
EXTREMALITY PROPERTIES OF SOME DIOPHANTINE SERIES

T. RIVOAL

Abstract. We study the convergence properties of the series Ψs(α) :=
∑

n≥1
||n2α||

ns+1||nα||
with respect to the values of the real numbers α and s, where ||x|| is the distance of x
to Z. For example when s ∈ (0, 1], the convergence of Ψs(α) strongly depends on the
diophantine nature of α, mainly its irrationality exponent. We also conjecture that Ψs(α)
is minimal at

√
5 for s ∈ (0, 1] and we present evidences in favor of that conjecture. For

s = 1, we formulate a more precise conjecture about the value of the abscissa uk where the
Fk-partial sum of Ψ1(α) is minimal, Fk being the k-th Fibonacci number. A similar study
it made for the partial sums of the series Ψ̃1(α) :=

∑
n≥1(−1)n ||n2α||

n2||nα|| that we conjecture

to be minimal at
√

2/2.

1. Introduction

The main goal of this paper is to study the following Dirichlet series, which is one of the
“diophantine series” mentioned in the title (others appear in Sections 3, 7 and 8):

Ψs(α) :=
∞∑

n=1

||n2α||
ns+1||nα||

for α, s ∈ R. Here, ||x|| stands for the distance of x to Z, i.e., ||x|| := |x−bxe| with bxe the
nearest integer to x (with b1/2e = 0 say, even though this arbitrary choice has no influence
on the value ||1/2||). For future use, {x} denotes the fractional part of x. For any integer

n ≥ 1, the function Dn(α) := ||nα||
||α|| is non-negative and continuous on (0, 1) with right limit

at α = 0 and left limit at α = 1 both equal to n; it is also clearly 1-periodic on R \ Z.
Furthermore, in [11, Lemma 2], it is shown that

Dn(α) ≤ n

1 + 2bn||α||c ≤ n

for any α ∈ R. Therefore, for any integer n ≥ 1, the function Dn(nα) = ||n2α||
||nα|| is non-

negative and continuous on R, bounded by n, with the value n at rational numbers of the
form j/n, j ∈ Z. It follows that the partial sum

Ψs,N(α) :=
N∑

n=1

Dn(nα)

ns+1
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Figure 1. D15 and its upper bound

of Ψs(α) is a continuous function of α on R. If α = a/b with (a, b) = 1, then the value of
the summand is 1/ns when n is divisible by b. Moreover, for any α ∈ R,

0 ≤ Ψs,N(α) ≤
N∑

n=1

1

ns
=: HN(s).

The convergence/divergence of Ψs(α) strongly depends on the diophantine properties of
α and before stating our results and conjectures, we recall some standard notation. For
any irrational number α, let (pn/qn)n≥0 denote the sequence of the convergents to α and
let (an)n≥0 denote the sequence of partial quotients, defined by qn+1 = an+1qn + qn−1. An
irrational number α is said to have a finite irrationality exponent µ(α) ≥ 2 if there exists
a constant c(α) > 0 such that ∣∣∣α− p

q

∣∣∣ ≥ 1

c(α)qµ(α)
(1.1)

for all integers p, q with q ≥ 1. We denote by m(α) the irrationality exponent of α, defined
as the infinimum of all possible µ(α), regardless of the value of c(α). By definition, Liouville
numbers are precisely those real numbers which don’t have a finite irrationality exponent;
they are not only irrational but also transcendental.

When s ∈ (0, 1), let us consider the sets As of irrational numbers α such that
∞∑

n=1

q1−s
n+1

qn

< ∞ (1.2)

and, when s = 1, let us define As as the set of irrational numbers α such that
∞∑

n=1

log
(
max(qn+1/qn, qn)

)

qn

< ∞. (1.3)

The following lemma was proved in [11]. We recall it for completeness.

Lemma 1 ([11], Lemma 1). (i) The set A1 contains all irrational numbers with a finite
irrationality exponent. Some Liouville numbers belong to A1, some do not.
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(ii) For any s ∈ (0, 1), the set As contains all irrational numbers with m(α) < 2−s
1−s

but

none whose irrationality exponent m(α) is > 2−s
1−s

. Some irrational numbers with m(α) =
2−s
1−s

belong to As, some do not.
(iii) For any s ∈ (0, 1], the set As has full measure.

We can now state our result concerning the convergence/divergence of Ψs(α).

Theorem 1. (i) For any s ∈ (0, 1] and any rational number a/b with (a, b) = 1, we have

lim
N→+∞

1

HN(s)
Ψs,N

(a

b

)
=

1

b
.

Thus Ψs(
a
b
) = +∞.

(ii) For any s ∈ (0, 1) and any irrational number α, there exist two constants cs, ds > 0
(that also depend on α) such that

cs

m−1∑

k=1

q
(1−s)/2
k+1

q
(1+s)/2
k

≤ Ψs,N(α) ≤ ds

m∑

k=1

q1−s
k+1

qk

(1.4)

for any N such that qm ≤ N < qm+1.
For s = 1, there exist two constants c1, d1 > 0 (that depend on α) such that

c1

m−1∑

k=1

log(qk+1/qk)

qk

≤ Ψ1,N(α) ≤ d1

m∑

k=1

log
(
max(qk+1/qk, qk)

)

qk

(1.5)

for any N such that qm ≤ N < qm+1.
(iii) For any s ∈ (0, 1] and any α ∈ As, the series Ψs(α) is convergent.
(iv) For any s ∈ (0, 1), the series Ψs(α) converges, respectively diverges, for any irra-

tional number α such that m(α) < 2−s
1−s

, respectively m(α) > 2
1−s

.
For s = 1, the series Ψ1(α) converges for any irrational number α such that m(α) is

finite. On the other hand, there exists a dense set of Liouville numbers ξ such that for any
ε > 0,

lim sup
N→+∞

Ψ1,N(ξ)

log(N)1−ε
= +∞. (1.6)

(v) When s ≤ 0, the series Ψs(α) diverges for all α ∈ R while if s ≥ 1, it converges for
all α ∈ R.

