EXTREMALITY PROPERTIES OF SOME DIOPHANTINE SERIES

T. RIVOAL

[[n2 o]

ABSTRACT. We study the convergence properties of the series (o) := Zn21 7 nall
with respect to the values of the real numbers a and s, where ||z|| is the distance of x
to Z. For example when s € (0, 1], the convergence of ¥ () strongly depends on the
diophantine nature of v, mainly its irrationality exponent. We also conjecture that ¥, («)
is minimal at v/5 for s € (0,1] and we present evidences in favor of that conjecture. For
s = 1, we formulate a more precise conjecture about the value of the abscissa uy where the

Fy-partial sum of ¥y (@) is minimal, Fj being the k-th Fibonacci number. A similar study
n lIn?al|

L that we conjecture
n2[naf|

it made for the partial sums of the series Uy () := 2 ons1(—1)
to be minimal at \/5/2

1. INTRODUCTION

The main goal of this paper is to study the following Dirichlet series, which is one of the
“diophantine series” mentioned in the title (others appear in Sections 3, 7 and 8):

— |In*a/]
Vy(a) = Z n 1 [[nal]
n=1

for o, s € R. Here, ||x|| stands for the distance of = to Z, i.e., ||z|| := | — |z]| with |x] the

nearest integer to z (with |1/2] = 0 say, even though this arbitrary choice has no influence
on the value ||1/2]|). For future use, {x} denotes the fractional part of x. For any integer

n > 1, the function D, («) := H‘m‘\l is non-negative and continuous on (0, 1) with right limit

at a = 0 and left limit at @ = 1 both equal to n; it is also clearly 1-periodic on R\ Z.
Furthermore, in [11, Lemma 2], it is shown that

n
Dyla) < —————— <n
1+ 2|nf|e]
for any o € R. Therefore, for any integer n > 1, the function D, (n«a) = % is non-

negative and continuous on R, bounded by n, with the value n at rational numbers of the
form j/n, j € Z. 1t follows that the partial sum

U, v(a) = Z M

nerl
n=1
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FIGURE 1. D;5 and its upper bound

of Uy(a) is a continuous function of a on R. If & = a/b with (a,b) = 1, then the value of
the summand is 1/n® when n is divisible by b. Moreover, for any o € R,

The convergence/divergence of W () strongly depends on the diophantine properties of
a and before stating our results and conjectures, we recall some standard notation. For
any irrational number «, let (p,/qn)n>0 denote the sequence of the convergents to o and
let (a,)n>0 denote the sequence of partial quotients, defined by ¢,11 = @n41¢n + gn-1. An
irrational number « is said to have a finite irrationality exponent p(a) > 2 if there exists
a constant c(a) > 0 such that

‘04 _p ‘ >_ 1 (1.1)
)q#( @)

for all integers p, ¢ with ¢ > 1. We denote by m( ) the irrationality exponent of «, defined
as the infinimum of all possible p(«), regardless of the value of ¢(«). By definition, Liouville
numbers are precisely those real numbers which don’t have a finite irrationality exponent;
they are not only irrational but also transcendental.

When s € (0,1), let us consider the sets 7 of irrational numbers « such that

o0 —S8

Yo il Wi _ o (1.2)

an

n=1

and, when s = 1, let us define 7, as the set of irrational numbers « such that

1 n mny n
Z og (max 6(1]+1/q n)) - (13)

n=1

The following lemma was proved in [11]. We recall it for completeness.

Lemma 1 ([11], Lemma 1). (i) The set <4 contains all irrational numbers with a finite
wrrationality exponent. Some Liouville numbers belong to <7, some do not.
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(i1) For any s € (0,1), the set <, contains all irrational numbers with m(a) < 3=2 but
none whose irrationality exponent m(c) is > 3=2. Some irrational numbers with m(c«) =
f—:‘; belong to <, some do not.

(i13) For any s € (0,1], the set <75 has full measure.

We can now state our result concerning the convergence/divergence of Wy («).

Theorem 1. (i) For any s € (0,1] and any rational number a/b with (a,b) = 1, we have

1 a 1
i w(9) =L
Nteo Hy(s) *M\b) T b
Thus ¥(}) = +00.

(i1) For any s € (0,1) and any irrational number o, there exist two constants cs, ds > 0
(that also depend on o) such that

m—1 q(l—s)/2 m ql_s
2 : k+1 2 : k+1

Cg W S QIS,N(a) S ds q_k (14)
k=1 Dk k=1

for any N such that ¢, < N < @pmi1-
For s = 1, there exist two constants ¢1,dy > 0 (that depend on «) such that

m—1 m
1 1 ,
CIZ 08 (qr+1/ k) <, y(a) < dlz Og(maX(QkJrl/Qk Qk>) (1.5)
qr ’ P
k=1 k=1

for any N such that ¢, < N < ¢ma1-

(i13) For any s € (0,1] and any o € s, the series V() is convergent.

