
SIMULTANEOUS PADÉ APPROXIMANTS TO THE EULER,
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

TANGUY RIVOAL

Résumé. We present a general method to obtain simultaneous explicit Padé type ap-
proximations to the exponential and logarithmic functions.

On the occasion of Axel Thue's 150th birthday

1. Introduction

Thue proved his famous theorem on rational approximations of algebraic numbers by
rational numbers [24], by a method which in some sense amounts to the computation of
certain inexplicit Padé approximants. This method is ine�ective and Thue tried to �nd
e�ective irrationality measures for large classes of algebraic numbers. In [25] he was in

particular able to do this for certain numbers of the form r
√
a/b by means of the diagonal

Padé approximants for the binomial functions r
√

1− x. See [6] for some historical comments.
Since Hermite's fundamental work on the values of the exponential function, the impor-

tance of Padé approximation (in a broad sense) in Diophantine approximation cannot be
exaggerated, and we will present some examples below. Our aim is to pursue further in this
direction. We present here explicit simultaneous Padé (type) approximants for the three

series exp(z) =
∑∞

n=0
zn

n!
, log(1− z) = −

∑∞
n=1

zn

n
and E (z) = z

∫∞
0

e−t

1−ztdt ∼
∑∞

n=0 n!zn+1.
(The asymptotic expansion holds in a suitable angular sector.) This problem seems to have
never been addressed before and its di�culty is due to the fact that these series belong to
three di�erent classes of the hypergeometric hierarchy :

exp(z) = 1F1

[
1
1
; z

]
−1

z
log(1− z) = 2F1

[
1, 1
2

; z

]
1

z
E (z) = 2F0

[
1, 1

; z

]
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where hypergeometric series are de�ned by

pFq

[
a1, . . . , ap
b1, . . . , bq

; z

]
:=

∞∑
k=0

(a1)k(a2)k · · · (ap)k
(1)k(b1)k · · · (bq)k

zk

with (α)k = α(α + 1) · · · (α + k − 1).
For any integer n ≥ 0, it is known that Legendre polynomial P`

n(z) := 1
n!

(zn(1− z)n)(n)

of degree n is simply related to the denominators of the Padé approximants [n − 1/n] of
1
z

log(1 − z) at z = 0, and that Laguerre polynomial PE
n (z) := 1

n!
ez(zne−z)(n) of degree n

is also related to the denominators of the Padé approximants [n− 1/n] of 1
z
E (z) at z = 0.

The �exponential� polynomial Pe
n(z) := 1

n!
e−zz2n(z−nez)(n) of degree n is the denominator

of the Padé approximants [n − 1/n] of exp(z) at z = 0. (In fact Pe
n(z) is the generalised

Laguerre polynomial L
(−2n)
n (−z).) Such expressions built on repeated di�erentiations are

known as Rodrigues formulas and we recall the connection with Padé approximants below.
The sequences (P`

n(z))n≥0 and (PE
n (z))n≥0 are sequences of orthogonal polynomials for

the positive weights 1[0,1] and e
−z1[0,∞) respectively. This is not the case for the sequence

(Pe
n(z))n≥0, because Pe

n(z) does not always have only real roots (for instance for n = 2),
which is a necessary condition for polynomial orthogonality on the real line with respect
to integration against a positive measure (see [7]) ; it is however an orthogonal sequence
in a more general sense [14, 21]. For a recent survey on Hermite-Padé approximants and
orthogonal polynomials, see [26].
The remainder functions of the above mentioned Padé constructions also have simple

expressions in terms of hypergeometric series at the same level of the hierarchy : ( 1)

P`
n(z) log

(
1− 1

z

)
−Q`

n(z)

= (−1)n−1
∫ 1

0

tn(1− t)n

(z − t)n+1
dt =

n!2(−z)−n−1

(2n+ 1)!
· 2F1

[
n+ 1, n+ 1

2n+ 2
;
1

z

]
, (1.1)

