multiplying D(F, S, n) with a suitable positive
integer if necessary, so that limnD(F, S, n)1/n = C2(F )S. Then the result follows again
from (6.2) and (6.3).

6.3 Asymptotic estimate of the linear form

The following lemma will be proved in §7 (see §7.3) using singularity analysis and the
saddle point method.

Lemma 7. Let α ∈ C be such that 0 < |α| < R. Assume that S is sufficiently large
(with respect to F and α), and that r is the integer part of S

(logS)2
. Then there exist some

integers Q ≥ 1 and λ ≥ 0, real numbers a and κ, non-zero complex numbers c1,. . . , cQ,
and pairwise distinct complex numbers ζ1, . . . , ζQ, such that |ζq| = 1 for any q,

TS,r,n(1/α) = annκ log(n)λ
( Q∑
q=1

cqζ
n
q + o(1)

)
as n→∞,

and

0 < a ≤ 1

rS−r
.

6.4 Completion of the proof of Theorem 3

Let α be a non-zero element of K such that |α| < R; choose q ∈ N? such that q/α ∈ OK.

By Lemmas 5 and 6, pu,s,n := ∆nCu,s,n(1/α) and p̃u,n := ∆nC̃u,n(1/α) belong to OK and
for any u, s we have

lim sup
n→+∞

max(|pu,s,n|1/n, |p̃u,n|1/n) ≤ b := qC1(F )SC2(F )SeSrr2S+r+1 max(1, 1/α ).

Using Lemma 4 we consider

τn := ∆nTS,r,n(1/α) =

`0∑
u=1

S∑
s=1

pu,s,nF
[s]
u (α) +

µ−1∑
u=0

p̃u,nα
S(`−1)(θuF )(α).

Choosing r = [S/(logS)2], Lemmas 6 and 7 yield as n→∞:

τn = a
n(1+o(1))
0

( Q∑
q=1

cqζ
n
q + o(1)

)
with 0 < a0 <

qC2(F )SeS

rS−r
.
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Let Ψα,S denote the K-vector space spanned by the numbers F
[s]
u (α) and (θvF )(α),

1 ≤ u ≤ `0, 1 ≤ s ≤ S, 0 ≤ v ≤ µ− 1. It follows from Theorem 4 that

dimK(Ψα,S) ≥ 1

[K : Q]

(
1− log(a0)

log(b)

)
.

Now, as S → +∞,

log(b) = log(2eC1(F )C2(F ))S + o(S) and log(a0) ≤ −S log(S) + o(S logS)

so that

dimK(Ψα,S) ≥ 1 + o(1)

[K : Q] log(2eC1(F )C2(F ))
log(S) (6.4)

as S → +∞.
We recall that Φα,S is the K-vector space spanned by the numbers F

[s]
u (α) for u ≥ 1

and 0 ≤ s ≤ S. Now, taking z = α in Eq. (5.2) of Proposition 1 with m = `0 − `+ 1 (i.e.
(1.7)) shows that in fact Φα,S is a K-subspace of Ψα,S. In particular, for any S ≥ 0,

dimK(Φα,S) ≤ dimK(Ψα,S) ≤ `0S + µ,

which proves the right-hand side of (1.5) in Theorem 3. On the other hand, we also have

dimK(Ψα,S) ≤ dimK(Φα,S) + µ

so that the lower bound (6.4) holds as well with Φα,S instead of Ψα,S because µ is in-
dependent from S. This proves the left hand side of (1.5) in Theorem 3 with C(F ) =
log(2eC1(F )C2(F )).

7 Asymptotic behavior of TS,r,n(1/α)

In this long section, we determine the precise asymptotic behavior of TS,r,n(1/α) as n →
+∞, under certain conditions on r and S. The result is presented as Proposition 2 at the
very end of the section, and then we deduce from it Lemma 7 stated in §6.3. Before that,
we state and prove many preliminary results.

7.1 Analytic representation of TS,r,n(1/α)

Let α ∈ C be such that 0 < |α| < R. We start with

TS,r,n(1/α) = n!S−r
∞∑
k=0

(k − rn+ 1)rn
(k + 1)Sn+1

Ak α
k

= n!S−r
∞∑
k=0

(k − rn+ 1)rn
(k + 1)Sn+1

(
1

2iπ

∫
C

F (z)

zk+1
dz

)
αk
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0x

ξ

Figure 1: The contour C

where C is any direct closed path surrounding 0 and enclosing none of the singularities of
F (z). We want to define a suitable analytic function A(z) such that A(k) = Ak for any
large enough integer k.

Let ξ1, . . . , ξp denote the finite singularities of F (z). We exclude from this list possible
removable singularities which contribute 0 to (7.1) below; then ξj 6= 0 for any j. We
have p ≥ 1 because F (z) is not a polynomial. Amongst these singularities, we will not
distinguish poles from branch points.

Let ϑ ∈ (3π
4
, π) be such that arg(ξj) 6≡ ϑ mod 2π for any j. We choose also εj ∈

(−π
8
, π

8
) such that the half-lines Lj = ξj + ξje

iεjR+ are pairwise disjoint, and disjoint from
L0 = eiϑR+; note that π/8 (and 3π/4 above) do not play a special role here. Then
D = C \ (L0 ∪ L1 ∪ · · · ∪ Lp) is simply connected; using analytic continuation F is well-
defined on D. Moreover for z ∈ C \ L0 we choose the value of arg(z) between ϑ− 2π and
ϑ so that log(z) = ln |z| + i arg(z) is also well-defined on D. Unless otherwise stated, we
shall use this choice everywhere until the end of the proof of Lemma 9.

Since F (z) is fuchsian, it has moderate growth at ∞, i.e there exists u > 0 such that
|F (z)| � |z|u as z →∞, z ∈ D. Hence if k > u, we can “send” C to ∞, see Figure 1. We
then have

1

2iπ

∫
C

F (x)

xk+1
dx =

p∑
j=1

1

2iπ

∫
L̂j

F (x)

xk+1
dx

where for each j, L̂j is a Hankel contour: from ∞ to ξj on one bank of the cut Lj (namely
with arg(z − ξj) slightly less than arg(ξj) + εj) and back to ∞ on the other bank, and
always at a (constant) positive distance of Lj. We thus have the representation

Ak =

p∑
j=1

1

2iπ

∫
L̂j

F (x)

xk+1
dx. (7.1)
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Note that if ξj is a pole of F (z), then

1

2iπ

∫
L̂j

F (x)

xk+1
dx = Res

(F (x)

xk+1
, x = ξj

)
.