(iv) For any s € (0,1), the series V(o) converges, respectively diverges, for any irra-
tional number o such that m(a) < 3=, respectively m(a) > 2.

For s = 1, the series Vi(«) converges for any irrational number « such that m(«) is
finite. On the other hand, there exists a dense set of Liouville numbers & such that for any

>0,
lim sup —\Ill’N(O
N—+o00 log(N)lis
(v) When s <0, the series Wq(a) diverges for all a € R while if s > 1, it converges for
all o € R.

Remark. Diophantine series similar to those in (1.5) appear in [8, 12] in related contexts.
The first part of item (iv) is just a consequence of (1.4). We formulate it because it
shows the link between convergence/divergence of W¢(«) and the irrationality exponent
m(a). It would be very interesting to obtain the exact threshold.
Moreover, (1.6) is essentially optimal because |V y(a)| < log(N) for any «. In fact, the
proof yields more: for any function ey = o(1), we can find a dense set of Liouville numbers
¢ such that (1.6) holds with ey instead of .



Theorem 1 is proved in Section 3. We also show the highly discontinuous behavior of W
in Section 4. In Section 5, we obtain an upper bound for the speed of convergence of the
partial sums of W,(«): without surprise, this bound is not uniform and strongly depends
on the diophantine properties of a.

A real surprise comes from the following conjecture, which we motivate in Section 6.

Conjecture 1. For any s € (0,1], the function W, is minimal at the points of \/5+ Z and
—/5 + 7, where it takes the same value.

We remark that m(4++v/5 + k) = 2 for any k € Z, hence that ¥,(£+/5 + k) is convergent
for any s > 0. In Section 6, we will also present evidences (!) for the following “finite
version” of Conjecture 1 in the case s = 1.

Conjecture 2. (i) For any integer k > 4, the partial sum Uy p_ is minimal on [0,1] at the

points

- Fy1Fy—2

Here, (Fi)r>0 is the Fibonacci sequence defined by Foy =0, Fy =1 and Fyyo = Fpq + F.
(1) We have

and 1 — uy.

lim Wy g () = ¥y (V5 - 2).

k——4o00

For s € (0,1), Conjecture 2 seems to hold sometimes, but it also fails sometimes. Note
that uy — /5 — 2 at geometric rate, but we don’t see how to deduce (i) from this fact.
The expression “finite version” is justified by the fact that Conjecture 2 implies the case
s = 1 of Conjecture 1. Indeed, by 1-periodicity and symmetry of ¥; with respect to the
vertical axis o = 1/2, it is enough to prove minimality at /5 — 2. (i) implies that, for any
a € 0,1], Uy g (o) > ¥y g, (ug). Hence, by (i7),

Jim @y (a) > Uy (V5 —2). (1.7)
If @ belongs to the domain of convergence of Wy, (1.7) implies that W, (a) > ¥, (v/5 — 2)

whereas if o belongs to the domain of divergence of Wy, the value of ¥;(a) is 400 and we

still have Wy (a) > W (v/5 — 2).

In Section 7, we will shortly consider the case of the series

5 e n |In?all
Uy (a) = Z(—l) 2|nal]
n=1

which seems to present a minimum at any point of :i:\/T§ + Z; see Conjecture 3 for a more
precise statement in the spirit of Conjecture 2. It is often the case that quadratic numbers
are extremal for various diophantine statistics: /2 is minimal for the star discrepancy

IThese are numerical datas/graphs computed/ploted with Maple, XCAS and GP-PARI. For a same
graph ploted with the three programs, zooms on interesting parts all revealed the pattern shown in Con-
jecture 2.
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FIGURE 2. Graphs of W 999 and the constant ¥ 990(v/5 — 2) on [0, 1]

V5—1

of {na}-sequences (Dupain-Sés [4]), is conjecturally minimal for the discrepancy of

2
{na}-sequences (see [1]), ‘/52_1 is minimal for the circular dispersion of Niederreiter [9] and

its variation of Jager-de Jong [5].

2. MOTIVATIONS BEHIND W,

Even though the series W, is an interesting object in itself, it does not come from nowhere.
Indeed, in order to study how far the finite sequence ({ka})i<g<n, is from a subset of

9 1 ..., 21}, the author introduced in [11] the function
& | kna 1<

Fu(a) =) ko ———|=—3 |[knal|
k=1 k=1

The function F;, is 1-periodic and symmetric with respect to the vertical axis a = % The
study of the fluctuations of F,(«) around 1/4 led in particular to consider the Dirichlet
series

) =3 Fn(ails— 1/4

for s € R and to determine for which a and s the equality (%)
2 o= P, ((2k + 1))

(o) = —— 2.1
(@) 2 (2k +1)2 (2.1)
k=0
holds, where
o0 1 n
O (a) = Z R cos(2mkna). (2.2)
n=1 k=1
2This is formally obtained by means of the Fourier expansion | ||| = 1-Z307, W Finding

when (2.1) holds is a problem similar to finding when Davenport’s identities hold (see [3, 8] for some
examples).
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For s > 1, both ¥(a) and ®4(«) clearly converge absolutely for any o € R, and (2.1)
holds. It is a little less easy to prove that both diverge for any o € R when s < 0. Again,
the situation is much more interesting when s € (0, 1]. The following theorem is a survey
of some of the results proved in [11].