Remark. Diophantine series similar to those in (1.5) appear in [8, 12] in related contexts.
The first part of item (iv) is just a consequence of (1.4). We formulate it because it

shows the link between convergence/divergence of Ψs(α) and the irrationality exponent
m(α). It would be very interesting to obtain the exact threshold.

Moreover, (1.6) is essentially optimal because |Ψ1,N(α)| ¿ log(N) for any α. In fact, the
proof yields more: for any function εN = o(1), we can find a dense set of Liouville numbers
ξ such that (1.6) holds with εN instead of ε.
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Theorem 1 is proved in Section 3. We also show the highly discontinuous behavior of Ψs

in Section 4. In Section 5, we obtain an upper bound for the speed of convergence of the
partial sums of Ψs(α): without surprise, this bound is not uniform and strongly depends
on the diophantine properties of α.

A real surprise comes from the following conjecture, which we motivate in Section 6.

Conjecture 1. For any s ∈ (0, 1], the function Ψs is minimal at the points of
√

5+Z and
−√5 + Z, where it takes the same value.

We remark that m(±√5 + k) = 2 for any k ∈ Z, hence that Ψs(±
√

5 + k) is convergent
for any s > 0. In Section 6, we will also present evidences (1) for the following “finite
version” of Conjecture 1 in the case s = 1.

Conjecture 2. (i) For any integer k ≥ 4, the partial sum Ψ1,Fk
is minimal on [0, 1] at the

points

uk :=
Fk−1Fk−2

F 2
k

and 1− uk.

Here, (Fk)k≥0 is the Fibonacci sequence defined by F0 = 0, F1 = 1 and Fk+2 = Fk+1 + Fk.
(ii) We have

lim
k→+∞

Ψ1,Fk
(uk) = Ψ1(

√
5− 2).

For s ∈ (0, 1), Conjecture 2 seems to hold sometimes, but it also fails sometimes. Note
that uk →

√
5 − 2 at geometric rate, but we don’t see how to deduce (ii) from this fact.

The expression “finite version” is justified by the fact that Conjecture 2 implies the case
s = 1 of Conjecture 1. Indeed, by 1-periodicity and symmetry of Ψ1 with respect to the
vertical axis α = 1/2, it is enough to prove minimality at

√
5− 2. (i) implies that, for any

α ∈ [0, 1], Ψ1,Fk
(α) ≥ Ψ1,Fk

(uk). Hence, by (ii),

lim
k→+∞

Ψ1,Fk
(α) ≥ Ψ1(

√
5− 2). (1.7)

If α belongs to the domain of convergence of Ψ1, (1.7) implies that Ψ1(α) ≥ Ψ1(
√

5 − 2)
whereas if α belongs to the domain of divergence of Ψ1, the value of Ψ1(α) is +∞ and we
still have Ψ1(α) ≥ Ψ1(

√
5− 2).

In Section 7, we will shortly consider the case of the series

Ψ̃1(α) :=
∞∑

n=1

(−1)n ||n2α||
n2||nα||

which seems to present a minimum at any point of ±
√

2
2

+ Z; see Conjecture 3 for a more
precise statement in the spirit of Conjecture 2. It is often the case that quadratic numbers
are extremal for various diophantine statistics:

√
2 is minimal for the star discrepancy

1These are numerical datas/graphs computed/ploted with Maple, XCAS and GP-PARI. For a same
graph ploted with the three programs, zooms on interesting parts all revealed the pattern shown in Con-
jecture 2.
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Figure 2. Graphs of Ψ1,200 and the constant Ψ1,200(
√

5− 2) on [0, 1]

of {nα}-sequences (Dupain-Sós [4]),
√

5−1
2

is conjecturally minimal for the discrepancy of

{nα}-sequences (see [1]),
√

5−1
2

is minimal for the circular dispersion of Niederreiter [9] and
its variation of Jager-de Jong [5].

2. Motivations behind Ψs

Even though the series Ψs is an interesting object in itself, it does not come from nowhere.
Indeed, in order to study how far the finite sequence ({kα})1≤k≤n is from a subset of
{ 0

n
, 1

n
, . . . , n−1

n
}, the author introduced in [11] the function

Fn(α) :=
n∑

k=1

∣∣∣∣kα− bknαe
n

∣∣∣∣ =
1

n

n∑

k=1

||knα||.

The function Fn is 1-periodic and symmetric with respect to the vertical axis α = 1
2
. The

study of the fluctuations of Fn(α) around 1/4 led in particular to consider the Dirichlet
series

Gs(α) :=
∞∑

n=1

Fn(α)− 1/4

ns

for s ∈ R and to determine for which α and s the equality (2)

Gs(α) = − 2

π2

∞∑

k=0

Φs

(
(2k + 1)α

)

(2k + 1)2
(2.1)

holds, where

Φs(α) :=
∞∑

n=1

1

n1+s

n∑

k=1

cos(2πknα). (2.2)

2This is formally obtained by means of the Fourier expansion ||α|| = 1
4− 2

π2

∑∞
k=0

cos(2(2k+1)πα)
(2k+1)2 . Finding

when (2.1) holds is a problem similar to finding when Davenport’s identities hold (see [3, 8] for some
examples).
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For s > 1, both Gs(α) and Φs(α) clearly converge absolutely for any α ∈ R, and (2.1)
holds. It is a little less easy to prove that both diverge for any α ∈ R when s ≤ 0. Again,
the situation is much more interesting when s ∈ (0, 1]. The following theorem is a survey
of some of the results proved in [11].