We define

Bj(z) =
1

2iπ

∫
L̂j

F (x)

xz+1
dx =

ξ−zj
2iπ

∫
L̃j

F (ξjx)

xz+1
dx

where L̃j = ξ−1
j L̂j; recall that −π

8
< εj <

π
8

so that arg(ξjx) = arg(ξj) + arg(x) when x

lies on L̃j. Each function Bj(z) is analytic in Re(z) > u (at least). Note that L̃j is again a
Hankel contour: from∞ to 1 on the bank of the cut 1 + eiεjR+ where arg(x− 1) is slightly
less than εj, and back to ∞ on the other bank, always at a (constant) positive distance of
the cut.

Lemma 8. (i) The function A(z) :=
∑p

j=1 Bj(z) is analytic in Re(z) > u and A(k) = Ak
for any integer k > u.

(ii) For each j, there exist sj ∈ N, βj ∈ Q and κj ∈ C \ {0} such that for any t such
that Re(t) > 0,

Bj(tn) = κj
log(n)sj

(tn)βjξtnj

(
1 +O

( 1

log(n)

))
(7.2)

as n → +∞. The implicit constant is uniform in any half-plane Re(t) ≥ d where d is a
fixed positive constant.

Proof. Item (i) is clear. Item (ii) is standard but we sketch the argument for the reader’s
convenience; it is essentially the same one as in the proof of [32, Theorem 3]. We fix

j ∈ {1, . . . , p}. Given x ∈ C \ L̃j we choose the value of arg(1 − x) between εj − π and
εj + π; then log(1− x) and (1− x)t are well-defined (for any t ∈ C). To make things more
precise we shall write logj when we refer to this choice, and log when the previous one is

used. By the André-Chudnovsky-Katz Theorem, in a neighborhood of x = 1, x 6∈ L̃j, we
have

F (ξjx) =
∑
s∈Sj

∑
t∈Tj

κj,s,t logj(1− x)s(1− x)tFj,s,t(1− x) (7.3)

where κj,s,t ∈ C, Sj ⊂ N, Tj ⊂ Q and Fs,t,j(x) are G-functions. (In fact, the full strength of
the André-Chudnovsky-Katz Theorem is not needed here: the theory of fuchsian equations
ensures that (7.3) holds a priori with Tj ⊂ Q and Fj,s,t(x) holomorphic at x = 0, which
is enough.) Each function Fs,t,j(x) can be analytically continued but we would like to use
only its Taylor series around x = 0. To do that, we now use a classical trick that goes back
to Nörlund [29] at least. We set x = 1/(1−y)ω, where ω > 0 is a parameter to be specified
below, so that

Bj(z) =
ξ−zj
2iπ

∫
L̃j

F (ξjx)

xz+1
dx

=
ωξ−zj
2iπ

∫
Mj

F

(
ξj

(1− y)ω

)
(1− y)zω−1dy (7.4)
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where Mj is a closed loop around Nj, with negative orientation, passing through 1; here
Nj is the set of all y = 1− (1 + eiεjR)−1/ω with R ∈ R+. It is a cut going from 1 to 0, and
if εj = 0 (which is a suitable choice if arg(ξi) 6≡ arg(ξj) mod 2π whenever i, j ∈ {1, . . . , p}
are distinct) then Nj is the real interval [0, 1]. We may assume that Re(y) ≤ 1 for any
y ∈Mj so that log(1−y) is well-defined for any y ∈Mj \{1}, and also (1−y)zω−1. On the

other hand, in the integral (7.4) we have y 6∈ Nj so that (1 − y)−ω 6∈ L̃j: we have defined
logj(1− (1− y)−ω) and we use it in what follows.

We have

F

(
ξj

(1− y)ω

)
=
∑
s∈Sj

∑
t∈Tj

κj,s,t
∂s

∂εs

((
1− 1

(1− y)ω

)t+ε
Fj,s,t

(
1− 1

(1− y)ω

))
ε=0

.

We now choose ω small enough such that Nj is strictly inside the disk of convergence of
each of the series(

1− 1

(1− y)ω

)t+ε
Fj,s,t

(
1− 1

(1− y)ω

)
= yt+ε

∞∑
m=0

φj,s,t,m(ε, ω)ym

for any ε > 0, where the coefficients φj,s,t,m(ε, ω) are infinitely differentiable at ε = 0.
Here log(y) is defined with a cut along Nj ∪ (1 + R+); if y does not lie on this cut then
εj < arg(y) < εj + 2π. Since we may also ensure that Mj is strictly inside these disks, we
can exchange summation and integral and we obtain

Bj(z) = ωξ−zj
∑
s∈Sj

∑
t∈Tj

κj,s,t

∞∑
m=0

∂s

∂εs

(
φj,s,t,m(ε, ω)

1

2iπ

∫
Mj

ym+t+ε(1− y)zω−1dy

)
ε=0

.

Now this integral can be computed in terms of Euler’s Beta function B(z1, z2) = Γ(z1)Γ(z2)
Γ(z1+z2)

as follows. Using the residue theorem we may assume that εj = 0, i.e. Nj = [0, 1]. If
t > −1 then Mj can be taken as the succession of a path from 1 to 0 along this segment
(in which arg(y) = 2π) and a path from 0 to 1 along the same segment (but in which
arg(y) = 0); in both paths we have arg(1− y) = 0. Therefore we obtain:∫

Mj

ym+t+ε(1− y)zω−1dy =
(

1− e2iπ(m+t+ε)
)Γ(m+ t+ ε+ 1)Γ(ωz)

Γ(ωz +m+ t+ ε+ 1)
.