Theorem ([11], Theorems 1 and 2). (i) For any rational number o and any s € (0, 1],
the series 9s(a) and ®s(ar) diverge to —oo and +o0o respectively.

(i1) For any s € (0,1] and any a € s, the series ®s(a) converges to a finite limit.

(i13) For any s € (0,1) and any o € s, the series 9s(a) converges and identity (2.1)
holds. This is also the case when s =1 and m(«a) is finite.

(iv) For any s € (0,1) and any irrational number o such that m(a) > %=1
() and Dg(a) both diverge, to —oo and +oo respectively. When s = 1, there exists a
dense set of Liouville numbers o such that the same conclusion holds.

(v) When s > 1, 9(a) and ®s(«) converge for all «. When s < 0, both diverge for all cv.

, the series

The series U,(ar) appears as follows. We have

i cos(mn(n + 1)a) sin(mn’a)

nstlsin(mno)

n=1
and
cos(mn(n + 1)a) sin(rna)| _ sin(r||n®al|) < l[n2a|
sin(mnao) — sin(n||nal]) T 2 ||nal|
because 2z < sin(mz) < 7z for x € [0, 7/2]. Hence,
~ 2
)] < Z cos mnif& 1)1 (73221)(”" )| < (). (2.3)

As we have seen earlier, W («v) converges at least for any o € o7, which explains part of
the above theorem.

Like ¥, the functions ¢, and —® also have surprising extremal properties, namely for

any fixed s € (0,1], they seem to attain their respective maxima over [0, 1] at % and

V51
1=

extremal values (@ — +/5) in (2.3) is curious.

. See Figures 3 and 4 in the case s = 1. The shift in the apparent position of

3. PROOF OF THEOREM 1
(1) We write n = kb+r with £ > 0 and 1 <r <b, so that
W, n(a —_—  — —.
w ||m/b|| £ (kb+r)tt b e ke

(Since (a,b) =1, ra/b is an integer if and only if r = b.)
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FIGURE 3. Graphs of ¢ 599 and the constant %,200(‘/52’1) on [0,1]
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FIGURE 4. Graphs of ®; 999 and the constant @1,200(‘/52’1) on [0,1]

Since s > 0, the term
[(N—=7)/b]

Z [[r%a/b]| * S 1
fraftl 2= b+
converges to a finite limit When N — 400. On the other hand,

LN/bJ
bs Z ks N )
when N — +o00, which proves the result.

(17) We don’t repeat the proof of the right inequalities in (1.4) and (1.5), which have
been proved in [11]. Let us prove the left inequalities. Obviously, we have

m—1gny1—1 m—1 [(gn+1—1)/qn]
— Kl 1" [qo|
V22 L ke i & gl

qnlk
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where m is such that ¢,, < N < ¢,,+1. We recall that

L <1
—— > @ — Pn| >
dn + dn+1 dn+1
Hence
[eqna|| < [lgna — p,| <
Qn+1
We also have
52 n 62 "
4 S ’(KQTL)Z& - KQann‘ g ¢ . (31)
Gn + dn+1 gn+1
Provided that £ < @ := /%%, we deduce from (3.1) that |(£g)2a — Cqupa| = ||Pgal|
and that
q,
1C22al| > —" .
dn + dn+1

It follows from all this that
m—1 LQJ H€2 Oé|| m—1 LQJ 1

BT o
Z ZHZKS“HEQ all = Z(qnﬂwn)qz S

We remark now that |Q] = 0iff a,,41 = 1, and then Zﬁ{ & = 0. Let us first discard this
case and consider only those n > 0 such that a,1; > 2. (Note that ¢,11 = Gni1¢n + Gn-1
implies that ¢,,+1/(2¢g,) > 1.) Then

ZQ: 1 e1log(qni1/qn) >0 if s=1
i es(qni1/q) 1792 if 0<s<1,
for some constants e, > 0 that depend on s and «. Hence if s =1,

m—1 m—1

Ciaw €1 log(QnJrl/Qn)
\IJS’N(a) = & ————10g(Gn11/qm) = —ordnTw i/ An/
n=0 (qn+1 + qn)qn + / ) 2 HZ_O In
122 an412>2
while if s € (0, 1),
m—1 (178)/2 m—1 (1*8)/2
An+1 9n+1 €s Qi1
\Pst(a) Z €s . Z s .
; (Gnsr +an)gy gl — 2 Z 1972
Gnt122 An4+1>2

[t remains to deal with the case a,1; = 1, which implies that g,+1/¢, is bounded by 2.
Hence the series

oo o) —s)/2
108(Gn1/0n) Z e
_— and

Zn_o In — g2

an+1:1 + =1
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are convergent because the sequence (g, ),>0 grows at least geometrically. This implies that

m—1 m—1
3 2(¢n11/qn) S 8(¢n11/qn)
n=0 qn n=0 qn
An+1>2
d
an m—1 q(l 1s)/2 m—1 q(l 1s)/2
n—+ n-+
Z (14s)/2 = = fs Z (14s)/2°?
n=0 Q4n n=0 dn
an+122

for some constants f; that depend on s and . This completes the proof of (1.4) and (1.5).
(73) This was proved in [11] as a consequence of the right inequalities in (1.4) and (1.5).