Theorem ([11], Theorems 1 and 2). (i) For any rational number α and any s ∈ (0, 1],
the series Gs(α) and Φs(α) diverge to −∞ and +∞ respectively.

(ii) For any s ∈ (0, 1] and any α ∈ As, the series Φs(α) converges to a finite limit.
(iii) For any s ∈ (0, 1) and any α ∈ As, the series Gs(α) converges and identity (2.1)

holds. This is also the case when s = 1 and m(α) is finite.
(iv) For any s ∈ (0, 1) and any irrational number α such that m(α) > 6−4s

1−s
, the series

Gs(α) and Φs(α) both diverge, to −∞ and +∞ respectively. When s = 1, there exists a
dense set of Liouville numbers α such that the same conclusion holds.

(v) When s > 1, Gs(α) and Φs(α) converge for all α. When s ≤ 0, both diverge for all α.

The series Ψs(α) appears as follows. We have

Φs(α) =
∞∑

n=1

cos(πn(n + 1)α) sin(πn2α)

ns+1 sin(πnα)

and ∣∣∣∣
cos(πn(n + 1)α) sin(πn2α)

sin(πnα)

∣∣∣∣ ≤
sin(π||n2α||)
sin(π||nα||) ≤

π

2

||n2α||
||nα||

because 2x ≤ sin(πx) ≤ πx for x ∈ [0, π/2]. Hence,

|Φs(α)| ≤
∞∑

n=1

∣∣∣∣
cos(πn(n + 1)α) sin(πn2α)

ns+1 sin(πnα)

∣∣∣∣ ≤
π

2
Ψs(α). (2.3)

As we have seen earlier, Ψs(α) converges at least for any α ∈ As, which explains part of
the above theorem.

Like Ψs, the functions Gs and −Φs also have surprising extremal properties, namely for

any fixed s ∈ (0, 1], they seem to attain their respective maxima over [0, 1] at
√

5−1
2

and

1 −
√

5−1
2

. See Figures 3 and 4 in the case s = 1. The shift in the apparent position of

extremal values (
√

5−1
2

→ √
5) in (2.3) is curious.

3. Proof of Theorem 1

(i) We write n = kb + r with k ≥ 0 and 1 ≤ r ≤ b, so that

Ψs,N(a/b) =
b−1∑
r=1

||r2a/b||
||ra/b||

b(N−r)/bc∑

k=0

1

(kb + r)s+1
+

1

bs

bN/bc∑

k=1

1

ks
.

(Since (a, b) = 1, ra/b is an integer if and only if r = b.)
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Since s > 0, the term
b−1∑
r=1

||r2a/b||
||ra/b||

b(N−r)/bc∑

k=0

1

(kb + r)s+1

converges to a finite limit when N → +∞. On the other hand,

1

bs

bN/bc∑

k=1

1

ks
∼ 1

b
HN(s)

when N → +∞, which proves the result.

(ii) We don’t repeat the proof of the right inequalities in (1.4) and (1.5), which have
been proved in [11]. Let us prove the left inequalities. Obviously, we have

Ψs,N(α) ≥
m−1∑
n=0

qn+1−1∑
k=qn
qn|k

||k2α||
ks+1||kα|| =

m−1∑
n=0

1

qs+1
n

b(qn+1−1)/qnc∑

`=1

||`2q2
nα||

`s+1||`qnα||
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where m is such that qm ≤ N < qm+1. We recall that

1

qn + qn+1

≤ |qnα− pn| ≤ 1

qn+1

.

Hence

||`qnα|| ≤ |`qnα− `pn| ≤ `

qn+1

.

We also have
`2qn

qn + qn+1

≤ |(`qn)2α− `2qnpn| ≤ `2qn

qn+1

. (3.1)

Provided that ` ≤ Q :=
√

qn+1

2qn
, we deduce from (3.1) that |(`qn)2α − `2qnpn| = ||`2q2

nα||
and that

||`2q2
nα|| ≥

`2qn

qn + qn+1

.

It follows from all this that

Ψs,N(α) ≥
m−1∑
n=0

1

qs+1
n

bQc∑

`=1

||`2q2
nα||

`s+1||`qnα|| ≥
m−1∑
n=0

qn+1

(qn+1 + qn)qs
n

bQc∑

`=1

1

`s
.

We remark now that bQc = 0 iff an+1 = 1, and then
∑bQc

`=1
1
`s = 0. Let us first discard this

case and consider only those n ≥ 0 such that an+1 ≥ 2. (Note that qn+1 = an+1qn + qn−1

implies that qn+1/(2qn) > 1.) Then

bQc∑

`=1

1

`s
≥

{
e1 log(qn+1/qn) > 0 if s = 1

es(qn+1/qn)(1−s)/2 if 0 < s < 1,

for some constants es > 0 that depend on s and α. Hence if s = 1,

Ψs,N(α) ≥ e1

m−1∑
n=0

an+1≥2

qn+1

(qn+1 + qn)qn

log(qn+1/qn) ≥ e1

2

m−1∑
n=0

an+1≥2

log(qn+1/qn)

qn

while if s ∈ (0, 1),

Ψs,N(α) ≥ es

m−1∑
n0

an+1≥2

qn+1

(qn+1 + qn)qs
n

· q
(1−s)/2
n+1

q
(1−s)/2
n

≥ es

2

m−1∑
n0

an+1≥2

q
(1−s)/2
n+1

q
(1−s)/2
n

.