Using analytic continuation with respect to t, we see that this equality holds for any t ∈ C.
Hence, using the reflection formula we obtain

Bj(z) = ωξ−zj
∑
s∈Sj

∑
t∈Tj

κj,s,t

∞∑
m=0

∂s

∂εs

(
φj,s,t,m(ε, ω)eiπ(m+t+ε)Γ(ωz)

Γ(ωz +m+ t+ ε+ 1)Γ(−m− t− ε)

)
ε=0

, (7.5)

where all the involved series are absolutely convergent; they are called “séries de facultés”
in [29]. Note that of course the result does not depend on the chosen value of ω (but
convergence holds only if ω is small enough).
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Convergent “Séries de facultés” play a role similar to asymptotic expansions (except
that usually the latter are divergent): roughly speaking, instead of asymptotic expansions
with terms of the form 1/zm, we obtain convergent expansions with terms of the form
1/(z)m. The asymptotic expansion (7.2) follows by classical arguments because we can
easily get the asymptotic expansion of a “série de facultés” as z →∞: if we differentiate s
times 1/(z)m = Γ(z)/Γ(z+m) with respect to m, we obtain a finite sum of terms involving
(derivatives of) the Digamma function Ψ(z) = Γ′(z)/Γ(z), which are asymptotically of the
form log(z)t/zm with 0 ≤ t ≤ s. See [32] for details when s = 0 and [29, pp. 42–45] for the
general case, especially Théorème 1 there.

Moreover, the constant κj in (7.2) is non-zero. Indeed since ξj is a non-removable
singularity of F (z), the overall asymptotic expansion of Bj(tn) obtained from (7.5) cannot
be identically 0 as n→ +∞.

In what follows we let

BS,r,n,j(α) :=

c+i∞∫
c−i∞

Bj(tn)
n!S−rΓ((r − t)n)Γ(tn+ 1)S+1

Γ((t+ 1)n+ 2)S
(−α)tn dt

for 1 ≤ j ≤ p, where c is such that 0 < c < r; the residue theorem shows that BS,r,n,j(α) is
independent from the choice of c.

Lemma 9. If 0 < |α| < R and r > u then for n large enough, we have

TS,r,n(1/α) =

p∑
j=1

(−1)rnn

2iπ
BS,r,n,j(α). (7.6)

Proof. Let RN,c denote the positively oriented rectangular contour with vertices cn ± iN
and N + 1

2
± iN , where u < c < r and the integer N is such that N ≥ rn. Then by the

residue theorem

n!S−r
N∑

k=rn

(k − rn+ 1)rn
(k + 1)Sn+1

Akα
k =

n!S−r

2iπ

∫
RN,c

A(t)
(t− rn+ 1)rn

(t+ 1)Sn+1

π

sin(πt)
(−α)tdt

=

p∑
j=1

n!S−r

2iπ

∫
RN,c

Bj(t)
(t− rn+ 1)rn

(t+ 1)Sn+1

π

sin(πt)
(−α)tdt.

Here we take log(−α) such that −π < arg(−α) − arg(ξj) ≤ π, where arg(ξj) has been
chosen at the beginning of §7. Now, if 0 < |α| < R then

lim
N→+∞

n!S−r
N∑

k=rn

(k − rn+ 1)rn
(k + 1)Sn+1

Akα
k = TS,r,n(1/α)
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while

lim
N→+∞

n!S−r

2iπ

∫
RN,c

Bj(t)
(t− rn+ 1)rn

(t+ 1)Sn+1

π

sin(πt)
(−α)tdt

=
n!S−r

2iπ

cn−i∞∫
cn+i∞

Bj(t)
(t− rn+ 1)rn

(t+ 1)Sn+1

π

sin(πt)
(−α)tdt

=
(−1)rnn!S−r

2iπ

cn−i∞∫
cn+i∞

Bj(t)
(−t)rn

(t+ 1)Sn+1

π

sin(πt)
(−α)tdt

=
(−1)rn−1n!S−r

2iπ

cn−i∞∫
cn+i∞

Bj(t)
Γ(rn− t)Γ(t+ 1)S

Γ(t+ n+ 2)SΓ(−t)
Γ(−t)Γ(t+ 1)(−α)tdt

=
(−1)rnn!S−rn

2iπ

c+i∞∫
c−i∞

Bj(tn)
Γ((r − t)n)Γ(tn+ 1)S+1

Γ((t+ 1)n+ 2)S
(−α)tndt.

This concludes the proof of Lemma 9.

7.2 Asymptotic expansion of BS,r,n,j(α)

We want to estimate these integrals using the saddle point method. We first recall Stirling’s
formula

Γ(z) = zz−1/2e−z
√

2π
(

1 +O
(1

z

))
, z →∞,

valid if | arg(z)| ≤ π − ε with ε > 0; here the constant implied in O
(

1
z

)
depends on ε but

not on z. By Lemma 8, we have

BS,r,n,j(α) = (2π)(S−r+2)/2κj ·
log(n)sj

n(S+r)/2+βj

c+i∞∫
c−i∞

gj(t)e
nϕ(−α/ξj ,t)

(
1 +O

( 1

log(n)

))
dt

where the constant in O is uniform in t, and

gj(t) = t−βj−(S+1)/2(t+ 1)−3S/2(r − t)−1/2,

ϕ(z, t) = t log(z) + (S + 1)t log(t) + (r − t) log(r − t)− S(t+ 1) log(t+ 1).

We shall be interested only in the case where z = −α/ξj, but from now on we consider
any non-zero complex number z such that |z| < 1 and −π < arg(z) ≤ π. Indeed we have
0 < | − α/ξj| < 1 because 0 < |α| < R the radius of convergence of F , which is equal to
the minimal value of |ξj|, j = 1, . . . , p, and letting log(−α/ξj) = log(−α) − log(ξj) yields
arg(−α/ξj) ∈ (−π, π] (recall that arg(−α) has been chosen in the proof of Lemma 9).
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If −π < arg(z) < π, we work in the cut plane Ω = C \ ((−∞, 0]∪ [r,+∞)), so that any
t ∈ Ω is such that arg(t), arg(t+ 1) and arg(r − t) belong to (−π, π). On the other hand,
if z is real and negative (i.e., arg(z) = π), we work in Ω = C \ ((−∞, 0]∪ (r+ eiπ/8R+)); if
t is real and 0 < t < r we take arg(t) = arg(t + 1) = arg(r − t) = 0, and we use analytic
continuation to define arg(t), arg(t+ 1) and arg(r − t) for any t ∈ Ω.