(iv) By the definition of m(«), for any p > m(«a), we have

1 1
~<la— Pn <
qn dn Gndn+1
for n > n,. Hence g, < q,‘fl and
" g
k+1
2, S > - R
k=n, k=ny, 4y

If p < 222 then 1 — (u—1)(1 — s) > 0 and the series
> s
1—(u—1)(1—s
— (p=1)(1=s)
is convergent. Hence by the right inequality in (1.4), the series ¥¢(a) is convergent for any
irrational number o such that m(a) < 2=5.

On the other hand, if m(a) > p for some 4, then we must have gz, > ¢/~ for infinitely
many k (denoted by (k,), below), otherwise we would have m(«a) < p because of the
inequalities

Dn 1 1
e
G| " @@+ )~ @

for all n > 1. Therefore,

m—1 (1-s)/2 (1—8)(u=—1)—(1+s)

D41 ke
sy Z x ’ : (3.2)

(
k 0<kn<m—1

)

k=0

If > 2, we have (1 —s)(u — 1) — (1 +s) > 0 and the series on the right hand side
of (3.2) diverges. Then, by the left inequality in (1.4), the series W4(«) is divergent.

If s =1 and m(a) < 400, then from g,,; < ¢*~* for some pu > m(a), we deduce that

i log ( max(qr+1/qk qr)) < i log(gx) _ .

qk qk

k=0 k=0



10

which proves the first claim by the right inequality in (1.5).
The left inequality in (1.5) shows that

log(qr/qe—1)

S \I/L(Ik (a)
k-1

for any . We consider now any number ¢ such that gx—; = o(log(gx)) as k — +oo (which
implies that ¢ is a Liouville number), so that log(g)'=°® < W, (€) and thus for any
e >0,
lim sup M
N—+o0 log(N)l_E
Since we can assume that the condition g1 = 0( log(qk)) holds for k large enough, we can

construct a dense set of Liouville numbers with the claimed property by chosing freely the
first partial quotients of &.

= +o00.

(v) The proof of item (i) above works for s < 0 and shows that W,(«) diverges for any
rational number o« when s < 0. Let us now consider the case where « is irrational. For
any € > 0, there exist infinitely many n such that

e == )=,

where L(«) is the Lagrange constant of « (defined as liminf, M). It is well-known that

for any irrational number a, we have L(a) > /5 (see [2]). Therefore, for ¢ small enough,
we have |¢2a — q,pn| < % for infinitely many n. It follows that, for infinitely many n,

llgnall = gulgne — pol = gullgnal]
or, written differently,
l2all
anl|gne]]

[[n%a|

Hence, the series W, () cannot converge when s < 0. Finally, since 0 < e

have 0 < W () < ((s) < +00 when s > 1.
This conclude the proof of the theorem.

< n, we

4. DISCONTINUITY OF U,
We now deduce from Theorem 1 a result concerning the analytic behavior of U,. We set
Dy ={a € R: Uy (a) is convergent }.

We know that 2, = () for s < 0, & C 9, for any s € (0,1] and Z, = R for s > 1. In
particular, &, has full measure when s > 0.

Theorem 2. For any s € (0,1] and any u,v € R, the function U, has no upper bound in
[u,v] N . In particular, the function V4 restricted to P is nowhere continuous.
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Proof. An interval [u,v] determines the first m + 1 partial quotients (a,)o<n<m of any of
its elements, where m depends on u and v. The partial quotients (a, ).~ can be chosen
freely, in particular a,,.1. When s € (0,1), the left inequality of (1.4) shows that, for any
a € [u,v),

q
Wy () > ¢, Mt

Since ¢mi1 = @mt1¢m + ¢m—1, We can choose a1 large enough so that ¥, , = (o) > A
for any given A > 0. The other partial quotients (a,),>m+1 can then be chosen such that
a € o, If s =1, the left inequality of (1.5) shows that

10g(qm11/qm)
Q—
m
and we conclude similarly. U

\IjlaCI'm-{—l (Oé) Z

5. COMPUTATION OF W,

We present in this section (cf Proposition 1 below) bounds that ensure that we obtain
an approximation of Wy(a) to a prescribed accuracy by computing U y(«) for N large
enough or even ¥, n(p/q) where p/q is a good rational approximation of a. We need two
lemmas.

Lemma 2. For any o, € R and any integer n > 1, we have
|Dn(a) - Dn(ﬁ)’ < 4712‘04 - ﬁl
Proof. There are five cases to consider.