PE
n (z)E

(1

z

)
−QE

n (z)

=

∫ ∞
0

tn

(z − t)n+1
e−tdt = (−1)n

n!

zn+1
· 2F0

[
n+ 1, n+ 1

;
1

z

]
, (1.2)

Pe
n(z) exp(z)−Qe

n(z)

=
nz2n

n!2

∫ 1

0

ezttn(1− t)n−1dt =
z2n

(2n)!
· 1F1

[
n+ 1
2n+ 1

; z

]
, (1.3)

for some (explicitable) polynomials Q`
n(z), QE

n (z) and Qe
n(z) of degree n − 1. We give a

proof of these facts in Section 6 for the reader's convenience. All the approximations and

1. It is easier to write the formulas at z =∞ for log and E .
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formulas in the paper have an analytic meaning (around z = 0 or z =∞ depending on the
case), not a mere formal one. ( 2)
There exist many papers devoted to the explicit computations of simultaneous Padé

approximants (at various points) of hypergeometric functions in the classes p+rFq+r where
p, q are �xed for the problem considered and r is an integer ranging in a �nite set. See for
instance [8, 9, 11, 13, 15, 17, 20, 16]. However, there does not exist so far in the literature
any explicit formulas for the simultaneous Padé (type) approximants of type I or II for
functions at di�erent levels of the hypergeometric hierarchy.
To do this, we leave the world of hypergeometric polynomials/series in one variable to the

more obscure world of multivariate hypergeometric polynomials/series (specialised in one
variable) : except for one of our theorems, none of the formulas given for the polynomials
and remainders are hypergeometric series in one variable. The main idea is the composition,
in a suitable sense, of Rodrigues formulas that de�ne Legendre, Laguerre and exponential
polynomials ; we make this more precise in Section 1.1. The composition of di�erential
operators to de�ne new sequences of polynomials is not a new idea, see [2] for an extensive
study of such compositions and [3, 19] for a new number theoretical application, di�erent
from the classical ones such as those described in [1, 4, 5]. But it is apparently the �rst
time it is used to construct simultaneous approximations to functions at di�erent levels in
the hypergeometric hierarchy.

1.1. Principle of the constructions. We explain here the idea behind all the results
presented in the paper. For simplicity, we consider only the approximation of two functions
but the principle can easily be extended. We consider two series f(z), g(z) ∈ C[[z]], whose
respective [k/n] and [`/n] Padé approximants at some points have their denominators of
degree n of the form

Pf
n(z) := Ψ(z)An(z)

(
Ψ(z)−1Bn(z)

)(n)
Pg
n(z) := Φ(z)Cn(z)

(
Φ(z)−1Dn(z)

)(n)
where Ψ(z),Φ(z) are suitable functions, An(z), Cn(z) ∈ C[z], Bn(z), Dn(z)∈ C(z). All
these polynomials depend on n and k, or `, but we emphasize only the dependence on n.

We require at least that Pf
0(z) ≡ 1, Pg

0(z) ≡ 1, and Ψ(z)An(z)
(
Ψ(z)−1Bn(z)zk

)(n)
and

Φ(z)Cn(z)
(
Φ(z)−1Dn(z)zk

)(n)
are polynomials for any integers k, n ≥ 0, which is the case

of the examples studied in this paper. We then observe that the polynomial

Pf ,g
n,m(z) := Ψ(z)An(z)

(
Ψ(z)−1Bn(z)Pg

m(z)
)(n)

(1.4)

coincides with Pf
n(z) if m = 0 and with Pf

m(z) if n = 0. Hence, one expects that (1.4) is
the denominator of a simultaneous Padé type problem for f(z) and g(z) at z = 0. By Padé
type, we mean that the order of the approximation is smaller than in a Padé problem, but
not trivial neither.

