
ON THE ARITHMETIC NATURE OF THE VALUES OF THE GAMMA
FUNCTION, EULER’S CONSTANT AND GOMPERTZ’S CONSTANT
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Abstract. We prove new results concerning the arithmetic nature values of the Gamma
function Γ at algebraic points and Euler’s constant γ. We prove that for any α ∈ Q\Z, α >
0, at least one of the numbers Γ(α) =

∫∞
0

tα−1e−tdt and
∫∞
0

(t+1)α−1e−tdt is an irrational
number. Similarly, at least one of the numbers γ = − ∫∞

0
log(t)e−tdt and Gompertz’s

constant
∫∞
0

e−t/(1 + t)dt is an irrational number. Quantitative statements, obtained
by means of Nesterenko’s linear independence criterion, strengthen these irrationality
assertions.

1. Introduction

In this article, we prove some results concerning the arithmetic nature of the values
of the Gamma function Γ at rational or algebraic points, and for Euler’s constant γ.
A (completely open) conjecture of Rohrlich and Lang predicts that all polynomial rela-
tions between Gamma values over Q come from the functional equations satisfied by the
Gamma function. This conjecture implies the transcendence over Q of Γ(α) at all alge-
braic non integral number. But, at present, the only known results are the transcendance
of Γ(1/2) =

√
π, Γ(1/3) and Γ(1/4) (each one of the last two being algebraically indepen-

dent of π; see [5]). Using the well-known functional equations satisfied by Γ, we deduce the
transcendence of other Gamma values like Γ(1/6), but not of Γ(1/5). Nonetheless, in [7,
p. 52, Théorème 3.3.5], it is proved that the set {π, Γ(1/5), Γ(2/5)} contains at least two
algebraically independent numbers. In positive characteristic, all polynomial relations be-
tween values of the analogue of the Gamma function are known to come from the analogue
of Rohrlich-Lang conjecture; see [1].

The results proved here are steps in the direction of transcendence results for the Gamma
function. We start with a specific quantitative theorem and then prove more general results
of qualitative nature. We define log(z) and zα for z ∈ C \ (−∞, 0] with the principal value
of the argument −π < arg(z) < π. An important function in the paper is the function

Gα(z) := z−α

∫ ∞

0

(t + z)α−1e−tdt.
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For any α ∈ C, it is an analytic function of z in C\ (−∞, 0]. When α = 0 and z = 1, G0(1)
is known as Gompertz’s constant (see [6]).

The main result of the paper is the following.

Theorem 1. (i) For any rational number α 6∈ Z, any rational number z > 0 and any
ε > 0, there exists a constant c(α, ε, z) > 0 such that for any p, q, r ∈ Z, q 6= 0, we have∣∣∣∣

Γ(α)

zα
− p

q

∣∣∣∣ +

∣∣∣∣Gα(z)− r

q

∣∣∣∣ ≥
c(α, ε, z)

H3+ε
, (1.1)

where H = max(|p|, |q|, |r|). In particular, at least one of Γ(α)/zα and Gα(z) is an irra-
tional number.

(ii) For any rational number z > 0 and for any ε > 0, there exists a constant d(ε, z) > 0
such that for any p, q, r ∈ Z, q 6= 0, we have∣∣∣∣γ + log(z)− p

q

∣∣∣∣ +

∣∣∣∣G0(z)− r

q

∣∣∣∣ ≥
d(ε, z)

H3+ε
. (1.2)

In particular, at least one of γ + log(z) and G0(z) is an irrational number.

Remarks. The constants c(α, ε, z) and d(ε, z) could be explicited but this is not necessary
here.

Aptekarev [2] was apparently the first to state explicitly that at least one of γ and G0(1)
is irrational. He constructed and studied precisely a sequence of linear form in 1, γ and
G0(1) with integers coefficients and tending to 0. The technique presented here is different
but we show in Section 6 how to construct such linear forms using our approach. For other
constructions of rational approximations for Gamma values, see [12, 13].

The proof of Theorem 1 is a consequence of the construction of Hermite-Padé type ap-
proximants to 1, exp and a specific E-function (in Siegel’s sense, for the definition see [10]).
As almost always with Hermite-Padé approximants, they provide very precise diophantine
estimates but at the cost of a lesser generality. In fact, using the much more general theo-
rems of Shidlovskii on the algebraic independence of values of E-functions, we can obtain
better qualitative results that we now explain. (Some of them are variations of results due
to Mahler [8]). However, it is not clear to us that the precise irrationality measures in
Theorem 1 could be obtained by Shidlovskii’s methods.