1) Assume that a, 8 € [2,72] with 0 < j < 251 and also in [§ — 1,1 — L] if n is
even. Then

A(a,8) = Dafa) = D) = " - ML (5 ) = La ).

If j =0, then A(a, B) = 0.
If j > 1, we have a3 > (j/n)?, so that
2

|Amﬁns%ww+ﬂs#m—ﬁy

2) Assume that «, 3 € [j+i/2, ) with 0 < j < 252, and also in [3 — 25, 3] if n is odd.
Then
j+l—na j+1-—n8 j+1
A — — = — .
(@.8) = 154 e (0
It follows that
4+ 1
Al B) € LAl — 5] < 4nla - .

(4 +1/2)?
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3) Assume that o, 3 € [, ”71/2] with 2 < j <n—1, and also in [3, 3 + 5] if n is odd.
Then

noe—j3 nf—j j—n
B T T A (T K

Since (1 —a)(1—8) > ((n—j —1/2)/n)?, we get again that
n*(n — j)
(n—j—1/2)

|Ale, B)] < slo =B < 4n’la — 4.

4) Assume that «, 3 € [jJri/z, i) with 21 < j < n — 1, and also in [% + %, % +
is even. Then

Ala, B) =

Ll if n

n

Jtl—-na j+1-ng  j+1-n
l-a  1-8  (1-o)(1-05

If j =n—1, then A(a, 5) = 0.
If ) <n—1, then

2
n
Ala, B)] € ———=|a = | < n’la— 3]
|A(e, B)] (n—]—1)| | | |
5) So far, we have proved that for any a,ﬁe[% JT] for some j € {0,...,n — 1}, we

have |A(a, 8)] < 4n?|a — 3.
In the general case where a < 3 are anywhere in [0, 1], we consider the sequence xy =

a<x1—%<x2:j%2<...<xk:j%k<xk+1zﬁ,wherea€[%,j%1]and
B € [Lh L Then
k k k
|Ala, B)| = ’ > A(wgwen)| <Y 1A wea)| < 40> |wp — x| = 4n®la — 5.
This concludes the proof of the lemma. O

The following lemma was proved in [11]. Here, p(a) and c(«) are any positive real
numbers satisfying (1.1).

Lemma 3 ([11], Proposition 1). Let us fix an integer m > 6. (i) For any o € s (for
some s € (0,1)) and with p(a) < 3=, we have
—_lIn%a]] 2(1+¢(s+1)) ( .
Z < 3(1+ c(a) %) log(gm)
s+1
2 el S (12 gl @0

c(a)t=s

+ — —s
| _ Jar@-na

)71) =: Ry .
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(i1) For any a € @ with m(«) < +00, we have

i [[n*a]
n?|[nall

n:CIm+1

log(gm ) +5(p(a) — 1)%) =: Ry .

< 2(1+¢(2))(3(1 + log e(a)) p
We can now state a result that enables us to compute approximations of Wy(a).

Proposition 1. In the conditions of Lemma 3, for any s € (0,1], any real number 5 and
any integer N > q,,, we have

|Us(a) = Uy N (B)| € R + 442 ° | — 3. (5.1)
Proof. For N > q,,, we have

[ Ws(a) = s (B)] < [Tul@r) = T, (B)]
< W) = Uy ()| + [Wa g (@) — Ty (B)].

The term |¥,(a) — U, (a)| is bounded by R, by Lemma 3. Moreover, using Lemma 2
with na instead of a and nf instead of 3, we get

dm
L |[ln*af]  [In*B]]
Voan(@) = Voan D) < X ooz gl ~ vl
n=1
dm n3
n=1
<dg)la— 0],
The proposition follows. U

In order to use Proposition 1 for a given «, we have to choose a suitable # and to find
upper bounds for pu(«) and c(a).

Concerning the former task, simple choices are 3 = « or, if one preferes to compute with
rational numbers, 5 = pr/qr where py/qi is another convergent to «. In this case, we get

3—s
g5 o — 2| < Om
qk Qk+1

and one must take g1 large enough.

Concerning the problem of finding p(a) and c¢(«), there is unfortunately no general
recipe: see the examples of e, 7, 72 and real algebraic numbers in [11, Proposition 4]. In
particular, one form of the well-known Liouville’s inequality reads as follows: for any real
algebraic irrational number of degree d, with minimal polynomial Z?:o $; X7 € Z[X], we

can take pu(a) = d and c(a) = (Ja| +1)%7! Z?:1j|sj|.
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FIGURE 5. Graphs of U,y 50 and the constant \111/2750(\/5 —2)in [0, 1]

The only numbers which really interest us here are /5 + k, with k& € Z. They all have
m(v/5+k) = 2 and the constant ¢(v/5+k) = (4+2|k|)(1+|v5+k|) is minimal for & = —2.
The 19th convergent of V5 — 2 s

p1is 31622993
qis  133957148°

In the table below, we show approximations of lIfS(\/g —2) for various values of s, computed
using GP-Pari. We use Proposition 1 with a = 3 = V5 — 2 and N = ¢,, = 133957148.
The digits between parenthesis are not certified to be correct with that value of g,,.