2. In the three cases, when n = 0, the Padé approximants [−1/0] reduces to P0 = 1 and Q0 = 0 ; for
consistency, the integral expression in (1.3) must be understood has the integral of exp(zt) against the
Dirac measure at t = 1, hence equal to ez. The same remark applies to the integrals in (4.2) and (6.7).
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Similarly, we can consider

Pg,f
m,n(z) := Φ(z)Cm(z)

(
Φ(z)−1Dm(z)Pg

n(z)
)(m)

for the same purpose. Usually, Pf ,g
n,m(z) and Pg,f

m,n(z) are distinct, leading to another simul-
taneous approximation, but this is not always the case. Moreover, the polynomials

Ψ(z)An(z)
(
Ψ(z)−1Bn(z)zmPg

m(±1/z)
)(n)

(1.5)

Ψ(z)An(z)
(
Ψ(z)−1Bn(z)Pg

m(±z − a)
)(n)

(and the two similar polynomials involving Pf
n instead of Pg

m) can be used to obtain
solutions of simultaneous Padé type problem for f(z) and g(±1/z) at z = 0 and z = ∞,
respectively f(z) and g(±z − a) at z = 0 and z = a. Depending on the structure of the
polynomials, other �composite� polynomials are possible : see Theorem 4 (which even yields
Padé approximants) and Theorem 6.
Here, we use this procedure with (generalisations of) P`

n(z), PE
n (z) and Pe

n(z), which
correspond to approximations at z = 0 for exp(z) and z =∞ for log(1− 1/z) and E (1/z).
For instance, when we set the parameters in Theorem 1 to a = b = c = n, d = 3n, f = 2n for

any integer n ≥ 0, we obtain three explicit non trivial polynomials P4n(z),Q4n(z), Q̃4n(z),
of degree at most 4n, such that

P4n(z) log
(
1− 1

z

)
−Q4n(z) = O

( 1

zn+1

)
P4n(z) exp(z)− Q̃4n(z) = O(z5n+1).

We don't exhaust all the possibilities suggested above, mainly to avoid notational com-
plications and repetitions of arguments. We focus mainly on approximations generated
by polynomials of type (1.4) and we give only two examples of approximations generated
by (1.5), for exp(z) and log(1− z) at z = 0.

1.2. Organisation of the paper. The main theorems (Theorems 1 to 6) are given in
Sections 2 to 5, which correspond to various couplings of the functions exp(z), log(1 − z)
and E (z). In Section 6, as a warm up, we remind the reader of the constructions of the Padé
approximants [n− 1/n] of these three functions. The proofs of Theorems 1, 2, 4 and 5 are
given in Sections 7, 8 and 9 respectively. In the �nal section, we use the same principle of
composition of Rodrigues type di�erential operators to present explicit simultaneous Padé
approximants to log(1− z) and (1− z)α of type II at z = 0 (and also polylogarithms). It
is likely that simultaneous Padé (type) approximants to exp(z), log(1− 1/z), E (1/z) and
(1− 1/z)α could be obtained by the methods of this paper. When our approximations are
only Padé type approximants, it would be interesting to �nd other Padé conditions (on
some functions) to embed the problem into a Padé problem of type II, or even a mixed
one with type I, similar to the problems considered in [11] for instance.

To avoid complicated notations, almost all the polynomials and remainders of the ap-
proximations will be denoted by the same bold letters (possibly with a hat or a tilde)
without mention of the obvious parameters.
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Note added in April 2021 : some misprints in the published paper have been corrected,
especially in the statement of Theorem 3 below. Theorem 4 of the published paper has
been removed here because it is of little practical interest.