Theorem 2. (i) For any algebraic number z 6∈ (−∞, 0] and any algebraic number α, α 6∈ Z,
the transcendence degree of the field generated by ez, Γ(α)/zα and Gα(z) is at least 2. In
particular, at least one of the number Γ(α)/zα and Gα(z) is transcendental.

(ii) For any algebraic number z 6∈ (−∞, 0], the transcendence degree of the field generated
by γ + log(z), ez and G0(z) is at least 2. In particular, at least one of γ + log(z) and G0(z)
is transcendental.

Since Γ(1/2) =
√

π, we have the following corollaries to Theorem 2(i), which is ap-
pealing because of the simultaneous occurences of the numbers π and e, whose algebraic
independence over Q is still conjectural.
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Corollary 1. For any algebraic number z 6∈ (−∞, 0], the transcendence degree of the field
generated by π, ez and G1/2(z) is at least 2.

In particular for z = 1, we have the

Corollary 2. The transcendence degree of the field generated by π, e and
∫∞
0

e−tdt√
1+t

is at

least 2.

It is easy to see that the asymptotic expansion

Gα(z) ∼
∞∑

m=0

(−1)m (1− α)m

zm+1

holds as |z| → ∞ in any open angular sector that does not contain (−∞, 0]. Here, (x)m :=
x(x + 1) · · · (x + m − 1) is Pochhammer symbol. The divergent asymptotic series on the
right hand side is a Gevrey series of exact order 1. (A formal power series

∑
n≥0 anzn with

an ∈ C is a Gevrey series of order s, s ∈ R, if the associated power series
∑

n≥0(an/n!s)zn

has a non-zero radius of convergence; it is of exact order s if the radius of convergence
is finite non-zero.) The Taylor series for exp is a Gevrey series of exact order −1 and
an E-function in the sense of Siegel, π is the sum of the series 4

∑∞
m=0

zm

2m+1
at z = −1,

which is a Gevrey series of exact order 0 and a G-function in the sense of Siegel, and the
asymptotic expansion of G1/2 is a Gevrey series of exact order 1. Hence, Corollary 1 deals
with three numbers at different levels in the hierarchy of Gevrey series. However, this
is a kind of accident because the proof remains purely at the level of E-functions. It is
still a very difficult open problem to find transcendence methods that would enable one to
construct “good” auxiliary functions mixing E-functions and G-functions for example.

In Section 2, we prove the relation between Γ(α)/zα, Gα(z), respectively γ+log(z), G0(z),
and the E-functions mentioned above. In Section 3, we construct certain Hermite-Padé
type approximants to these E-functions, which are needed for the proof of Theorem 1 in
Section 4. In Section 5, we give the proofs of Theorem 2 and in the final section, we explain
why Theorem 2 is implicit in a paper of Mahler [8].

Acknowledgement. I thank Stéphane Fischler, Frédéric Jouhet, Julian Rosen, Michel
Waldschmidt and the referee for pointing out some inaccuracies and for their comments
that helped to improve this text.

2. Some useful functional relations

In this section, we discuss the relations at the origin of Theorems 1 and 2. We define
the function

Eα(z) :=
∞∑

m=0

zm

m!(m + α + 1)

for any z ∈ C and any α ∈ C, α 6= −1,−2, . . ., and

E(z) :=
∞∑

m=1

zm

m!m
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for any z ∈ C. Both functions are E-functions discussed in Shidlovskii’s book [10].

Proposition 1. (i) For any z ∈ C \ (−∞, 0] and any α ∈ C, α 6= −1,−2, . . ., we have

Γ(α + 1)/zα+1 = Eα(−z) + e−zGα+1(z), (2.1)

(ii) For any z ∈ C \ (−∞, 0], we have

γ + log(z) = −E(−z)− e−zG0(z) (2.2)

Proof. (i) We fix z > 0 and α such that <(α) > −1, so that

Γ(α + 1) =

∫ z

0

e−ttαdt +

∫ ∞

z

e−ttαdt

= zα+1

∫ 1

0

e−tztαdt +

∫ ∞

0

e−(t+z)(t + z)αdt

= zα+1

∫ 1

0

e−tztαdt + e−zzα+1Gα+1(z).

This identity can be analytically continued to any z such that z ∈ C \ (−∞, 0] and any
α ∈ C, α 6= −1,−2, . . .. This is nothing but (2.1) because

∫ 1

0

etztαdt = Eα(z).