5 172 2/3 3/4 /5 1
U,(v/5 — 2) | 3.6(04342) | 2.500(415) | 2.189(498) | 2.0451(34) | 1.6580(68)

6. EVIDENCES FOR CONJECTURES 1 AND 2

In this section, we arrive to what seems to be the most surprising property of ¥ («),
which was explicited as Conjecture 1. We present in this section various graphs which give
evidences that, for any s € (0, 1], ¥, is minimal at the points of V5 +Z and -5+ 7Z
(where it takes the same value): see Figures 5-6 in the case s = 1/2 and Figures 7-8 in
the case s = 1/5. In the case s = 1, we present four graphs (Figure 9 to 12) in support

of Conjecture 2(i). They are zooms centered at uj; = 22510 = 1870 of the graph of U, fr,.

FZ, 892

A similar verification was done for wus,...,us; in particular it seems that W g is not
differentiable at wuy.

We now make a few remarks about Conjecture 2(ii). Using the classical expression of

Fibonacci numbers Fj, = \%(gpk — (1= ¢)*), where ¢ := (v/5 +1)/2, one easily finds that

}uk — @’3| < ¢ 2% Note that p=3 = /5 — 2. Unfortunately, the convergence is not fast
enough to imply Conjecture 2(ii) by means of Lemma 2, like in the proof of Proposition 1.
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FIGURE 6. Graphs of W, /530 and the constant \111/2’300(\/5 —2)in [v5 —
2—-1073,v/5 -2+ 1079
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FIGURE 7. Graphs of U, 550 and the constant \111/5,50(\/5 —2)in [0,1]

However, it seems that the value of the derivative of E,,(a) := |‘||’i;|||l at a = /5 — 2 is very

often of the order of n? and not just bounded by 4n® (by Lemma 2). If it were possible to
quantify precisely this fact, then (i) might follow. Note that one cannot expect to replace
n3 by n? for all n because it seems that, for any k,

max_ |E} (V5 - 2)| = |[E}, (V5 - 2)| > F}.
k

n=1,...,

More generally, we tried to find the minima of the partial sum ¥,y for N = 1 to
145: the data are summarized in the table below where ay € [0,1/2] is such that
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X

FIGURE 8. Graphs of W53 and the constant \111/5’300(\/5 —2)in [v5 —
2—-1073,v/5 -2+ 1077
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FIGURE 9. Graphs of ¥, , and the constant Uy g, 1(u1) in [0, 1]

U, y(ay) is apparently minimal. These conjectural values have been obtained by zoom-
ing on the part of the graphs where the minimum seemed to be attained. (*) Except for
N = 15,17,46,50,64,65,67,73, ¥; y does not seem to be differentiable at ay. At these
eight exceptional values, ¥, y seems to have a vanishing derivative at ay; we are able to
get only numerical approximations for these a that we don’t mention (they are getting
closer and closer to v/5 — 2 as expected). It is also interesting to see that, when we are
able to identify it, oy is a rational number whose denominator is a square.

3The most difficult part is to guess the exact value of ap by successive zooms on the graph. Once it is
guessed, one can center the subsequent zooms at that point to check if it is a good choice.
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FIGURE 10. Graphs of ¥y s, and the constant Wy g, (u11) in [ug; — 0.1, uq; + 0.1]
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FIGURE 11. Graphs of ¥y r, and the constant Wy g, (u11) in [u; — 1072, ugg + 1072
N 2 3 4 5 6 7 8 9 10 11 12 13 14 15
avl 21226 |66 ||| |wL|w 0],

N | 92 | 3 | 3 | 52 | 5 | 5 | &g | 92 | § 8 9 132 | 132
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 26 27 | 28 29 | 30
a0 |, |6t | e | e |104| 104 | 101 | 104 | 10 | 53 | 1o | 104 | 53 | 53
132 162 | 162 | 162 | 212 | 212 | 212 | 212 | 212 | 152 | 212 | 212 | 152 | 152
31 | 32 (33|34 | 35 |36 37 |38 |39 | 40 | 41 | 42 | 43 | 44 | 45
53 | 53 | 53 | 273 | 273 | 273 | 273 | 341 | 341 | 341 | 341 | 341 | 341 | 341 | 341
152 | 752 | 752 | 342 | 342 | 342 | 342 | 3% | 382 | 3%% | 382 | 382 | 3% | 38% | 382
46 | 47 | 48 | 49 | 50 | 51 | 52 | B3 | b4 | 55 | 56 | BT | B8 | 59 | 60
o |2m3 213 |23 | L |san| 34l | 31| 341 | 7w | TW4 | TW | TW4 | TU4 | 714
342 | 342 | 342 382 | 387 | 382 | 38 | 552 | 552 | 552 | 552 | 552 | &52
61 | 62 |63 |64 | 65 |66 | 67 | 68 |69 | 70 | 71 | 72|73 | 74| 75
14 |74 | 74| o, | o, | T4 | o, |7 | 7w | o7ia |uso | 32 | | 323 | 613
552 | 552 | Bm2 552 552 | 552 | BAZ | 712 | 372 372 | 512
76 | 77T |78 |79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | ---