2. Simultaneous Padé type approximants for exp and log

Motivations from diophantine approximations are at the origin of this paper. Indeed, it
is a classical fact that diagonal Padé approximants of exp(z) and log(1− z) yield the irra-
tionality of exp(p/q) and log(1 + 1/q) for any integers p, q ≥ 1, and even good irrationality
measures for these numbers (see [1, 5]). This is an indication that explicit simultaneous
Padé type approximants to exp(z) and log(1 − z) might lead for instance to the linear
independence of e and log(2) over Q.
We present here four quite general results concerning simultaneous approximations of

exp(z) and log(1− 1/z) at z = 0 and z =∞ for the �rst two, and of exp(z) and log(1− z)
at z = 0 for the last two. In particular, the �rst and third approximations involve multi-
parameters integrals in the spirit of [18, 27]. Unfortunately, none of these constructions
seems to be strong enough to obtain the desired diophantine results but they might be a
step in this direction.
We set α+ = max(α, 0) and, for any integers a, b, c, d, f ≥ 0, we de�ne P`

a,b,c(z) =
1
c!

(za(1− z)b)(c) and Pe
d,f (z) = 1

d!
zd+f+1e−z(z−f−1ez)(d), polynomials of respective degree at

most (a+ b− c)+ and d, which generalise the Legendre and exponential polynomials.

2.1. First approximations. For any integers a, b, c, d, f ≥ 0, we de�ne

L(z) :=
(−1)c−1

d!f !

∫ 1

0

∫ ∞
0

xa(1− x)byf (x− y)d

(z − x)c+1
e−ydxdy, (2.1)

E(z) :=
1

c!d!

∞∑
k=f+d+1

(k − f − d)d
k!

ez(za+k(1− z)be−z)(c) (2.2)

and the polynomial of type (1.4)

P(z) : =
1

c!
(za(1− z)bPe

d,f (z))(c) (2.3)

=
d∑
j=0

b∑
k=0

(−1)d−j+k
(
b

k

)(
a+ j + k

c

)(
f + d− j

f

)
zj+k+a−c

j!
.

It is clear that

deg(P) ≤ a+ b+ d− c, ordz=0(P) ≥ (a− c)+, ordz=1(P) ≥ (b− c)+.

In particular, P(z) ≡ 0 if a+ b+ d < c.
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Theorem 1. For any integers a, b, c, d, f ≥ 0 such that a + b + d ≥ c, there exist three
polynomials Q0(z), Q1(z) and Q2(z) such that

deg(Q0) ≤ b+ d, deg(Q1) ≤ a+ d,

deg(Q2) ≤ a+ b+ f, ordz=0(Q2) ≥ (a− c)+, ordz=1(Q2) ≥ (b− c)+

and

L(z) = P(z) log
(
1− 1

z

)
− za−cQ0(z)− (1− z)b−cQ1(z) = O

( 1

zc+1

)
, (2.4)

E(z) = P(z) exp(z)−Q2(z) = O(z(f+d+a−c+1)+). (2.5)

Explicit expressions for the Qj's can be obtained from the proof. In general, it is not
true that

L(z) = −
∫ 1

0

P(t)

z − t
dt

but this is true at least when a ≥ c and b ≥ c.

2.2. Second approximations. Here, we consider the opposite composition of polyno-
mials. For any integers a, b, c, d, f ≥ 0, we de�ne

L̃(z) :=
(−1)c−1

d!
zd+f+1e−z

∫ 1

0

ta(1− t)b ∂
d

∂zd

( z−f−1ez

(z − t)c+1

)
dt (2.6)

Ẽ(z) :=
∑
j,k≥0

j+k≥f+d+c−a+1

(−1)j
(
b

j

)(
a+ j

c

)
(j + k + a− c− f − d)d

k!d!
zj+k+a−c (2.7)

and the polynomial of type (1.4)

P̃(z) :=
1

d!
zd+f+1e−z(z−f−1ezP`

a,b,c(z))(d) (2.8)

=
d∑
j=0

b∑
k=0

(−1)d−j+k
(
d

j

)(
b

k

)(
a+ k

c

)
(f + c− a− k + 1)d−j

d!
za+k−c+j.