In both cases, the function t 7→ ϕ(z, t) is analytic on the cut plane Ω. In what follows,
ϕ′(z, t) and ϕ′′(z, t) denote the first and second derivatives of ϕ(z, t) with respect to t. We
denote by τS,r(z) the unique solution (in t) of the equation ztS+1 = (r − t)(t + 1)S which
is such that Re(τS,r(z)) > 0. (A more precise localization is given below.) For simplicity,
we set τj = τS,r(−α/ξj), ϕj = ϕ(−α/ξj, τj), ψj = ϕ′′(−α/ξj, τj) and γj = gj(τj).

Lemma 10. Let us assume that r = r(S) is an increasing function of S such that r = o(S)
and Se−S/r = o(1) as S → +∞. Then if S is large enough (with respect to the choice of the
function S 7→ r(S)), the following estimate holds: for any j = 1, . . . , p, we have κjγjψj 6= 0
and, as n→ +∞,

BS,r,n,j(α) = (2π)(S−r+3)/2 κjγj√
−ψj

· log(n)sjeϕjn

n(S+r+1)/2+βj
·
(
1 + o(1)

)
.

Any choice of the form r(S) = [ S
log(S)1+ε

] with ε > 0 satisfies r = o(S) and Se−S/r = o(1)

(but not with ε = 0); in Lemma 7, we take ε = 1.
Note that we have three trivially equivalent expressions for eϕj :

eϕj =
(r − τj)r

(τj + 1)S
=

(
(−α/ξj)τS+1

j

)r
(τj + 1)S(r+1)

= −ξj(r − τj)
r+1

ατS+1
j

. (7.7)

Proof. We split the proof in several steps. The assumptions made on r and S are not
always necessary at each step. We will write τ for τS,r(z) when there will no ambiguity.

Step 1. We want to begin localizing the solutions of the equation ϕ′(z, t) = 0 (for any
fixed z such that 0 < |z| < 1 and −π < arg(z) ≤ π), i.e. of

log(z) + (S + 1) log(t)− log(r − t)− S log(t+ 1) = 0.

These solutions are obviously amongst the solutions of the polynomial equation P (t) = 0
where

P (t) = ztS+1 − (r − t)(t+ 1)S.

In this step, we prove the following facts: For any 1 ≤ r ≤ S, the polynomial P (t) has
exactly S roots in the half-plane Re(t) < −1

2
and one root in the half-plane Re(t) > 1

2
.

Let us prove that there is no root in the strip −1
2
≤ Re(t) ≤ 1

2
. We set t = x+ iy and

assume that −1
2
≤ x ≤ 1

2
. We have

|t+ 1| =
√

(x+ 1)2 + y2 ≥
√

1/4 + y2

|r − t| =
√

(r − x)2 + y2 ≥
√

(r − 1/2)2 + y2 ≥
√

1/4 + y2

|t| =
√
x2 + y2 ≤

√
1/4 + y2.
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Since |z| < 1, it follows that |z||t|S+1 <
√

1/4 + y2
S+1 ≤ |r − t||t + 1|S for any t in the

strip, which proves the claim.
Let us now prove that there are exactly S roots in Re(t) < −1

2
. With u = 1/t, this

amounts to prove that the equation z = (ru − 1)(u + 1)S has exactly S solutions in the
open disk |u+ 1| < 1. Let us define

f(u) = z − r(u+ 1)S+1 + (r + 1)(u+ 1)S, g(u) = z + (r + 1)(u+ 1)S.

We have f(u)− g(u) = −r(u+ 1)S+1 so that on the circle |u+ 1| = 1 we have

|f(u)− g(u)| = r < r + 1− |z| ≤ |g(u)|.

Hence, by Rouché’s theorem, the equation f(u) = 0 has the same number of solutions as
g(u) = 0 inside the disk |u + 1| < 1. There are S such solutions because the solutions of
g(u) = 0 are −1 + (−z/(r + 1))1/Se2iπk/S, k = 0, . . . , S − 1, which are all inside the disk.

It follows that P (t) has exactly one root in the half-plane Re(t) > 1
2
. (We can be more

precise. Let us define the functions P (t) = ztS+1−(r−t)(t+1)S and Q(t) = −(r−t)(t+1)S.
On the circle |r − t| = r2

S+r
, we have |P (t) − Q(t)| = |ztS+1| < |Q(t)|. Hence, P (t) has a

root inside the disk |r − t| < r2

S+r
. This estimate holds for any r, S, but we will prove and

use a more precise one under a more restrictive condition on r.)

Step 2. We need a more precise estimate for τ = τS,r(z) that the mere fact that |τ − r| <
r2

S+r
, namely

τS,r(z) = r − rz
( r

r + 1

)S(
1 + o(1)

)
. (7.8)

To prove this, we consider the power series

υS,r(z) :=
1

r
−
∞∑
m=1

(
(S+1)m−1

m

)
(S + 1)m− 1

rSm−1

(r + 1)(S+1)m−1
(−z)m.

We shall prove that it has radius of convergence SS(r+1)S+1

rr(S+1)S+1 ≥ 1, with equality only for

r = S, and that if r is an increasing function of S such that r = o(S) as n → +∞ then,
provided S is large enough (with respect to the choice of r(S)), we have 1/υS,r(z) = τS,r(z),
the unique root of P (t) in the half-plane Re(t) > 1

2
.

As in the first step, we solve the equation z = V (u), with V (u) = (ru − 1)(u + 1)S,
and then get the solutions of P (t) = 0 by t = 1/u. By Lagrange’s inversion formula [15,
p. 250], a solution of the equation z = V (u) is

1

r
+
∞∑
m=1

1

m!

(( u− 1/r

V (u)− V (1/r)

)m)(m−1)

u=1/r

zm =
1

r
+
∞∑
m=1

r−m

m!

( 1

(u+ 1)Sm

)(m−1)

u=1/r
zm

=
1

r
−
∞∑
m=1

(
(S+1)m−1

m

)
(S + 1)m− 1

rSm−1

(r + 1)(S+1)m−1
(−z)m

= υS,r(z).
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Since

lim
m→+∞

( (
(S+1)m−1

m

)
(S + 1)m− 1

rSm−1

(r + 1)(S+1)m−1

)1/m

=
rS(S + 1)S+1

SS(r + 1)S+1
≤ 1

with equality only for r = S, the assertion on the radius of convergence follows.