613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 613 | 1058 | 1663 | 1058 | 1663 | 1870

512 | 512 | 512 | 512 | 512 | ;12 | 512 | 512 | 512 | 672 | 42 | 672 | m4Z | Ro?
109 | 110 | --- [113 | 114 |--- | 123 | 124|125 | 126 | 127 | --- | 143 | 144 | 145
1870 | 967 967 | 1870 1870 | 967 | 967 | 967 | 3808 3808 | 4895 | 4895
80 | 642 642 | R9? 80 | 642 | 622 | 642 | 1272 1272 | 1442 | 1442

17



18

0.2352 0.2356 0.2360.2362 0.2366 0.237

x

FIGURE 12. Graphs of ¥y i, and the constant Wy g, (u11) in [u; — 1072, ugg + 1073

The dots indicate that, for example, from 89 to 109, the minimum seemingly occurs at
the same point %. In that table, is easy to recognize that when N = Fj, then F? is a
denominator of ap, = ug. To get an expression of the numerator, we simply plugged the
sequence of numerators of u into the On-line Encyclopedia of Integer Sequences [10] to

see that it matches the sequence A001654 defined by Fj_1F}_5. This led to Conjecture 2.

We also computed approximations to 6 digits of some values of Uy g, (uy) for k =
4,5,...26. They tend to confirm Conjecture 2(i7), even though the convergence is slow.

k 4 ) 6 7 8
Uy g (ug) | 1.0625 | 1.334325 | 1.414417 | 1.459825 | 1.545960
9 10 11 12 13 14
1.580966 | 1.599159 | 1.623628 | 1.634958 | 1.641142 | 1.647968
15 16 17 18 19 20
1.651493 | 1.653337 | 1.655235 | 1.656236 | 1.656780 | 1.657293
21 22 23 24 25 26
1.657570 | 1.657723 | 1.657860 | 1.657935 | 1.657977 | 1.658013

7. MINIMAL VALUES OF THE SERIES W,

In this section, we present a few results concerning the function

S &
(@) =2V
n=1

which is an alternating analogue of ¥;. There are a number of differences with the behavior
of ¥y. In particular, a straightforward modification of the proof of part (i) of Theorem 1

shows that \il(a) converges at any rational number o = a/b with b odd and (a, b) = 1, while
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it diverges when b is even and (a,b) = 1. Of course, \Tll(a) converges almost everywhere

because it converges for any irrational number o € 7. N
Like in the case of ¥y, we focused on the extremal properties of ¥; and were led to a
precise conjecture regarding the partial sums
N

& o]
Uy y(a) = (-1)"——r.
; n?|[nal|
Set Si the k-th denominator of the convergents to \/75; for k > 1, the sequence starts

with 1,3,7,17,41. Set T}, := 2R, + (—1)* where Ry, is defined by Ry = 0, R, = 1 and
Riy2 = 6Ryy1 — Ry

Conjecture 3. (i) For any k > 2, the sum Uy g, is minimal on [0,1] at the points

Ty
VU 1= 2—513 and 1 — vg.

(17) We have

kl—{r-i{loo CI}LSIC (Uk) - CI}l

V2
()

(1ii) On its set of convergence, the series \Tfl is minimal at the points of i%ﬁ + 7Z, where
it takes the same value.

It is easy to see that Ry ~ \/?5(1 +v/2)? and that Sy ~ (1 + v/2)¥. Hence

. V2
lim v, = —.
k—+o00 2

13 69 409 2377
The first few values of the sequence vy are 535, 575, 577z, 542+ Lhey were guessed by

successive zooms of the part of the graph of ¥; g, where the minimum seems to be attained.
Again, the numerators of the sequence vy were found by using the OEIS [10]: the sequence
Ty matches A105058 and the sequence Rj matches A001109 (which is directly linked to
A105058 in the OEIS). Of course, parts (i) and (ii) of Conjecture 3 implies part (iii).

8. A RELATED DIOPHANTINE FUNCTION

In this section, we define another “diophantine function”, namely the series

= 10 (gn11(0) /gn(e))'
Qst(ar) ==
t( ) 2 %L(Oé)s
for « € R and s,t > 0. The case s = 1 and t = 1 is motivated by the similarity of
both sides of the inequalities (1.5) in Theorem 1(i7). (*) The similary is also visible when

one compares Figure 4 and Figure 13: it would interesting to understand better the link
between Q;; and ®;.