(ii) We use the same strategy as before. It is well-known that γ = −Γ′(1). Hence, for
any z > 0,

−γ =

∫ ∞

0

e−t log(t)dt =

∫ z

0

e−t log(t)dt +

∫ ∞

z

e−t log(t)dt

= z

∫ 1

0

e−tz log(tz)dt +

∫ ∞

0

e−(t+z) log(t + z)dt (2.3)

= log(z) + z

∫ 1

0

e−tz log(t)dt + e−z

∫ ∞

0

e−t

t + z
dt

(after an integration by parts in the last integral of (2.3)). By analytic continuation, this
holds for any z ∈ C \ (−∞, 0], giving (2.2) because

z

∫ 1

0

e−tz log(t)dt = E(−z).

¤
We conclude this section with an identity which is irrelevant for the questions considered

in this paper, but which is interesting because it expresses Gα(z) in term of a more natural
integral, of Stieltjes type.

Proposition 2. For any complex number α such that <(α) < 1 and any z ∈ C \ (−∞, 0],

Gα(z) =
1

Γ(1− α)

∫ ∞

0

t−αe−t

t + z
dt (2.4)
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Proof. With x = 1/z > 0 and α < 1, it is enough to prove that

Γ(1− α)

∫ ∞

0

e−t

(1 + xt)1−α
dt =

∫ ∞

0

t−αe−t

1 + xt
dt,

the complete result following by analytic continuation in x and α.
By definition of Γ(1− α), we have

Γ(1− α)

∫ ∞

0

e−t

(1 + xt)1−α
dt =

∫ ∞

0

∫ ∞

0

e−(s+t)s−α

(1 + xt)α+1
dtds

=

∫ ∞

0

e−u

(∫ u

0

v1−α 1 + xu

(1 + xv)2

1 + xv

v(1 + xu)
dv

)
du

=

∫ ∞

0

e−u

(∫ u

0

v−α

1 + xv
dv

)
du

=

∫ ∞

0

v−α

1 + xv

(∫ ∞

v

e−udu

)
dv =

∫ ∞

0

e−v v−α

1 + xv
dv,

which proves the expected identity. (We used the change of variables



s = v
1 + xu

1 + xv

t =
u− v

1 + xv

and the application of Fubini’s theorem is licit by positivity.) ¤

3. Hermite-Padé type approximants of E-functions

In this section, we present the constructions of explicit Hermite-Padé type approximants
of the functions 1, exp, Eα on the one hand (Section 3.1), and 1, exp, E on the other hand
(Section 3.2). In the latter case, the construction is an adaptation of the techniques
in [14]. Propositions 3 and 4 are crucial ingredients in the proof of Theorem 1. Both are
generalisations of a classical construction of diagonal Padé approximants of exp, based on
the study of the integral

z2n+1

n!

∫ 1

0

etztn(1− t)ndt ∈ Z[z] + Z[z] exp(z).

See for example [3] for details.

3.1. Approximations to the functions 1, exp and Eα.

Proposition 3. Let us fix α such that <(α) > −1 and α 6∈ Z. For any integer n ≥ 0, there
exist some polynomials An, Cn (of degree ≤ n) and Bn (of degree ≤ n+1) with coefficients
in Q(α) and such that

Rn,α(z) :=
z3n+1

n!2

∫ 1

0

∫ 1

0

ezuvu2n+α(1− u)nv2n(1− v)ndudv

= An(z)ez + Bn(z)Eα(z) + Cn(z). (3.1)
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The order at z = 0 of Rn(z) is 3n + 1.

Explicit expressions for the polynomials are provided by the proof. The condition that
α 6∈ Z is not necessary to define Rn,α(z) but the polynomials cannot be defined for α ∈ Z
in the explicit expressions. This is fixed in Section 3.2 in the case α = 0.

This proposition fails to give a solution to the problem of finding the simultaneous
Hermite-Padé approximants [n; n + 1; n] to the functions 1, exp and Eα. But this is by a
small margin because this would have been the case if the order at z = 0 of Rn(z) were
3n + 3.

To prove the Proposition, we need a lemma.

Lemma 1. For any integers k, j ≥ 0, any z ∈ C and any α 6∈ Z, <(α) > −1, we have
∫ 1

0

∫ 1

0

ezuvuk+αvjdudv =
1

j − k + α

(
1

z
Mj,k,α

(1

z

)
ez + (−1)k (α + 1)k

zk
Eα(z) + (−1)j j!

zj+1

)
,

where

Mj,k,α(z) =
k−1∑

`=0

(k − ` + α + 1)`(−z)` −
j∑

`=0

(j − ` + 1)`(−z)`.

Remark. The lemma does not hold when α ∈ Z, in which case it must be replaced by
Lemma 2.

Proof of Lemma 1. Expanding exp(zuv) in series of powers of zuv, we get
∫ 1

0

∫ 1

0

ezuvuk+αvjdudv =
∞∑

m=0

zm

m!
· 1

(m + k + α + 1)(m + j + 1)

=
1

j − k − α

( ∞∑
m=0

zm

m!(m + k + α + 1)
−

∞∑
m=0

zm

m!(m + j + 1)

)
.