We have deg(P̃) ≤ a+ b+ d− c and, moreover, if a+ b < c, then P̃(z) ≡ 0.

Theorem 2. For any integers a, b, c, d, f ≥ 0, there exist three polynomials Q̃0(z), Q̃1(z),

and Q̃2(z) such that

deg(Q̃0) ≤ b+ d, deg(Q̃1) ≤ a+ 2d, deg(Q̃2) ≤ f + c− a

and

L̃(z) = P̃(z) log
(
1− 1

z

)
− za−cQ̃0(z)− (1− z)b−c−dQ̃1(z) = O

( 1

zc−d+1

)
, (2.9)

Ẽ(z) = P̃(z) exp(z)− za−cQ̃2(z) = O(z(f+d+c−a+1)++a−c). (2.10)
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Explicit expressions for the Q̃j's can be obtained from the proof. In general, it is not
true that

L̃(z) = −
∫ 1

0

P̃(t)

z − t
dt.

The choice a = c, b = c + d ≤ f with d ≤ c is such that all the degrees of the involved
polynomials are less than the two orders of approximations (viewed at z = 0 say), which
makes this example close to Padé approximants of type II.

We now present a simultaneous approximations result for exp(z) and log(1− z) at z = 0
(or z =∞, which is the same thing up to a change of variable). We state it in less generality
than the two previous theorems, because the general approximations (with c replaced by
a or b at certain obvious places) are quite complicated to write down, but this could be
done in principle. ( 3)

2.3. Third approximations. For any integers c, d, f ≥ 0, we de�ne

L(z) :=
(−1)c−1

d!f !

∫ 1

0

∫ ∞
0

xc(1− x)cyf (1− xy)d

(z − x)c+1
e−ydxdy, (2.11)

E(z) :=
1

c!d!

∞∑
k=d+f+1

(k − d− f)d
k!

e1/z(zc+d−k(1− z)ce−1/z)(c) (2.12)

and the polynomial (of type (1.5)) of degree c+ d

P(z) : =
1

c!
(zc+d(1− z)cPe

d,f (1/z))(c), (2.13)

=
d∑
j=0

c∑
k=0

(−1)d−j+k
(
c

k

)(
c+ d− j + k

c

)(
d+ f − j

f

)
zd−j+k

j!
.

Theorem 3. For any integers c, d, f ≥ 0 such that d ≥ 2c, f ≥ c, there exist two polyno-
mials Q1(z) and Q2(z) of respective degree c+ d and 2c+ f such that

L(z) = P(z) log
(
1− 1

z

)
−Q1(z) = O

( 1

zc+1

)
, (2.14)

E(z) = P(z) exp
(1

z

)
− zd−f−cQ2(z) = O

( 1

zf−c+1

)
. (2.15)

Explicit expressions for Q1(z) and Q2(z) can be obtained from the proof.
The proofs of Theorems 1 and 2 are given in Section 7. The proof of Theorems 3 is

similar and omitted.

3. Some misprints have been corrected in Theorem 3. After corrections of another misprint, Theorem 4
stated in the published version of this paper is of few practical interest and has been removed here.
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3. Simultaneous Padé approximants for log and E

The results presented in this section concern the functions log(1 − 1/z) and E (1/z) at
z =∞. Since we don't expect that any new diophantine result can be deduced from them,
they are not given at the same level of generality as in Section 2. However, this would be
possible.
Our �rst example is not a composition of P `

n(z) and PE
n (z) of type (1.4) or (1.5), but

an alternative one alluded to at the end of Section 1.1. For any integers m,n ≥ 0, let us
de�ne

P(z) :=
1

m!n!
(ez(zn+m(1− z)n+me−z)(n))(m)

=
n∑
j=0

m+n∑
k=0

(
m+ n

k

)(
m+ j + k

m

)(
m+ n+ k

m+ j + k

)
(−z)j+k

j!
, (3.1)

Q1(z) := −
∫ 1

0

P(z)−P(t)

z − t
dt, Q2(z) :=

∫ ∞
0

P(z)−P(t)

z − t
e−tdt,

and

Q3(z) :=

∫ 1

0

P(z)−P(t)

z − t
e−tdt.