It remains to deal with the case an+1 = 1, which implies that qn+1/qn is bounded by 2.
Hence the series

∞∑
n=0

an+1=1

log(qn+1/qn)

qn

and
∞∑

n=0
an+1=1

q
(1−s)/2
n+1

q
(1+s)/2
n
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are convergent because the sequence (qn)n≥0 grows at least geometrically. This implies that

m−1∑
n=0

an+1≥2

log(qn+1/qn)

qn

≥ f1

m−1∑
n=0

log(qn+1/qn)

qn

and
m−1∑
n=0

an+1≥2

q
(1−s)/2
n+1

q
(1+s)/2
n

≥ fs

m−1∑
n=0

q
(1−s)/2
n+1

q
(1+s)/2
n

,

for some constants fs that depend on s and α. This completes the proof of (1.4) and (1.5).

(iii) This was proved in [11] as a consequence of the right inequalities in (1.4) and (1.5).

(iv) By the definition of m(α), for any µ > m(α), we have

1

qµ
n
≤

∣∣∣∣α−
pn

qn

∣∣∣∣ ≤
1

qnqn+1

for n ≥ nµ. Hence qn+1 ≤ qµ−1
n and

m∑

k=nµ

q1−s
k+1

qk

≤
m∑

k=nµ

1

q
1−(µ−1)(1−s)
k

.

If µ < 2−s
1−s

, then 1− (µ− 1)(1− s) > 0 and the series

∞∑

k=0

1

q
1−(µ−1)(1−s)
k

is convergent. Hence by the right inequality in (1.4), the series Ψs(α) is convergent for any
irrational number α such that m(α) < 2−s

1−s
.

On the other hand, if m(α) > µ for some µ, then we must have qk+1 > qµ−1
k for infinitely

many k (denoted by (kn)n below), otherwise we would have m(α) ≤ µ because of the
inequalities ∣∣∣∣α−

pn

qn

∣∣∣∣ ≥
1

qn(qn+1 + qn)
À 1

qµ
n

for all n À 1. Therefore,

m−1∑

k=0

q
(1−s)/2
k+1

q
(1+s)/2
k

≥
∑

0≤kn≤m−1

q
(1−s)(µ−1)−(1+s)

2
k . (3.2)

If µ ≥ 2
1−s

, we have (1 − s)(µ − 1) − (1 + s) ≥ 0 and the series on the right hand side
of (3.2) diverges. Then, by the left inequality in (1.4), the series Ψs(α) is divergent.

If s = 1 and m(α) < +∞, then from qn+1 ≤ qµ−1
n for some µ > m(α), we deduce that

∞∑

k=0

log
(
max(qk+1/qk, qk)

)

qk

¿
∞∑

k=0

log(qk)

qk

< +∞,
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which proves the first claim by the right inequality in (1.5).
The left inequality in (1.5) shows that

log(qk/qk−1)

qk−1

≤ Ψ1,qk
(α)

for any α. We consider now any number ξ such that qk−1 = o
(
log(qk)

)
as k → +∞ (which

implies that ξ is a Liouville number), so that log(qk)
1−o(1) ≤ Ψ1,qk

(ξ) and thus for any
ε > 0,

lim sup
N→+∞

Ψ1,N(ξ)

log(N)1−ε
= +∞.

Since we can assume that the condition qk−1 = o
(
log(qk)

)
holds for k large enough, we can

construct a dense set of Liouville numbers with the claimed property by chosing freely the
first partial quotients of ξ.

(v) The proof of item (i) above works for s ≤ 0 and shows that Ψs(α) diverges for any
rational number α when s ≤ 0. Let us now consider the case where α is irrational. For
any ε > 0, there exist infinitely many n such that

|qnα− pn| ≤ 1

(L(α)− ε)qn

where L(α) is the Lagrange constant of α (defined as lim infq
1

q||qα||). It is well-known that

for any irrational number α, we have L(α) ≥ √
5 (see [2]). Therefore, for ε small enough,

we have |q2
nα− qnpn| < 1

2
for infinitely many n. It follows that, for infinitely many n,

||q2
nα|| = qn|qnα− pn| = qn||qnα||

or, written differently,

||q2
nα||

qn||qnα|| = 1.

Hence, the series Ψs(α) cannot converge when s ≤ 0. Finally, since 0 ≤ ||n2α||
||nα|| ≤ n, we

have 0 ≤ Ψs(α) ≤ ζ(s) < +∞ when s > 1.
This conclude the proof of the theorem.

4. Discontinuity of Ψs

We now deduce from Theorem 1 a result concerning the analytic behavior of Ψs. We set

Ds = {α ∈ R : Ψs(α) is convergent}.
We know that Ds = ∅ for s ≤ 0, As ⊂ Ds for any s ∈ (0, 1] and Ds = R for s > 1. In
particular, Ds has full measure when s > 0.

Theorem 2. For any s ∈ (0, 1] and any u, v ∈ R, the function Ψs has no upper bound in
[u, v] ∩As. In particular, the function Ψs restricted to Ds is nowhere continuous.
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Proof. An interval [u, v] determines the first m + 1 partial quotients (an)0≤n≤m of any of
its elements, where m depends on u and v. The partial quotients (an)n>m can be chosen
freely, in particular am+1. When s ∈ (0, 1), the left inequality of (1.4) shows that, for any
α ∈ [u, v],

Ψs,qm+1(α) ≥ cs

q
(1−s)/2
m+1

q
(1+s)/2
m

.