Since
(

(S+1)m−1
m

)
≤ S( (S+1)S+1

SS
)m−1 and S

(S+1)m−1
≤ 1

m
, for any z such that |z| < 1

(inside the circle of convergence), we have∣∣∣∣υS,r(z)− 1

r
− z

r

( r

r + 1

)S∣∣∣∣ ≤ (r + 1)SS

r(S + 1)S+1

∞∑
m=2

1

m

(rS(S + 1)S+1

SS(r + 1)S+1
|z|
)m

≤ |z|
r

( r

r + 1

)S∣∣∣ log
(

1− rS(S + 1)S+1

SS(r + 1)S+1
|z|
)∣∣∣.

Hence, for any |z| < 1, 1 ≤ r ≤ S,

rυS,r(z) = 1 + z
( r

r + 1

)S (
1 + θ

∣∣∣ log
(

1− rS(S + 1)S+1

SS(r + 1)S+1
|z|
)∣∣∣)

for some θ (depending on S, r, z) such that |θ| ≤ 1.
We now choose r as any fixed increasing function of S such that r = o(S) as S → +∞.

Then rS(S+1)S+1

SS(r+1)S+1 |z| tends to 0 as S →∞, so that

υS,r(z) =
1

r
+
z

r

( r

r + 1

)S
(1 + o(1)).

Therefore,
1

υS,r(z)
= r − rz

( r

r + 1

)S
(1 + o(1)).

Since |z| < 1, the real part of 1/υS,r(z) is positive for any S sufficiently large (with respect
to the choice of r(S)) and thus 1/υS,r(z) coincides with τS,r(z). This concludes the proof
of (7.8).

Step 3. We now prove that τ = τS,r(z) belongs to the cut plane Ω and is indeed a solution
of the equation ϕ′(z, t) = 0, provided r is any fixed increasing function of S such that
r = o(S) and Se−S/r = o(1) as n→ +∞, and S is large enough (with respect to the choice

of r(S)). Since exp(ϕ′(z, τ)) = zτS+1

(r−τ)(τ+1)S
= 1, we have ϕ′(z, τ) ∈ 2iπZ and

1

i
ϕ′(z, τ) = arg(z) + (S + 1) arg(τ)− arg(r − τ)− S arg(τ + 1).

Since r = o(S) and Se−S/r = o(1), we have r − rz( r
r+1

)S(1 + o(1)) = r(1 +O(e−S/r)) and
(7.8) yields:

(S + 1) arg(τ) = (S + 1) arg(r) +O(Se−S/r) = o(1),

S arg(τ + 1) = S arg(r + 1) +O(Se−S/r) = o(1).
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Moreover
arg(r − τ) = arg

(
rz
( r

r + 1

)S)
+ o(1) = arg(z) + o(1)

since the cut we have made on arg(r− t) is not for arg(r− t) = arg(z) mod 2π (here we use
the alternative definition of Ω when arg(z) = π, intended to have −7π

8
< arg(r− t) < 9π

8
in

this case). Therefore τ ∈ Ω provided S is large enough. Moreover 1
i
ϕ′(z, τ) tends to 0 as

S →∞, and belongs to 2πZ: it is 0 if S is large enough with respect to the choice of r(S).

Step 4. We now prove that gj(τS,r(z)) 6= 0 and ϕ′′(z, τS,r(z)) 6= 0 provided r is any fixed
increasing function of S such that r = o(S) as n → +∞, and S is large enough (with
respect to the choice of r(S)).

Since ( r
r+1

)S = o(1), (7.8) yields

gj(τ) =
1

τβj+(S+1)/2(τ + 1)3S/2(r − τ)1/2
=

1 + o(1)

z1/2rβj+S+1(r + 1)S
(7.9)

and

ϕ′′(z, τ) =
S + 1

τ
+

1

r − τ
− S

τ + 1
=

(r + 1)S

rS+1z

(
1 + o(1)

)
(7.10)

provided Se−S/r = o(1) for (7.10). The right-hand sides of (7.9) and (7.10) are both
non-zero if S is large enough with respect to the choice of r(S).

Step 5. In this step we choose r(S) as in the statement of the lemma, so that all the
previous steps are simultaneously valid provided S is large enough with respect to the
choice of r(S). We want to determine an admissible path passing through τS,r(z), i.e. a
path along which t 7→ Re(ϕ(z, t)) has a unique global maximum at t = τS,r(z). This
determination process is rather lengthy as we have to consider three cases: Re(z) > 0,
Re(z) < 0 and Im(z) 6= 0, and Re(z) < 0 and Im(z) = 0. Note that similar computations
are done in [27, 37] for the same kind of purpose. In particular, analogues of the contours

L0, L̃ and L̂ constructed below are also considered in these papers. Throughout the
computations we always assume S to be sufficiently large.

• Case Re(z) > 0. Eq. (7.8) yields 0 < Re(τ) < r so that the vertical line L0 passing
through τ is inside the strip 0 < Re(t) < r and we are going to prove that it is admissible.
See Figure 2.

We set v = Re(τ), L0 = {v + iy, y ∈ R} and w0(y) = Re
(
ϕ(z, v + iy)

)
. We have

w′0(y) = −Im
(
ϕ′(z, v+iy)

)
= − arg(z)−(S+1) arg(v+iy)+arg(r−v−iy)+S arg(1+v+iy).

Hence
lim

y→−∞
w′0(y) = π − arg(z) ≥ 0, lim

y→+∞
w′0(y) = −π − arg(z) ≤ 0. (7.11)

Moreover Re(r − v − iy) = r( r
r+1

)SRe(z)(1 + o(1)) > 0, Re(v + iy) = r(1 + o(1)) > 0,
Re(v + 1 + iy) = (r + 1)(1 + o(1)) > 0 so that

w′0(y) = − arg(z)− (S + 1) arctan
(y
v

)
− arctan

( y

r − v

)
+ S arctan

( y

1 + v

)
36



0 rx

xτ

Figure 2: The path L0

and

w′′0(y) = −(S + 1)v

v2 + y2
− r − v

(r − v)2 + y2
+ S

(1 + v)

(1 + v)2 + y2

=
−N(y2)

(v2 + y2)((r − v)2 + y2)((1 + v)2 + y2)

upon letting N(x) = ax2 + bx+ c where

a = r − S < 0, b = −Sr2 + r2v + 2Srv + 2rv + Sv + r,

c = v(1 + v)(r − v)(Sr + rv − Sv + r) > 0.