4For s € (0,1), the left and right hand sides of the inequalities (1.4) are not very close. The extremality

t
properties of the series Y7 q;+(1,§()ls)

are not striking at first sight.
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It is easy to prove that Q;;(«) converges for almost all irrational numbers «, in particular
for all a such that m(a) is finite. The infinite series Q;(«) is not defined for rational
numbers « because the sequence (gq,), is then finite. But this can be solved as follows:
we assume that the sequence of partial quotients of o € Q is of the form (a,)n—o,. x With
ax > 2, so that we can can set (°)

Qi) = Z_ 10g (gn41(@)/gn(a))

Gn ()

n=0

for a € Q.

Conjecture 4. Fiz the real numbers s,t > 0. The series Q,; attains its minimum in R\ Q
at the points of @ + 7 and %g + Z.

The values at the minima are equal because Qg,(«) is l-periodic and Qs (1 — a) =
Qs +(a). In fact, it seems that a finite version of Conjecture 4 holds. Set

QN,s,t(Oé) = i log (anrl (a)/qn<a))t

Gn(r)*

n=0

for « € R\ Q and

min(N,K—1) o (a (a ‘
Onsila) = z% ! g(qn;n(m))éq (@)

for a € Q. Although this is not completely clear on the various graphs (which are mere
approximations of the reality), Quys; is essentially a piecewise constant function. It is
continuous at any irrational number, around which it is locally constant. It is also contin-
uous and locally constant around any rational number whose sequence of partial quotients
terminates at a position > N + 1. But it is discontinuous at any rational number whose
sequence of partial quotients terminates at position < N + 1.

Conjecture 5. Fix any integer N > 0 and any real numbers s > 0, t > 0. We consider
On st as being defined on R\ Q.

(i) The series Qs+ is constant and minimal on the interval consisting of irrational

numbers whose partial quotients satisfy ag =0, a1 =as =--- =ays1 = 1.
(i1) The second minimal value of Qn s is attained on the interval consisting of irrational
numbers whose partial quotients satisfy ag = 0, ay = 2,a9 = --- = ayy1 = 1. It is also

constant there.

If the irrational number « is in (1/2,1) then ¢,(1 — @) = gn41() for all n > 1 (with
@(l —a) = q(a) = 1), so that Ons¢(1 — @) = Qni1s:(a): hence part (ii) of the
conjecture follows from (). It is also clear that Conjecture 5(i) together with the identity
Q.+(1 —a) = Qg (cr) imply Conjecture 4 when s > 0. The first part can be reformulated

5The alternative definition “(an)n=0,... k+1 With a,, = a,, for n < K and ax = ar, — 1 and ag41 =17
changes only marginally the discussion following Conjecture 4 for rational numbers and does not affect
both conjectures which concern only irrational numbers.
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FIGURE 13. Graphs of Q5 and the constant Q5,171(*/32_1) on [0, 1]

Fopio Fopqq
Fopy3? Fopyo
Fopyo Fopys
Fopy3? Fopyg

as follows: if N = 2k, then Qy () is constant on the interval ( ), where it is

minimal. If N = 2k + 1, then Quy () is constant on the interval ( ), where it

is minimal.

The conjecture is trivially true in the case s = 0 and ¢ = 1 because then Oy ¢(a) =
log(gny1()): that quantity is minimal if and only if g = 1, ¢; = 1 and ¢ne1 = ¢n + Gn_1
for any n such that 1 <n < N.

A careful analysis of many graphs similar to those presented in Figures 13 to 17 led
to Conjecture 5. The latter is easily proved for N = 0,1,2 and s =t = 1 by a direct
computation (which could probably be extended to further values of N, s and t).

e N = 0: we have to show that qio log(q1/q0) = log(g1) is minimal for ¢; = 1, which is
obviously true.

e N = 1: we have to show that

log(q1/q0) = log(q2/qn)
o + " = log(q1) <1

is minimal for ¢; = 1 and ¢ = 2. Clearly, we must choose ¢, minimal, i.e, ¢ = q1 + qo =
q1 + 1. To conclude, it remains to see that when ¢; > 1, the function of the integer ¢,

3 1) ;. log(a2)
a1 q1

! ) L loslan 1) (8.1)

lo <1 - —
g(m) q1 q1

is minimal for ¢; = 1.
e N = 2: we have to show that

log(g1/q0) N log(g2/q1) N log(qs/q2)
do q1 q2
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FIGURE 14. Graphs of Qs and the constant Q271,1(‘/52_1) on [0, 1]

is minimal for ¢; = 1, ¢o = 2 and ¢3 = 3. Again, we must choose g3 minimal, i.e, g3 = ¢2+¢;.
When ¢; > ¢; + 1, the function of the integer go
log(qa/q1) " log((q2 + q1)/q2)
Uil a2
is minimal for ¢, = ¢; + 1. It remains therefore to find the minimum of the function

log(%H)  log(35)
log(q1) + n Lo atl 8.2
g(q) 0 P (8.2)
as a function of the integer ¢; > 1 and again it is attained at ¢, = 1. (°) This proves this
case t0o0.
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