Since qm+1 = am+1qm + qm−1, we can choose am+1 large enough so that Ψs,qm+1(α) ≥ A
for any given A > 0. The other partial quotients (an)n>m+1 can then be chosen such that
α ∈ As. If s = 1, the left inequality of (1.5) shows that

Ψ1,qm+1(α) ≥ c1
log(qm+1/qm)

qm

.

and we conclude similarly. ¤

5. Computation of Ψs

We present in this section (cf Proposition 1 below) bounds that ensure that we obtain
an approximation of Ψs(α) to a prescribed accuracy by computing Ψs,N(α) for N large
enough or even Ψs,N(p/q) where p/q is a good rational approximation of α. We need two
lemmas.

Lemma 2. For any α, β ∈ R and any integer n ≥ 1, we have

|Dn(α)−Dn(β)| ≤ 4n2|α− β|.
Proof. There are five cases to consider.

1) Assume that α, β ∈ [ j
n
, j+1/2

n
] with 0 ≤ j ≤ n−1

2
, and also in [1

2
− 1

n
, 1

2
− 1

2n
] if n is

even. Then

∆(α, β) := Dn(α)−Dn(β) =
nα− j

α
− nβ − j

β
= j

( 1

β
− 1

α

)
=

j

αβ
(α− β).

If j = 0, then ∆(α, β) = 0.
If j ≥ 1, we have αβ ≥ (j/n)2, so that

|∆(α, β)| ≤ n2

j
|α− β| ≤ n2|α− β|.

2) Assume that α, β ∈ [ j+1/2
n

, j+1
n

] with 0 ≤ j ≤ n−2
2

, and also in [1
2
− 1

2n
, 1

2
] if n is odd.

Then

∆(α, β) =
j + 1− nα

α
− j + 1− nβ

β
=

j + 1

αβ
(β − α).

It follows that

|∆(α, β)| ≤ j + 1

(j + 1/2)2
n2|α− β| ≤ 4n2|α− β|.
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3) Assume that α, β ∈ [ j
n
, j+1/2

n
] with n

2
≤ j ≤ n− 1, and also in [1

2
, 1

2
+ 1

2n
] if n is odd.

Then

∆(α, β) =
nα− j

1− α
− nβ − j

1− β
=

j − n

(1− α)(1− β)
(β − α).

Since (1− α)(1− β) ≥ ((n− j − 1/2)/n)2, we get again that

|∆(α, β)| ≤ n2(n− j)

(n− j − 1/2)2
|α− β| ≤ 4n2|α− β|.

4) Assume that α, β ∈ [ j+1/2
n

, j+1
n

] with n−1
2
≤ j ≤ n− 1, and also in [1

2
+ 1

2n
, 1

2
+ 1

n
] if n

is even. Then

∆(α, β) =
j + 1− nα

1− α
− j + 1− nβ

1− β
=

j + 1− n

(1− α)(1− β)
(α− β).

If j = n− 1, then ∆(α, β) = 0.
If j < n− 1, then

|∆(α, β)| ≤ n2

(n− j − 1)
|α− β| ≤ n2|α− β|.

5) So far, we have proved that for any α, β ∈ [ j
n
, j+1

n
] for some j ∈ {0, . . . , n − 1}, we

have |∆(α, β)| ≤ 4n2|α− β|.
In the general case where α ≤ β are anywhere in [0, 1], we consider the sequence x0 =

α < x1 = j+1
n

< x2 = j+2
n

< . . . < xk = j+k
n

< xk+1 = β, where α ∈ [ j
n
, j+1

n
] and

β ∈ [ j+k
n

, j+k+1
n

]. Then

|∆(α, β)| =
∣∣∣

k∑

`=0

∆(x`, x`+1)
∣∣∣ ≤

k∑

`=0

|∆(x`, x`+1)| ≤ 4n2

k∑

`=0

|x` − x`+1| = 4n2|α− β|.

This concludes the proof of the lemma. ¤

The following lemma was proved in [11]. Here, µ(α) and c(α) are any positive real
numbers satisfying (1.1).

Lemma 3 ([11], Proposition 1). Let us fix an integer m ≥ 6. (i) For any α ∈ As (for
some s ∈ (0, 1)) and with µ(α) < 2−s

1−s
, we have

∞∑
n=qm+1

||n2α||
ns+1||nα|| ≤

2
(
1 + ζ(s + 1)

)

(1− s)q
1−(µ(α)−1)(1−s)
m

(
3(1 + c(α)1−s) log(qm)

+
c(α)1−s

1−√2
(µ(α)−1)(1−s)−1

)
=: Rs,m.
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(ii) For any α ∈ A1 with m(α) < +∞, we have

∞∑
n=qm+1

||n2α||
n2||nα||

≤ 2(1 + ζ(2))
(
3(1 + log c(α))

log(qm)

qm

+ 5(µ(α)− 1)
log(qm)2

qm

)
=: R1,m.

We can now state a result that enables us to compute approximations of Ψs(α).

Proposition 1. In the conditions of Lemma 3, for any s ∈ (0, 1], any real number β and
any integer N ≥ qm, we have

∣∣Ψs(α)−Ψs,N(β)
∣∣ ≤ Rs,m + 4q3−s

m

∣∣α− β
∣∣. (5.1)

Proof. For N ≥ qm, we have
∣∣Ψs(α)−Ψs,N(β)

∣∣ ≤
∣∣Ψs(α)−Ψs,qm(β)

∣∣
≤

∣∣Ψs(α)−Ψs,qm(α)
∣∣ +

∣∣Ψs,qm(α)−Ψs,qm(β)
∣∣.