The equation N(x) = 0 as a negative root (because ac < 0) and another one asymptotically
equal to r2

(
1 + o(1)

)
. This root is > Im(τ)2 because (7.8) yields Im(τ) = o(1). Hence

w′′0(y) = 0 has exactly two solutions: a positive and negative one, with Im(τ) strictly in
between. Since w′0(Im(τ)) = 0, (7.11) ensures that w′0(y) vanishes at Im(τ), is positive for
y < Im(τ) and negative for y > Im(τ). Hence w0(y) is maximal at Im(τ); this completes
the proof of this case.

• Case Re(z) < 0 and Im(z) 6= 0. In this case, the vertical line passing through τ is no
longer inside the strip 0 < Re(t) < r and we have to deform it. We assume that Im(z) < 0,
the other case being delt with similarly; then Im(τ) > 0.

We first want to determine a segment passing through τ along which t 7→ Re(ϕ(z, t))
admits a local maximum at t = τ . Let β = arg(ϕ′′(z, τ)) ∈ (−π, π] and z = ρeiδ with ρ > 0
and δ ∈ (−π,−π/2) because Re(z) < 0 and Im(z) < 0. Then, from (7.10) in Step 4, we
have

ϕ′′(z, τ) =
1

rρ

(r + 1

r

)S
e−iδ

(
1 + o(1)

)
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so that β = −δ + o(1). Therefore any θ ∈ R such that cos(2θ − δ) < 0 satisfies also
cos(2θ+ β) < 0 provided S is large enough (in terms of θ); then θ is said to be admissible.
Obviously θ = 0 and any θ sufficiently close to π + δ are admissible. By the theory of
steepest paths of analytic functions (see [11, pp. 255–258]), for any admissible θ there
exists η > 0 such that the function t 7→ Re(ϕ(z, t)) admits a unique global maximum at
t = τ where t is on the segment {τ + eiθy, |y| ≤ η}.

This suggests to define a polygonal path L̃ as the union L̃ = L1 ∪ L2 ∪ L3 where
L1 = {r− iy, y ≥ 0}, L2 = [r, τ ] and L3 = {τ + y, y ≥ 0}: L1 is a vertical half-line, L2 is a
segment and L3 is an horizontal half-line. We claim that t 7→ Re(ϕ(z, t)) admits a unique

global maximum at t = τ when t varies in L̃; this function is continuous on L̃ and can be
differentiated on L̃ \ {r, τ}.

First, w1(y) = Re(ϕ(z, r − iy)) is decreasing on [0,+∞) since for any y > 0:

w′1(y) = Im
(
ϕ′(z, r − iy)

)
= arg(z) + (S + 1) arg(r − iy)− arg(iy)− S arg(1 + r − iy)

= arg(z)− (S + 1) arctan
(y
r

)
− π

2
+ S arctan

( y

r + 1

)
< 0

because arg(z) ≤ −π
2
.

Let us now prove that w3(y) = Re(ϕ(z, τ + y)) is decreasing on [0,+∞). We have

w′3(y) = Re
(
ϕ′(z, τ + y)

)
= log

∣∣∣∣ z(τ + y)S+1

(r − τ − y)(τ + y + 1)S

∣∣∣∣ 6= 0

for any y > 0 using Step 1: the only t in Re(t) ≥ 0 such that ztS+1

(r−t)(t+1)S
= 1 is t = τ .

Therefore w3 is monotonic; since θ = 0 is admissible it is decreasing.
It remains to prove that t 7→ Re(ϕ(z, t)) admits a unique global maximum at t = τ when

t varies in L2. We parametrize L2 as {τ + yeiγ, y ∈ [0, |U |]} with (by definition) U = r− τ
and γ = arg(U) = δ+o(1) using (7.8); then γ ∈ (−π,−π/2). Let w2(y) = Re(ϕ(z, τ+yeiγ)).
Then

w′2(y) = cos(γ)Re
(
ϕ′(z, τ + yeiγ)

)
− sin(γ)Im

(
ϕ′(z, τ + yeiγ)

)
.

The function `(y) = Re
(
ϕ′(z, τ + yeiγ)

)
= log

∣∣∣ z(τ+yeiγ)S

(r−τ−yeiγ)(τ+1+yeiγ)S

∣∣∣ satisfies `(0) = 0 and

`(y) 6= 0 for any y ∈ [0, |U |) (using Step 1 again); moreover limy→|U | `(y) = +∞. Therefore
we have `(y) > 0 for any y ∈ [0, |U |). We now analyse the term a(y) = Im

(
ϕ′(z, τ + yeiγ)

)
;

we have

a(y) = arg(z) + (S + 1) arg(τ + yeiγ)− S arg(τ + 1 + yeiγ)− arg(r − τ − yeiγ)
= δ + (S + 1)(γ + arg(τe−iγ + y))− S(γ + arg((τ + 1)e−iγ + y))− arg(|U |eiγ − yeiγ)

= π + δ − (S + 1) arctan

(
r sin(γ)

r cos(γ) + y − |U |

)
+ S arctan

(
(r + 1) sin(γ)

(r + 1) cos(γ) + y − |U |

)
since for ζ = τe−iγ + y we have arg(ζ) = π + arctan( Im (ζ)

Re (ζ)
). This function is decreasing on
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x

τ

Figure 3: The path L̃′

[0, |U |] because

a′(y) = (S + 1)
r sin(γ)

r2 sin2(γ) + (r cos(γ) + y − |U |)2

−S (r + 1) sin(γ)

(r + 1)2 sin2(γ) + ((r + 1) cos(γ) + y − |U |)2

≤ (S + 1)r sin γ

(r + |U |)2
− S(r + 1) sin γ

(r + 1)2
< 0

since r
(r+|U |)2 >

1
r+1

because |U | < 1
4

(using Step 2). In Step 3, we proved that a(0) = 0, so

that a(y) ≤ 0 for any y ∈ [0, |U |]. It follows that

w′2(y) = cos(γ)`(y)− sin(γ)a(y) < 0

for any y ∈ [0, |U |].
We have thus proved that t 7→ Re(ϕ(z, t)) admits a unique global maximum at t = τ

when t varies in L̃. We cannot integrate directly over L̃ because r is a singularity of gj(t).