The polynomial P(z) is of degreem+2n and the polynomialsQj(z) are of degreem+2n−1
for j = 1, 2, 3.

Theorem 4. For any m,n ≥ 0, we have

P(z) log
(
1− 1

z

)
−Q1(z) = O(

1

zm+1
)

=
(−1)m−1

n!

∫ 1

0

tm+n(1− t)m+n

(z − t)m+1
· 2F0

[
−n,m+ 1

;− 1

z − t

]
dt. (3.2)

P(z)E
(1

z

)
−Q2(z) = O(

1

zn+1
)

=
(−1)n

m!

∫ ∞
0

tm+n(1− t)m+n

(z − t)n+1
· 2F0

[
−m,n+ 1

;
1

z − t

]
e−tdt. (3.3)

P(z)

∫ 1

0

e−t

z − t
dt−Q3(z) = O(

1

zn+1
)

=
(−1)n

m!

∫ 1

0

tm+n(1− t)m+n

(z − t)n+1
· 2F0

[
−m,n+ 1

;
1

z − t

]
e−tdt. (3.4)

The theorem shows that P(z) is a denominator of the Padé problem of type II [m +
2n − 1,m + 2n − 1,m + 2n − 1/m + 2n] at z = ∞ for the three functions log(1 − 1/z),

E (1/z) and
∫ 1

0
e−tdt
z−t . It is a translation of the fact that (P(z))m,n≥0 is a sequence of multiple

orthogonal polynomials with respect to the weights 1[0,1], e
−z1[0,1], e

−z1[0,∞). If n = 0, we
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get the Padé approximants [m − 1/m] for log(1 − 1/z) at z = ∞, while if m = 0, we get

the Padé approximants of type II [2n− 1, 2n− 1/2n] for E (1/z) and
∫ 1

0
e−tdt
z−t at z =∞.

Many similar results can be obtained along the same lines. We sketch below two of them.

We �rst consider a �composition� of P`
n(z) and PE

n (z) of type (1.4). For any m,n ≥ 0,
let us de�ne the polynomial, of degree m+ n,

P̂(z) :=
1

m!
(zm(1− z)mPE

n (z))(m). (3.5)

Then there exist two polynomials Q̂1(z) and Q̂2(z), each of degree m + n − 1, such that
for any m,n ≥ 0, we have

P̂(z) log
(
1− 1

z

)
− Q̂1(z) = O(

1

zm+1
), (3.6)

P̂(z)E
(1

z

)
− Q̂2(z) = O(

1

zn−2m+1
), (3.7)

If m = 0, resp. n = 0, we get the Padé approximants [n − 1/n] for E
(
1
z

)
at z = ∞, resp.

the Padé approximants [m− 1/m] for log(1− 1/z) at z =∞.

For any m,n ≥ 0, let us de�ne the polynomial, of degree m+ n,

P̃(z) :=
1

m!n!
((1− z)mez(zn+me−z)(n))(m). (3.8)

Then there exist two polynomials Q̃1(z) and Q̃2(z), each of degree m + n − 1, such that
for any m,n ≥ 0, we have

P̃(z) log
(
1− 1

z

)
− Q̃1(z) = O(

1

zm+1
), (3.9)

P̃(z)E
(1

z

)
− Q̃2(z) = O(

1

zn−m+1
), (3.10)

If m = 0, resp. n = 0, we get the Padé approximants [n − 1/n] for E
(
1
z

)
at z = ∞, resp.

the Padé approximants [m− 1/m] for log(1− 1/z) at z =∞.

The proof of Theorem 4 is given in Section 8.