The term
∣∣Ψs(α)−Ψs,qm(α)

∣∣ is bounded by Rs,m by Lemma 3. Moreover, using Lemma 2
with nα instead of α and nβ instead of β, we get

∣∣Ψs,qm(α)−Ψs,qm(β)
∣∣ ≤

qm∑
n=1

1

n1+s

∣∣∣∣
||n2α||
||nα|| −

||n2β||
||nβ||

∣∣∣∣

≤ 4
∣∣α− β

∣∣ ·
qm∑
n=1

n3

n1+s

≤ 4q3−s
m

∣∣α− β
∣∣.

The proposition follows. ¤

In order to use Proposition 1 for a given α, we have to choose a suitable β and to find
upper bounds for µ(α) and c(α).

Concerning the former task, simple choices are β = α or, if one preferes to compute with
rational numbers, β = pk/qk where pk/qk is another convergent to α. In this case, we get

q3−s
m

∣∣∣∣α−
pk

qk

∣∣∣∣ ≤
q3−s
m

qk+1

and one must take qk+1 large enough.
Concerning the problem of finding µ(α) and c(α), there is unfortunately no general

recipe: see the examples of e, π, π2 and real algebraic numbers in [11, Proposition 4]. In
particular, one form of the well-known Liouville’s inequality reads as follows: for any real
algebraic irrational number of degree d, with minimal polynomial

∑d
j=0 sjX

j ∈ Z[X], we

can take µ(α) = d and c(α) = (|α|+ 1)d−1
∑d

j=1 j|sj|.
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Figure 5. Graphs of Ψ1/2,50 and the constant Ψ1/2,50(
√

5− 2) in [0, 1]

The only numbers which really interest us here are
√

5 + k, with k ∈ Z. They all have
m(
√

5+k) = 2 and the constant c(
√

5+k) = (4+2|k|)(1+ |√5+k|) is minimal for k = −2.
The 19th convergent of

√
5− 2 is

p18

q18

=
31622993

133957148
.

In the table below, we show approximations of Ψs(
√

5−2) for various values of s, computed
using GP-Pari. We use Proposition 1 with α = β =

√
5 − 2 and N = qm = 133957148.

The digits between parenthesis are not certified to be correct with that value of qm.

s 1/2 2/3 3/4 4/5 1

Ψs(
√

5− 2) 3.6(04342) 2.500(415) 2.189(498) 2.0451(34) 1.6580(68)

6. Evidences for Conjectures 1 and 2

In this section, we arrive to what seems to be the most surprising property of Ψs(α),
which was explicited as Conjecture 1. We present in this section various graphs which give
evidences that, for any s ∈ (0, 1], Ψs is minimal at the points of

√
5 + Z and −√5 + Z

(where it takes the same value): see Figures 5-6 in the case s = 1/2 and Figures 7-8 in
the case s = 1/5. In the case s = 1, we present four graphs (Figure 9 to 12) in support
of Conjecture 2(i). They are zooms centered at u11 = F9F10

F 2
11

= 1870
892 of the graph of Ψ1,F11 .

A similar verification was done for u2, . . . , u26; in particular it seems that Ψ1,Fk
is not

differentiable at uk.
We now make a few remarks about Conjecture 2(ii). Using the classical expression of

Fibonacci numbers Fk = 1√
5

(
ϕk − (1− ϕ)k

)
, where ϕ := (

√
5 + 1)/2, one easily finds that∣∣uk − ϕ−3

∣∣ ¿ ϕ−2k. Note that ϕ−3 =
√

5 − 2. Unfortunately, the convergence is not fast
enough to imply Conjecture 2(ii) by means of Lemma 2, like in the proof of Proposition 1.
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Figure 6. Graphs of Ψ1/2,300 and the constant Ψ1/2,300(
√

5 − 2) in [
√

5 −
2− 10−3,

√
5− 2 + 10−3]

Figure 7. Graphs of Ψ1/5,50 and the constant Ψ1/5,50(
√

5− 2) in [0, 1]

However, it seems that the value of the derivative of En(α) := ||n2α||
||nα|| at α =

√
5− 2 is very

often of the order of n2 and not just bounded by 4n3 (by Lemma 2). If it were possible to
quantify precisely this fact, then (ii) might follow. Note that one cannot expect to replace
n3 by n2 for all n because it seems that, for any k,

max
n=1,...,Fk

|E ′
n(
√

5− 2)| = |E ′
Fk

(
√

5− 2)| À F 3
k .

More generally, we tried to find the minima of the partial sum Ψ1,N for N = 1 to
145: the data are summarized in the table below where αN ∈ [0, 1/2] is such that
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Figure 8. Graphs of Ψ1/5,300 and the constant Ψ1/5,300(
√

5 − 2) in [
√

5 −
2− 10−3,

√
5− 2 + 10−3]

2

2.5

3

3.5

4

0 0.2 0.4 0.6 0.8 1

x

Figure 9. Graphs of Ψ1,F11 and the constant Ψ1,F11,1(u11) in [0, 1]

Ψ1,N(αN) is apparently minimal. These conjectural values have been obtained by zoom-
ing on the part of the graphs where the minimum seemed to be attained. (3) Except for
N = 15, 17, 46, 50, 64, 65, 67, 73, Ψ1,N does not seem to be differentiable at αN . At these
eight exceptional values, Ψ1,N seems to have a vanishing derivative at αN ; we are able to
get only numerical approximations for these αN that we don’t mention (they are getting
closer and closer to

√
5 − 2 as expected). It is also interesting to see that, when we are

able to identify it, αN is a rational number whose denominator is a square.