To evaluate both series, we remark that
∞∑

m=0

zm

m!(m + j + 1)
=

∫ 1

0

ezttjdt

∞∑
m=0

zm

m!(m + k + α + 1)
=

∫ 1

0

ezttk+αdt

and that, by repeated integrations by parts, we have
∫ 1

0

ezttjdt = ez

j∑

`=0

(−1)` (j − ` + 1)`

z`+1
+ (−1)j+1 j!

zj+1
(3.2)

and ∫ 1

0

ezttk+αdt = ez

k−1∑

`=0

(−1)` (k − ` + α + 1)`

z`+1
+ (−1)k (α + 1)k

zk
Eα(z).

The lemma follows immediately. ¤
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Proof of Proposition 3. We fix α such that <(α) > −1. Set

Pn(t) =
1

n!
(tn(1− t)n)(n) =

n∑

k=0

(−1)k

(
n

k

)(
n + k

n

)
tk ∈ Z[t]

Qn,α(t) =
1

n!tn+α
(t2n+α(1− t)n)(n) =

n∑

k=0

(−1)k

(
n

k

)(
2n + k + α

n

)
tk ∈ Z[α][t],

which are of degree n in t. Here,
(
2n+k+α

n

)
:= (n+k+α+1)n

n!
and it is standard that if α =

a/b ∈ Q, with a, b ∈ Z, then b2n
(
2n+k+α

n

) ∈ Z, so that b2nQn,α(t) ∈ Z[t] in this case.
Let us define

In,α(z) =

∫ 1

0

∫ 1

0

ezuvuαQn,α(u)Pn(v)dudv (3.3)

for any z ∈ C. For simplicity, we write

Pn(t) =
n∑

j=0

pj,nt
j, Qn,α(t) =

n∑

k=0

qk,n,αtk.

Hence,

In,α(z) =
n∑

k=0

n∑
j=0

qk,n,αpj,n

∫ 1

0

∫ 1

0

ezuvuk+αvjdudv

=
n∑

k=0

n∑
j=0

qk,n,αpj,n

j − k + α

(
1

z
Mj,k,α

(1

z

)
ez +

(α + 1)k

zk
Eα(z)− j!

zj+1

)
, (3.4)

by Lemma 1. Clearly, it follows that

zn+1In,α(z) = An(z)ez + Bn(z)Eα(z) + Cn(z)

for some polynomials An, Bn and Cn as described in Proposition 3.
To conclude, it remains to prove that

zn+1In,α(z) = Rn,α(z).

This is easily done as follows: in zn+1In,α(z), we integrate n-times by parts in v, and then
n-times by parts in u, which gives Rn,α(z). ¤

3.2. Approximations to the functions 1, exp and E. In Proposition 3, the integral
Rn,α(z) is well-defined for α = 0, but its expansion as a linear form in 1, exp(z) and
E0(z) = (exp(z) − 1)/z does not hold because the polynomials An, Bn, Cn are not defined
for α = 0 (more precisely, because of the factor 1/(j − k − α)). However, this can be
corrected.
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Proposition 4. For any integer n ≥ 0, there exist some polynomials An, Bn, Cn (all of
degree ≤ n), with coefficients in Q and such that

Rn,0(z) :=
z3n+1

n!2

∫ 1

0

∫ 1

0

ezuvu2n(1− u)nv2n(1− v)ndudv

= An(z)ez + Bn(z)E(z) + Cn(z). (3.5)

The order at z = 0 of Rn,0(z) is 3n + 1.

To prove the Proposition, we need an analogue of Lemma 1 in the case when α = 0.

Lemma 2. Fix any integers k, j ≥ 0 and any z ∈ C.
If k 6= j, then

∫ 1

0

∫ 1

0

ezuvukvjdudv =
1

j − k

(
1

z
Mj,k

(1

z

)
ez + (−1)k+1 k!

zk+1
+ (−1)j j!

zj+1

)
,

where

Mj,k(z) =
k∑

`=0

(k − ` + 1)`(−z)` −
j∑

`=0

(j − ` + 1)`(−z)`.

If k = j, then
∫ 1

0

∫ 1

0

ezuvukvkdudv =
1

z
Mk

(1

z

)
ez + (−1)k+1 k!

zk+1
E(z) +

(−1)kk!

zk+1

k∑
j=1

1

j
,

where

Mk(z) =
k∑

`=1

k−∑̀
m=0

(−1)`+m+1 (k − `−m + 1)mk!

(k − ` + 1)!
z`+m.