4. Simultaneous Padé approximants for exp and E

Our next result concerns the function exp(−z) and E (1/z) at z = 0 and z =∞ respec-
tively. For any integers m,n ≥ 0, let us de�ne the polynomial of type (1.4)

P(z) :=
1

m!
ez(zme−zPe

n(−z))(m) =
1

m!n!
ez(z2n+m(z−ne−z)(n))(m)

=
m∑
j=0

n∑
k=0

(−1)n+j
(

2n− k − 1

n− 1

)(
m+ k

m− j

)
zk+j

k!j!
(4.1)
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and

Q1(z) := (−1)n
n−1∑
k=0

(
2n− k − 1

n

)(
m+ k

m

)
(−z)k

k!
,

Q2(z) :=

∫ ∞
0

P(z)−P(t)

z − t
e−tdt.

The polynomial P(z) is of degreem+n,Q1(z) of degree n−1 andQ2(z) of degreem+n−1.

Theorem 5. For any m,n ≥ 0, we have

P(z) exp(−z)−Q1(z) = O(z2n)

=
n

n!2

(
m+ 2n

m

)
z2n
∫ 1

0

e−zttn(1− t)n−1 · 1F1

[
−m

2n+ 1
; zt

]
dt

=

(
m+ 2n

m

)
z2n

(2n)!
· 2F2

[
m+ 2n+ 1, n+ 1

2n+ 1, 2n+ 1
;−z

]
, (4.2)

P(z)E
(1

z

)
−Q2(z) = O

( 1

zm+1

)
= (−1)m+n

(
m+ 2n

n

)∫ ∞
0

tm

(z − t)m+1
· 2F1

[
−n,m+ 1
m+ n+ 1

;− t

z − t

]
e−tdt.

∼ (−1)m+n

(
m+ 2n

n

)
m!

zm+1
· 3F1

[
m+ 2n+ 1,m+ 1,m+ 1

m+ n+ 1
;
1

z

]
. (4.3)

If n = 0, resp. m = 0, we get the Padé approximants [m − 1/m] for E
(
1
z

)
at z = ∞,

resp. the Padé approximants [n− 1/n] for exp(−z) at z = 0.
The polynomial P(z) is also equal to 1

m!n!
ezz2n(z−n(zme−z)(m))(n), i.e., the operators

de�ning PE
m(z) and Pe

n(−z) �commute� in some sense.

The proof of Theorem 5 is given in Section 9.

5. Simultaneous Padé type approximants for exp, log and E

We now present a problem that involves the three functions exp(−z), log(1− 1/z) and
E (1/z) simultaneously. Theorem 6 is just one example of what can be done.
For any integers k,m, n ≥ 0, let us de�ne

P(z) :=
1

k!m!n!
(ez(zk+2m+n(1− z)k+n(z−me−z)(m))(n))(k) (5.1)

which is of degree k +m+ 2n.
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Theorem 6. For any integers k,m, n ≥ 0, there exist four polynomials Qj(z) (j =
1, 2, 3, 4), each of degree k +m+ 2n− 1 such that

P(z) exp(−z)−Q1(z) = O(z2m) (5.2)

P(z) log
(
1− 1

z

)
−Q2(z) = O

( 1

zk+1

)
, (5.3)

P(z)E
(1

z

)
−Q3(z) = O

( 1

zn+1

)
, (5.4)

P(z)

∫ 1

0

e−t

z − t
dt−Q4(z) = O

( 1

zn+1

)
. (5.5)

It is possible to give explicit expression for the polynomials and remainder terms but
they are not illuminating. If m = n = 0, P(z) = P`

k(z) and we get the Padé approximants
[n− 1/n] to log(1− 1/z) at z = ∞. If k = m = 0, we get the Padé approximants of type

II [2n− 1, 2n− 1/2n] for E (1/z) and
∫ 1

0
e−tdt
z−t at z =∞. If k = n = 0, P(z) = Pe

m(−z) and
we get the Padé approximants [n− 1/n] to exp(−z) at z = 0.