Hence, we slightly deform L̃ around the “corner” of the path at r: we replace that corner
with an arc of circle of center r and small positive radius κ, in which arg(r − t) varies in
[γ, π/2]. We connect this arc with the remaining parts of L1 and L2, and with L3, to get a

new path L̃′. By continuity of t 7→ Re(ϕ(z, t)) in this region, we can take κ small enough

so that it still admits a unique global maximum at t = τ when t varies in L̃′. See Figure 3.

• Case Re(z) < 0 and Im(z) = 0. In this case, τ is a real number greater than r. As
in the previous case we obtain arg(ϕ′′(z, τ)) = −π + o(1) mod 2π: the angles θ such that
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x τ
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Figure 4: The path L̂′

cos(2θ − π) < 0 are admissible, for instance θ = 0. This suggests to define a polygonal

path L̂ as the union L̂ = L4 ∪ L5 where L4 = {r + iy, y ≥ 0} and L5 = {r + y, y ≥ 0}.
Since Ω = C \ ((−∞, 0) ∪ (r + eiπ/8R+)) in the present case, L4 and L5 are contained in
Ω ∪ {r}. We claim that t 7→ Re(ϕ(z, t)) admits a unique global maximum at t = τ > r

when t varies in L̂.
Letting w5(y) = ϕ(z, y) we obtain (as for w3 in the previous case) that w′5(y) vanishes

at y = τ , is positive for r < y < τ and negative for y > τ . Hence, y 7→ Re(ϕ(z, y)) admits
a unique maximum on [r,+∞) achieved at y = τ . Thus to prove the claim, it remains to
prove that w4(y) = Re(ϕ(z, r + iy)) is decreasing on [0,+∞). Now, as for w0 in the case
Re (z) > 0 we have for any y > 0:

w′4(y) = − arg(z)− (S + 1) arg(r + iy) + arg(−iy) + S arg(1 + r + iy)

= −3π

2
− (S + 1) arctan

(y
r

)
+ S arctan

( y

r + 1

)
< 0

and the claim is completely proved. Again, we cannot integrate directly over L̂ because
r is a singularity of gj(t). Hence, we slightly deform L̂ around the “corner” of the path
at r: we replace that corner with an arc of circle of center r and small positive radius κ,
contained in the cut plane Ω. We connect this arc with the remaining parts of L4 and L5

to get a new path L̂′. By continuity of t 7→ Re(ϕ(z, t)) in this region, we can take κ small
enough and ensure that it still admits a unique global maximum at t = τ when t varies in
L̂′. See Figure 4.

Step 6. We are now in position to conclude the proof of Lemma 10. We recall that

BS,r,n,j(α) = (2π)(S−r+2)/2κj ·
log(n)sj

n(S+r)/2+βj

∫ c+i∞

c−i∞
gj(t)e

nϕ(−α/ξj ,t)
(

1 +O
( 1

log(n)

))
dt
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where the constant in O is uniform in t. Depending on the location of −α/ξj in the open
unit disk (with respect to the three cases in Step 5), we move the integration path from

the vertical line Re (t) = c to the path L0, L̃′ or L̂′ where the orientation is from Im(t) ≤ 0
to Im(t) > 0. In the previous steps, we have done everything to ensure that the saddle
point method (see [15, Chapitre IX] or [19, Proposition 7]) can be applied to this path and
we get

c+i∞∫
c−i∞

gj(t)e
nϕ(−α/ξj ,t)

(
1 +O

( 1

log(n)

))
dt = γj ·

√
2π

−nψj
· eϕjn ·

(
1 + o(1)

)
provided r(S) is chosen as in the statement of Lemma 10 and S is large enough. This
concludes the proof of Lemma 10, since κj 6= 0 (using Lemma 8).

7.3 Asymptotic behavior of TS,r,n(1/α)

We now state our final resut, the first part of which immediately comes from combining
Lemmas 9 and 10. Recall that sj, βj, κj have been defined in Lemma 8, and γj, ϕj, ψj
just before Lemma 10.

Proposition 2. Let us assume that 0 < |α| < R, and r = r(S) is an increasing function
of S such that r = o(S) and Se−S/r = o(1) as S → +∞. Then if S is large enough
(with respect to the choice of the function r(S)), the following estimate holds: for any
j = 1, . . . , p, we have κjγjψj 6= 0 and as n→ +∞

TS,r,n(1/α) =
(2π)(S−r+1)/2(−1)rn

n(S+r−1)/2

p∑
j=1

( κjγj√
ψj
· n−βj log(n)sjeϕjn ·

(
1 + o(1)

))
. (7.12)

Moreover, if rωe−S/r = o(1) for any ω > 0 then the numbers eϕj (for j = 1, . . . , p) are
pairwise distinct.

The only new property in Proposition 2 is that the numbers eϕj are pairwise distinct;
we shall prove it below. All the conditions on r are satisfied if r = [S/ log(S)1+ε] for
any fixed ε > 0. Let us now deduce Lemma 7 (stated in §6.3) from Proposition 2. Let
a = max(Re (ϕ1), . . . ,Re (ϕp)), and denote by J the non-empty set of all j ∈ {1, . . . , p} such
that Re (ϕj) = a. Let (κ, λ) denote the maximal value of (−βj− 1

2
(S+r−1), sj), j ∈ J , with

respect to lexicographical order. Denote by j1, . . . , jQ (with Q ≥ 1) the pairwise distinct
elements j ∈ J such that (−βj − 1

2
(S + r − 1), sj) = (κ, λ). Then in the sum (7.12) we

may restrict to j ∈ {j1, . . . , jQ}. The numbers ζq = (−1)r exp(iIm (ϕjq)), 1 ≤ q ≤ Q, are
pairwise distinct because ϕj1 , . . . , ϕjQ are; and the numbers cq = (2π)(S−r+1)/2κjqγjq/

√
ψjq

are non-zero. At last, we have 0 < a := |eϕjq | ≤ rr

rS
if S is large enough, using the first

expression in (7.7) and the fact that τjq tends to r as S →∞. This concludes the proof of
Lemma 7.
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Proof. We only need to prove the assertion on the numbers eϕj . There is nothing to prove if
p = 1 and we now assume that p ≥ 2. Letting zj = −α/ξj, (7.8) and the second expression
of (7.7) yield

eϕj =
zrj r

r(S+1)