Proof of Lemma 2. If k 6= j, we expand exp(zuv) in powers of zuv to get
∫ 1

0

∫ 1

0

ezuvukvjdudv =
∞∑

m=0

zm

m!(m + k + 1)(m + j + 1)

=
1

j − k

( ∞∑
m=0

zm

m!(m + k + 1)
−

∞∑
m=0

zm

m!(m + j + 1)

)

=
1

j − k

(
Ik − Ij

)
,

where

Ik :=

∫ 1

0

ezttkdt.

To conclude this case, we then use identity (3.2) which enables us to evaluate Ik and Ij.

If k = j, we have
∫ 1

0

∫ 1

0

ezuvukvkdudv = −
∫ 1

0

ezttk log(t)dt =: −Jk.
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We have J0 = z−1E(z). For k ≥ 1, by integration by parts, we get

Jk = −1

z
Ik−1 − k

z
Jk−1,

which we iterate to obtain

Jk =
k∑

`=1

(−1)`

z`
· k!

(k − ` + 1)!
Ik−` + (−1)k k!

zk
J0

= −1

z
Mk

(1

z

)
ez + (−1)k k!

zk+1
E(z) +

(−1)k+1k!

zk+1

k∑
j=1

1

j
.

This concludes the proof of the lemma. ¤

Proof of Proposition 4. We start from the integral

In,0(z) :=

∫ 1

0

∫ 1

0

ezuvQn,0(u)Pn(v)dudv.

Expanding the polynomials Qn,0 and Pn and using Lemma 2, we see that

In,0(z) =
n∑

k=0

n∑
j=0

qk,n,0pj,n

∫ 1

0

∫ 1

0

ezuvukvjdudv

=
n∑

j,k=0

j 6=k

qk,n,0pj,n

j − k

(
1

z
Mj,k

(1

z

)
ez + (−1)k+1 k!

zk+1
+ (−1)j j!

zj+1

)

+
n∑

k=0

qk,n,0pk,n

(
1

z
Mk

(1

z

)
ez + (−1)k+1 k!

zk+1
E(z) +

(−1)kk!

zk+1

k∑
j=1

1

j

)
.

It follows that zn+1In,0(z) = An(z)ez + Bn(z)E(z) + Cn(z), where the polynomials An,Bn

and Cn are as described in Proposition 4. To prove that zn+1In,0(z) = Rn,0(z), we integrate
n-times by parts in v, and then n-times by parts in u. ¤

4. Proof of Theorem 1

The Hermite-Padé approximants constructed in Section 3.1 provide good functional si-
multaneous approximations to the functions exp(z) and Eα(z), and, as usual, it is natural
to expect that they also provide good numerical simultaneous approximations to the val-
ues of both functions. In our situation, the transfer is operated by means of Nesterenko’s
criterion for linear independence of real numbers, that we first recall.

Proposition 5 (Nesterenko’s criterion [9]). Let ξ1, . . . , ξN denote N real numbers such
that there exist N sequences of integers (pj,n)n≥0, j = 1, . . . , N , four positive real num-
bers τ1, τ2, c1, c2 and a monotonically increasing function σ (defined on R) satisfying the
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following properties:

(i) lim
t→+∞

σ(t) = +∞ and lim sup
t→+∞

σ(t + 1)

σ(t)
= 1;

(ii) max
j=1,...,N

|pj,n| ≤ eσ(n);

(iii) c1e
−τ1σ(n) ≤

∣∣∣∣
N∑

j=1

pj,Nξj

∣∣∣∣ ≤ c2e
−τ2σ(n).

Then the dimension of the vector space spanned over Q by ξ1, . . . , ξN is at least τ1+1
1+τ1−τ2

.

We will also use a quantitative version of the criterion when τ1 = τ2 = N − 1. In that
case the dimension is maximal equal to N and for any ε > 0, there exists a constant ηε > 0
such that for any (a1, . . . , aN) ∈ ZN \ {(0, . . . , 0)}, we have

∣∣∣∣
N∑

j=1

ajξj

∣∣∣∣ ≥
ηε

max
j=1,...,N

|aj|N−1+ε
. (4.1)

This is a consequence of the theorem stated on page 72 of [9], which in fact encompasses
Proposition 5.

To apply the proposition and (4.1), we need two lemmas. The first one is used for case
(i) of Theorem 1 whereas the second is used in case (ii). Set dn := lcm(1, 2, . . . , n).

Lemma 3. Let α = a/b ∈ Q \ Z, α > −1, b ≥ 1 z = u/v ∈ Q∗.
(i) The numbers

b3nvndbn+|a|An(z), b3nvn+1dbn+|a|Bn(z), b3nvndbn+|a|Cn(z)

are integers.