3The most difficult part is to guess the exact value of αN by successive zooms on the graph. Once it is
guessed, one can center the subsequent zooms at that point to check if it is a good choice.
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1.8

2

2.2

2.4

2.6

2.8

0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

x

Figure 10. Graphs of Ψ1,F11 and the constant Ψ1,F11(u11) in [u11 − 0.1, u11 + 0.1]

1.65

1.7

1.75

1.8

1.85

0.228 0.23 0.2320.2340.2360.238 0.24 0.2420.2440.246

x

Figure 11. Graphs of Ψ1,F11 and the constant Ψ1,F11(u11) in [u11 − 10−2, u11 + 10−2]

N 2 3 4 5 6 7 8 9 10 11 12 13 14 15
αN

1
22

2
32

2
32

6
52

6
52

6
52

15
82

19
92

15
82

15
82

19
92

40
132

40
132 ?

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
40
132 ? 61

162
61
162

61
162

104
212

104
212

104
212

104
212

104
212

53
152

104
212

104
212

53
152

53
152

31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
53
152

53
152

53
152

273
342

273
342

273
342

273
342

341
382

341
382

341
382

341
382

341
382

341
382

341
382

341
382

46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
? 273

342
273
342

273
342 ? 341

382
341
382

341
382

341
382

714
552

714
552

714
552

714
552

714
552

714
552

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
714
552

714
552

714
552 ? ? 714

552 ? 714
552

714
552

714
552

1190
712

323
372 ? 323

372
613
512

76 77 78 79 80 81 82 83 84 85 86 87 88 89 · · ·
613
512

613
512

613
512

613
512

613
512

613
512

613
512

613
512

613
512

1058
672

1663
842

1058
672

1663
842

1870
892 · · ·

109 110 · · · 113 114 · · · 123 124 125 126 127 · · · 143 144 145
1870
892

967
642 · · · 967

642
1870
892 · · · 1870

892
967
642

967
642

967
642

3808
1272 · · · 3808

1272
4895
1442

4895
1442
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1.63

1.64

1.65

1.66

1.67

1.68

0.2352 0.2356 0.2360.2362 0.2366 0.237

x

Figure 12. Graphs of Ψ1,F11 and the constant Ψ1,F11(u11) in [u11 − 10−3, u11 + 10−3]

The dots indicate that, for example, from 89 to 109, the minimum seemingly occurs at
the same point 1870

892 . In that table, is easy to recognize that when N = Fk, then F 2
k is a

denominator of αFk
= uk. To get an expression of the numerator, we simply plugged the

sequence of numerators of uk into the On-line Encyclopedia of Integer Sequences [10] to
see that it matches the sequence A001654 defined by Fk−1Fk−2. This led to Conjecture 2.

We also computed approximations to 6 digits of some values of Ψ1,Fk
(uk) for k =

4, 5, . . . 26. They tend to confirm Conjecture 2(ii), even though the convergence is slow.

k 4 5 6 7 8
Ψ1,Fk

(uk) 1.0625 1.334325 1.414417 1.459825 1.545960
9 10 11 12 13 14

1.580966 1.599159 1.623628 1.634958 1.641142 1.647968
15 16 17 18 19 20

1.651493 1.653337 1.655235 1.656236 1.656780 1.657293
21 22 23 24 25 26

1.657570 1.657723 1.657860 1.657935 1.657977 1.658013

7. Minimal values of the series Ψ̃1

In this section, we present a few results concerning the function

Ψ̃1(α) =
∞∑

n=1

(−1)n ||n2α||
n2||nα|| .

which is an alternating analogue of Ψ1. There are a number of differences with the behavior
of Ψ1. In particular, a straightforward modification of the proof of part (i) of Theorem 1

shows that Ψ̃1(α) converges at any rational number α = a/b with b odd and (a, b) = 1, while
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it diverges when b is even and (a, b) = 1. Of course, Ψ̃1(α) converges almost everywhere
because it converges for any irrational number α ∈ A1.

Like in the case of Ψ1, we focused on the extremal properties of Ψ̃1 and were led to a
precise conjecture regarding the partial sums

Ψ̃1,N(α) :=
N∑

n=1

(−1)n ||n2α||
n2||nα|| .

Set Sk the k-th denominator of the convergents to
√

2
2

; for k ≥ 1, the sequence starts

with 1, 3, 7, 17, 41. Set Tk := 2Rk + (−1)k where Rk is defined by R0 = 0, R1 = 1 and
Rk+2 = 6Rk+1 −Rk.

Conjecture 3. (i) For any k ≥ 2, the sum Ψ̃1,Sk
is minimal on [0, 1] at the points

vk :=
Tk

2S2
k

and 1− vk.

(ii) We have

lim
k→+∞

Ψ̃1,Sk
(vk) = Ψ̃1

(√2

2

)
.

(iii) On its set of convergence, the series Ψ̃1 is minimal at the points of ±
√

2
2

+Z, where
it takes the same value.

It is easy to see that Rk ∼
√

2
8

(1 +
√

2)2k and that Sk ∼ 1
2
(1 +

√
2)k. Hence

lim
k→+∞

vk =

√
2

2
.

The first few values of the sequence vk are 13
2·32 ,

69
2·72 ,

409
2·172 ,

2377
2·412 . They were guessed by

successive zooms of the part of the graph of Ψ̃1,Sk
where the minimum seems to be attained.

Again, the numerators of the sequence vk were found by using the OEIS [10]: the sequence
Tk matches A105058 and the sequence Rk matches A001109 (which is directly linked to
A105058 in the OEIS). Of course, parts (i) and (ii) of Conjecture 3 implies part (iii).

8. A related diophantine function

In this section, we define another “diophantine function”, namely the series

Qs,t(α) :=
∞∑

n=0

log
(
qn+1(α)/qn(α)

)t

qn(α)s

for α ∈ R and s, t > 0. The case s = 1 and t = 1 is motivated by the similarity of
both sides of the inequalities (1.5) in Theorem 1(ii). (4) The similary is also visible when
one compares Figure 4 and Figure 13: it would interesting to understand better the link
between Q1,1 and Φ1.