(r + 1)S(r+1)

(τj
r

)r(S+1)(τj + 1

r + 1

)−S(r+1)

=
zrj r

r(S+1)

(r + 1)S(r+1)

(
1− rzj

( r

r + 1

)S(
1 + o(1)

))
(7.13)

where the error term o(1) depends on j (and tends to 0 as S → ∞). Now assume that
eϕj = eϕ` with j 6= ` (so that zj 6= z`). Taking the limit of |eϕj(r + 1)S(r+1)r−r(S+1)|1/r
yields |zj| = |z`| (provided S is large enough). Considering the next term in the expansion
given by (7.13), the equality |eϕj | = |eϕ`| then yields Re (zj) = Re (z`), so that z` = zj.
This implies τ` = τj, and eϕ` = eϕj using (7.7), so that eϕj = eϕ` is real. Let θj = arg(zj);
then (7.13) yields rθj − kπ = O(re−S/r) for some k ∈ Z. By assumption this implies
rθj − kπ = o(r−ω) for any ω > 0. However zj is algebraic, and the theory of linear forms
in logarithms shows that θj/π is not a Liouville number (see for instance [16, Chapter 4]).
Therefore θj/π is rational, and rθj − kπ = 0. Using (7.13) again we obtain that zj is real,
so that z` = zj = zj. This contradiction completes the proof of Proposition 2.

8 Remark on the case of non-negative coefficients

We conclude this paper with a methodological remark. The saddle point method is a very
powerful and general method, but its effective implementation can be long and difficult.
This is undoubtedly the case in our situation as §7 shows. Hence, it is useful to have
alternative methods that can be applied at least in special (and still important) cases.
Such a method exists when Ak ≥ 0 for all large enough k: the conclusion of Theorem 3 can
then be obtained faster, at least if α is also assumed to be a positive algebraic number. For
this, we use a representation of TS,r,n(z) as a real integral instead of the complex integral
representation of Lemma 9. In (8.1) and (8.2) below, we make no assumption on the Ak’s.

Proposition 3. Let z be such that |z| > 1/R. We have

TS,r,n(z) =
z−rn

n!r

∫
[0,1]S

F (rn)
(t1 · · · tS

z

) S∏
j=1

trnj (1− tj)ndtj, n ≥ 0, (8.1)

and

lim sup
n→+∞

|TS,r,n(z)|1/n ≤ 1

rS−r
. (8.2)

Moreover, if F is not a polynomial, z > 1/R, and Ak ≥ 0 for all k large enough, then

lim inf
n→+∞

TS,r,n(z)1/n ≥ 1

Drzr

(
r

r + 1

)rS
1

(r + 1)S−r
> 0 (8.3)
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with D such that Dn ≤ Dn+1 for any n, where Dn is the smallest positive integer such that
DnAk is an algebraic integer for any k ≤ n.

Remark 3. If Ak = 1 for all k ≥ 0, we have F (rn)(x) = (rn)!
(1−x)rn+1 and (8.1) coincides with

(1) of [31, Lemme 1] (up to a factor of z).

Proof. For any x such that |x| < R, we have

F (rn)(x) =
∞∑
k=0

(k − rn+ 1)rnAkx
k−rn (8.4)

and the series converges absolutely. Since |t1 · · · tS/z| < R, we can thus exchange integral
and summation below:

z−rn

n!r

∫
[0,1]S

F (rn)
(t1 · · · tS

z

) S∏
j=1

trnj (1− tj)ndtj =
∞∑
k=0

(k − rn+ 1)rn
n!r

Akz
−k
(∫ 1

0

tk(1− t)ndt
)S

=
∞∑
k=0

(k − rn+ 1)rnn!Sk!S

n!r(n+ k + 1)!S
Akz

−k.

This series is nothing but TS,r,n(z), which proves the first part.

As in the proof of [31, Lemme 3], we now observe that, for any k ≥ rn,∣∣∣∣n!S−r
k(k − 1) . . . (k − rn+ 1)

(k + 1)S(k + 2)S · · · (k + n+ 1)S

∣∣∣∣ ≤ n(S−r)n krn

kS(n+1)
≤
(n
k

)(S−r)n 1

kS
≤ 1

r(S−r)n
1

kS
.

Therefore,

|TS,r,n(z)| ≤ 1

r(S−r)n

∞∑
k=rn

Ak|z|−k

kS
≤ 1

r(S−r)n

∞∑
k=0

Ak|z|−k,

where the series converges because |z| > 1/R, and (8.2) follows as claimed.

We now assume that Ak ≥ 0 for all k large enough, and Ak 6= 0 for infinitely many k.
We also assume that z > 1/R. We start from (8.4) with 0 < x < R:

1

(rn)!
F (rn)(x) =

∞∑
k=rn

(k − rn+ 1)rn
(rn)!

Akx
k−rn =

∞∑
k=0

(k + 1)rn
(rn)!

Ak+rnx
k ≥

∞∑
k=0

Ak+rnx
k.

Now the sequence (Ak) satisfies (for k large enough) a linear recurrence of order ` (as in
the proof of Step 1 of Lemma 2, but expanding at 0 rather than ∞) and it is non-zero
infinitely often. Hence, in fact, for any n sufficiently large, there exists kn ∈ {0, . . . , `− 1}
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such that Arn+kn 6= 0. In particular, Drn+knArn+kn ≥ 1. It follows that 1
(rn)!

F (rn)(x) ≥
Akn+rnx

kn ≥ xkn

Drn+kn+1 . We use this lower bound in (8.1) with x = t1 · · · tS/z:

TS,r,n(z) ≥ 1

D`+rnzrn max(1, z)`−1

(rn)!

n!r

(∫ 1

0

trn+`−1(1− t)ndt
)S

=
1

D`+rnzrn max(1, z)`−1

(rn)!n!S−r(rn+ `− 1)!S

((r + 1)n+ `)!S
.

We then deduce (8.3) by Stirling’s formula.

With r = [S/ log(S)2], these upper and lower bounds for TS,r,n(z) are essentially identi-
cal when S → +∞. With z = 1/α for some algebraic number α in (0, R), we can conclude
directly in §6.4 with an application of Töpfer’s criterion instead of Theorem 4.

References

[1] B. Adamczewski, J. Bell and E. Delaygue, Algebraic independence of G-functions and
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