(ii) For all large enough n, we have max(|An(z)|, |Bn(z)|, |Cn(z)|) ≤ cn
3n!, for some

c3 > 0 that depends on α and z.

(iii) We have Rn,α(z) = c
n(1+o(1))
4 /n!2, where c4 := 16z3/81.

Lemma 4. Set z = u/v ∈ Q∗.
(i) The numbers

vndnAn(z), vn+1Bn(z), vndnCn(z)

are integers.

(ii) For all large enough n, we have max(|An(z)|, |Bn(z)|, |Cn(z)|) ≤ cn
5n!, for some c5 > 0

that depends on z.

(iii) We have Rn,0(z) = c
n(1+o(1))
4 /n!2, where c4 := 16z3/81.

We give only the proof of Lemma 3, that of Lemma 4 being totally similar.
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Proof of Lemma 3. (i) This is immediate using the expression (3.4) for In,α(z), and pk,n ∈ Z
and v2nqk,n ∈ Z (the latter because v2n

(
2n+k+u/v

n

) ∈ Z).

(ii) Again, this is immediate using the expression (3.4). Indeed, the coefficients pk,n and
qk,n,α of the polynomials Pn and Qn are uniformely bounded (for k = 0, . . . , n) by cn

6 for
some constant c6 that depends only on α.

(iii) An application of Laplace’s method to the integral expression (3.1) for Rn(z) shows
that

lim
n→+∞

(n!2Rn(z))1/n = z3 max
(u,v)∈[0,1]2

(
u2(1− u)v2(1− v)

)
=

16z3

81
.

(The fact that α and z are real is used here.) ¤

Proof of Theorem 1. We only prove (i), since (ii) is proved in a similar fashion. First, we
remark that the restriction that α > −1 in Lemma 3 is inessential: we can remove it,
provided we assume n is large enough, say n ≥ N(α), which is of course possible in the
lemma and in Proposition 5.

For n ≥ N(α), we construct a sequence of linear forms

`n = anez + bnEα(z) + cn

with an, bn, cn ∈ Z by setting

`n = b3nvn+1dbn+|a|Rn(z), an = b3nvn+1dbn+|a|An(z)

bn = b3nvn+1dbn+|a|Bn(z), cn = b3nvn+1dbn+|a|Cn(z).

Since dn = en(1+o(1)), the various estimates in Lemma 3 show that we can apply Propo-
sition 5 with σ(n) = log(n!) = n log(n)(1 + o(1)) and τ1 = τ2 = 2. (The exact values of
c1, c2 > 0 are not important.) It follows that the dimension of the vector space spanned
over Q by 1, ez and Eα(z) is exactly 3.

Recall (2.1),i.e., that

Γ(α + 1)/zα+1 = Eα(−z) + e−zGα+1(z).

Since Eα(−z) and e−z are Q-linearly independent, at least one Γ(α + 1)/zα+1 and Gα+1(z)
is irrational for any z ∈ Q∗, z > 0 and any α ∈ Q\Z. We now prove a quantitative version
of this statement. (We change α to α − 1 for simplicity.) Indeed, we are in a situation
where we can use the linear independence measure (4.1): for any integers p, q, r not all zero
and any ε > 0, we have ∣∣p + qe−z + rEα−1(−z)

∣∣ ≥ c7

H2+ε
, (4.2)

where H = max(|p|, |q|, |r|) and c7 depends on α, ε, z.
We claim this implies that, for any integers p, q, r not all zero and any ε > 0,

|qΓ(α)/zα − p|+ |qGα(z)− r| ≥ c8

H2+ε
, (4.3)



12

where c8 = c7/(1 + e−z). To get a contradiction, let us assume we can find some integers
p′, q′, r′ not all zero and an ε > 0 such that

|q′Γ(α)/zα − p′|+ |q′Gα(z)− r′| < c8

H̃2+ε
,

where H̃ = max(|p′|, |q′|, |r′|). Hence

|q′Γ(α)/zα − p′| < c8

H̃2+ε

and

|q′e−zGα(z)− r′e−z| < c8e
−z

H̃2+ε
.

On the other hand, by (4.2),
c7

H̃2+ε
≤

∣∣−p′ + r′e−z + q′Eα−1(−z)
∣∣ =

∣∣−p′ + r′e−z + q′
(
Γ(α)/zα − Gα(z)

)∣∣

≤ |q′Γ(α)/zα − p′|+ e−z |q′Gα(z)− r′| < c8(1 + e−z)

H̃2+ε
=

c7

H̃2+ε
.

This is a contradiction, and thus (4.3) holds, which is the inequality (1.1) in disguise with
c(α, ε, z) = c8.