4For s ∈ (0, 1), the left and right hand sides of the inequalities (1.4) are not very close. The extremality
properties of the series

∑∞
n=0

qn+1(α)t

qn(α)s are not striking at first sight.
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It is easy to prove thatQs,t(α) converges for almost all irrational numbers α, in particular
for all α such that m(α) is finite. The infinite series Qs,t(α) is not defined for rational
numbers α because the sequence (qn)n is then finite. But this can be solved as follows:
we assume that the sequence of partial quotients of α ∈ Q is of the form (an)n=0,...,K with
aK ≥ 2, so that we can can set (5)

Qs,t(α) :=
K−1∑
n=0

log
(
qn+1(α)/qn(α)

)t

qn(α)s

for α ∈ Q.

Conjecture 4. Fix the real numbers s, t > 0. The series Qs,t attains its minimum in R\Q
at the points of

√
5−1
2

+ Z and 3−√5
2

+ Z.

The values at the minima are equal because Qs,t(α) is 1-periodic and Qs,t(1 − α) =
Qs,t(α). In fact, it seems that a finite version of Conjecture 4 holds. Set

QN,s,t(α) :=
N∑

n=0

log
(
qn+1(α)/qn(α)

)t

qn(α)s

for α ∈ R \Q and

QN,s,t(α) :=

min(N,K−1)∑
n=0

log
(
qn+1(α)/qn(α)

)t

qn(α)s

for α ∈ Q. Although this is not completely clear on the various graphs (which are mere
approximations of the reality), QN,s,t is essentially a piecewise constant function. It is
continuous at any irrational number, around which it is locally constant. It is also contin-
uous and locally constant around any rational number whose sequence of partial quotients
terminates at a position > N + 1. But it is discontinuous at any rational number whose
sequence of partial quotients terminates at position ≤ N + 1.

Conjecture 5. Fix any integer N ≥ 0 and any real numbers s ≥ 0, t > 0. We consider
QN,s,t as being defined on R \Q.

(i) The series QN,s,t is constant and minimal on the interval consisting of irrational
numbers whose partial quotients satisfy a0 = 0, a1 = a2 = · · · = aN+1 = 1.

(ii) The second minimal value of QN,s,t is attained on the interval consisting of irrational
numbers whose partial quotients satisfy a0 = 0, a1 = 2, a2 = · · · = aN+1 = 1. It is also
constant there.

If the irrational number α is in (1/2, 1) then qn(1 − α) = qn+1(α) for all n ≥ 1 (with
q0(1 − α) = q0(α) = 1), so that QN,s,t(1 − α) = QN+1,s,t(α): hence part (ii) of the
conjecture follows from (i). It is also clear that Conjecture 5(i) together with the identity
Qs,t(1− α) = Qs,t(α) imply Conjecture 4 when s > 0. The first part can be reformulated

5The alternative definition “(ãn)n=0,...,K+1 with ãn = an for n < K and ãK = ak − 1 and ãK+1 = 1”
changes only marginally the discussion following Conjecture 4 for rational numbers and does not affect
both conjectures which concern only irrational numbers.
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Figure 13. Graphs of Q5,1,1 and the constant Q5,1,1(
√

5−1
2

) on [0, 1]

as follows: if N = 2k, then QN,s,t(α) is constant on the interval
(F2k+2

F2k+3
, F2k+1

F2k+2

)
, where it is

minimal. If N = 2k + 1, then QN,s,t(α) is constant on the interval
(F2k+2

F2k+3
, F2k+3

F2k+4

)
, where it

is minimal.
The conjecture is trivially true in the case s = 0 and t = 1 because then QN,s,t(α) =

log(qN+1(α)): that quantity is minimal if and only if q0 = 1, q1 = 1 and qn+1 = qn + qn−1

for any n such that 1 ≤ n ≤ N .

A careful analysis of many graphs similar to those presented in Figures 13 to 17 led
to Conjecture 5. The latter is easily proved for N = 0, 1, 2 and s = t = 1 by a direct
computation (which could probably be extended to further values of N , s and t).
• N = 0: we have to show that 1

q0
log(q1/q0) = log(q1) is minimal for q1 = 1, which is

obviously true.
• N = 1: we have to show that

log(q1/q0)

q0

+
log(q2/q1)

q1

= log(q1)
(
1− 1

q1

)
+

log(q2)

q1

is minimal for q1 = 1 and q2 = 2. Clearly, we must choose q2 minimal, i.e, q2 = q1 + q0 =
q1 + 1. To conclude, it remains to see that when q1 ≥ 1, the function of the integer q1

log(q1)
(
1− 1

q1

)
+

log(q1 + 1)

q1

(8.1)

is minimal for q1 = 1.
• N = 2: we have to show that

log(q1/q0)

q0

+
log(q2/q1)

q1

+
log(q3/q2)

q2
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Figure 14. Graphs of Q2,1,1 and the constant Q2,1,1(
√

5−1
2

) on [0, 1]

is minimal for q1 = 1, q2 = 2 and q3 = 3. Again, we must choose q3 minimal, i.e, q3 = q2+q1.
When q2 ≥ q1 + 1, the function of the integer q2

log(q2/q1)

q1

+
log((q2 + q1)/q2)

q2

is minimal for q2 = q1 + 1. It remains therefore to find the minimum of the function

log(q1) +
log( q1+1

q1
)

q1

+
log(2q1+1

q1+1
)

q1 + 1
(8.2)

as a function of the integer q1 ≥ 1 and again it is attained at q1 = 1. (6) This proves this
case too.
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