Inequality (4.3) quantifies the assertion “at least one of Γ(α)/zα and Gα(z) is irrational”.
Indeed, if Γ(α)/zα or Gα(z)/z is rational, say Γ(α)/zα = p0/q0 ∈ Q∗ to simplify, we set
p = p0q

′, q = q0q
′ and r = q0p

′ in Inequality (4.3) for any integers p′, q′ 6= 0, r′. In
particular, ∣∣∣∣

Γ(α)

zα
− p

q

∣∣∣∣ = 0.

Consequently,
c8

H3+ε
≤

∣∣∣∣
Γ(α)

zα
− p

q

∣∣∣∣ +

∣∣∣∣Gα(z)− r

q

∣∣∣∣ =

∣∣∣∣Gα(z)− p′

q′

∣∣∣∣
and H := max(|p|, |q|, |r|) = max(|p0q

′|, |q0q
′|, |q0p

′|) ≤ max(|p0|, |q0|) · H̃, where Ĥ :=
max(|p′|, |q′|). Hence, setting c9 = c8 max(|p0|, |q0|)3+ε, for any integers p′, q′ 6= 0, we have∣∣∣∣Gα(z)− p′

q′

∣∣∣∣ ≥
c9

Ĥ3+ε
,

which shows that Gα(z) is an irrational number (and even a non-Liouville number). ¤

5. Proof of Theorem 2

(i) For any α 6∈ Z, the function exp(z) and Eα(z) are algebraically independent over C(z)
([10, p. 191, Lemma 7]) and both functions satisfy the homogeneous linear differential
system: 




y′1 = y1

y′2 =
1

z
y1 − α + 1

z
y2.

(5.1)
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If α is an algebraic and non-integer, Shidlovskii’s classical theorem on E-functions ([10,
p. 192, Theorem 3]) yields that for any algebraic number z 6= 0, the numbers Eα(−z) and
exp(−z) are algebraically independent over Q.

We now use identity (2.1) to deduce that, for any α ∈ Q\Z and any z ∈ Q∗, z 6∈ (−∞, 0].
the field generated over Q by the numbers

Γ(α)/zα, ez, Gα(z)

has transcendence degree at least 2. This is the content of Theorem 2(i).
(ii) Although this is not proved in [10], the functions exp(z) and E(z) are algebraically

independent over Q(z). Since they satisty the inhomogeneous linear differential system
{

y′1 = y1

y′2 = 1
z
y1 − 1

z

we can thus apply Shidlovskii’s Second Fundamental Theorem ([10, p. 123]) to deduce

that for any z ∈ Q∗, the numbers E(−z) and exp(−z) are algebraically independent over
Q. Together with identity (2.2), this immediately implies Theorem 2(ii).

6. A sequence of linear forms in 1, Γ(α)/zα and Gα(z)

In this section, we construct an explicit sequence of linear forms

Ln(α, z) ∈ Z+ ZΓ(α)/zα + ZGα(z)

that tends to 0 as n → +∞ under the assumptions that z ∈ Q∗, z > 0, and α ∈ Q \ Z.

The principle of the construction is simple and was already used in [11, 12] (for a different
purpose however). We consider simultaneously Rn,α(−z) and Rn+1,α(−z) and define the
five determinants

Sn(z) =

∣∣∣∣
An(−z) Rn,α(−z)
An+1(−z) Rn+1,α(−z)

∣∣∣∣, Tn(z) =

∣∣∣∣
Rn,α(−z) Bn(−z)
Rn+1,α(−z) Bn+1(−z)

∣∣∣∣,

Un(z) =

∣∣∣∣
An(−z) Cn(−z)
An+1(−z) Cn+1(−z)

∣∣∣∣, Vn(z) =

∣∣∣∣
An(−z) Bn(−z)
An+1(−z) Bn+1(−z)

∣∣∣∣
and

Wn(z) =

∣∣∣∣
Cn(−z) Bn(−z)
Cn+1(−z) Bn+1(−z)

∣∣∣∣
Clearly, Un, Vn,Wn are polynomials in z of degree at most 2n + 2, with coefficients in

Q(α). Furthermore, we have the relations



Vn(z)Eα(−z) + Un(z) = Sn(z) = O(z3n+1)

Vn(z)e−z + Wn(z) = Tn(z) = O(z3n+1).

(These functional approximations almost provide the diagonal simultaneous Padé approx-
imants of type II for the functions exp(z) and Eα(z).)
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We now use Eq. (2.1) in the form

Eα(−z) = Γ(α + 1)/zα+1 − e−zGα+1(z)

so that 



Sn(z) = Vn(z)Γ(α + 1)/zα+1 − Vn(z)e−zGα+1(z) + Un(z)

Tn(z) = Vn(z)e−z + Wn(z),

from which we finally obtain that

Sn(z) + Gα+1(z)Tn(z) = Vn(z)Γ(α + 1)/zα+1 + Wn(z)Gα+1(z) + Un(z). (6.1)

The estimates given in Lemma 3 show that there exist some constants c10 and c11 (depend-
ing on α and z) such that

|Sn(z) + Gα+1(z)Tn(z)| ≤ cn
10

n!
,

and, when z > 0 and α 6∈ Z are rational numbers, the common denominator Dn of the
coefficients of Vn(z), Wn(z) and Un(z) is bounded by cn

11. Hence

Ln(α + 1, z) := Dn

(
Sn(z) + Gα+1(z)Tn(z)

) ∈ Z+ ZΓ(α + 1)/zα+1 + ZGα+1(z)

tends to 0 essentially as fast as 1/n! (up to some factor with exponential growth in n). To
conclude that at least one of Γ(α + 1)/zα+1 and Gα+1(z) is irrational, it remains to prove
that Ln(α+1, z) 6= 0 for infinitely many n. As seen in Section 4, this is a consequence of the
linear independence of the numbers exp(z) and Eα(z) over Q. This is not an easy task if we
don’t want to remember this fact. In principal, we could explictly compute the recurrence
satisfied by An, Bn, Cn, Rn, then deduce it is satisfied by Sn, Tn, Un, Vn,Wn and find the
exact asymptotic behavior of zSn(−z) + Gα+1(z)Tn(−z) by means of Birkhoff-Trjitzinski
theory. A similar construction of sequences of linear forms in γ + log(z) and G0(z) can be
done.

7. Connexion with Mahler’s paper [8]

In the Introduction, we mentioned that Theorem 2 is related with Mahler’s article [8],
where he says: “the results proved in this paper are quite trivial consequences of Shidlovski’s
work, and they do not even imply the irrationality of γ or of ζ(3). However, they deserve
perhaps a little interest because, up to now, nothing was known about the arithmetic

of these constants”. Mahler’s comment refers to his remark that the number πY0(2)
2J0(2)

− γ

and other similar numbers are transcendental, but it could certainly be applied to our
Theorem 2. Note that [8] was published in 1967, many years before Apéry’s proof of the
irrationality of ζ(3).

On the last five lines of [8], he mentions without proof the following theorem: For z ∈ Q∗,
integer k ≥ 0 and rational number α > −1, any finite number of integrals

∫ 1

0

tα log(t)ke−ztdt (7.1)
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are algebraically independent over Q. Clearly, this contains as particular case the algebraic
independence over Q of the numbers exp(z) and Eα(z), respectively of the numbers exp(z)
and E(z) in the above conditions. Although Mahler did not give a proof, it is clear that is
was based on the observation that the integral in (7.1) is an E-function (of the variable z)
very similar to Eα and E .

As an application of Mahler’s result, we mention a generalisation of Theorem 2(ii): For
any z ∈ Q, z 6∈ (−∞, 0], and any integer s ≥ 1, the transcendence degree of the field
generated over Q by

Γ(s)(1), log(z), ez,

∫ ∞

0

log(t + z)se−tdt

is at least 2. In particular, at least one of Γ(s)(1) =
∫∞
0

log(t)se−tdt and
∫∞

0
log(1+t)se−tdt

is transcendental.
The proof amounts to the observation that

Γ(s)(1) = z

∫ 1

0

log(tz)se−ztdt +

∫ ∞

z

log(t)se−tdt

= z

s∑
j=0

(
s

j

)
log(z)s−j

∫ 1

0

log(t)je−tzdt + e−z

∫ ∞

0

log(t + z)se−tdt

for any z ∈ C \ (−∞, 0], at which point we can use Mahler’s result. We conclude by
mentioning that, for any integer s ≥ 1, Γ(s)(1) can be expressed as a polynomial in
γ, ζ(2), ζ(3), . . . , ζ(s) with rational coefficients (see [11, eq. (3.1)] for a precise statement).
For example, Γ′(1) = −γ, Γ′′(1) = ζ(2) + γ2, Γ′′′(1) = −2ζ(3)− 3γζ(2)− γ3.
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et Γ(1/3), Acta Arith. 104.3 (2002), 243–281.

[5] G.V. Chudnovsky, Algebraic independence of constants connected with the exponential and the elliptic
functions. (Russian. English summary) Akad. Nauk Ukrain. SSR Ser. A 8 (1976), 698–701.

[6] S. Finch, Mathematical constants, Encyclopedia of Mathematics and its Applications 94 , Cambridge
University Press, Cambridge, 2003.
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