We skip the proof of Theorem 6 because it is completely similar to those presented in
the previous sections.

6. Padé approximants for exp(z), log(1− 1/z) and E (1/z)

We recall here how to prove the assertions made at the beginning of the introduction
concerning the (nearly) diagonal Padé approximants to log(1− z), E (z) and exp(z).

For log(1− z), we �rst de�ne the polynomial

Q`
n(z) := −

∫ 1

0

P`
n(z)−P`

n(t)

z − t
dt,

which is of degree n− 1. It is obvious that

P`
n(z) log

(
1− 1

z

)
−Q`

n(z) = −
∫ 1

0

P`
n(t)

z − t
dt

and after n integrations by parts, we get the integral expression given for the remainder
R`
n(z) in (1.1)

For E (z), we �rst de�ne the polynomial

QE
n (z) :=

∫ ∞
0

PE
n (z)−PE

n (t)

z − t
e−tdt,

which is of degree n− 1. It is also obvious that

PE
n (z)E

(1

z

)
−QE

n (z) =

∫ ∞
0

PE
n (t)

z − t
e−tdt

and after n integrations by parts, we get the integral expression given for the remainder
RE
n (z) in (1.2).
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For exp(z), we proceed di�erently. We have

Pe
n(z)ez =

1

n!
z2n(z−nez)(n) =

∞∑
k=0

1

k!n!
z2n(zk−n)(n)

=
∞∑
k=0

(k − n)(k − n− 1) · · · (k − 2n+ 1)

k!
zk

=

(
n−1∑
k=0

+
∞∑

k=2n

)
(k − n)(k − n− 1) · · · (k − 2n+ 1)

k!n!
zk

because the terms for k = n, n + 1, . . . , 2n − 1 all vanish. We de�ne the polynomial, of
degree n− 1,

Qe
n(z) : =

n−1∑
k=0

(k − n)(k − n− 1) · · · (k − 2n+ 1)

k!n!
zk

= (−1)n
n−1∑
k=0

(
2n− k − 1

n

)
zk

k!

and it is a simple task to transform the remainder

Re
n(z) :=

∞∑
k=2n

(k − n)(k − n− 1) · · · (k − 2n+ 1)

k!n!
zk

into the integral given in (1.3).

We now prove the hypergeometric expressions for the polynomials and remainders of
the three Padé constructions. The series expansions given in (6.2) and (6.3) are proved
by expanding 1/(1 − t/z)n+1 in power series of t. The transformation of such series into
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hypergeometric form is then straightforward.

R`
n(z) = (−1)n−1

∞∑
k=0

k(k − 1) · · · (k − n+ 1)

(k + 1) · · · (k + n+ 1)
· 1

zk+1

=
n!2

(2n+ 1)!(−z)n+1
· 2F1

[
n+ 1, n+ 1

2n+ 2
;
1

z

]
, (6.1)

RE
n (z) ∼ (−1)n

n!

∞∑
k=0

k(k − 1) . . . (k − n+ 1) · k!

zk+1

= (−1)n
n!

zn+1
· 2F0

[
n+ 1, n+ 1

;
1

z

]
, (6.2)

Re
n(z) =

∞∑
k=0

k(k − 1) . . . (k − n+ 1)

(k + n)!
· zk+n

=
z2n

(2n)!
· 1F1

[
n+ 1
2n+ 1

; z

]
. (6.3)

and

P`
n(z) =

n∑
k=0

(−1)k
(
n

k

)(
n+ k

n

)
zk = 2F1

[
−n, n+ 1

1
; z

]
, (6.4)

PE
n (z) =

n∑
k=0

(−1)k
(
n

k

)
zk

k!
=

(−z)n

n!
· 2F0

[
−n,−n

;−1

z

]
= 1F1

[
−n
1

; z

]
, (6.5)

Pe
n(z) =

n∑
k=0

(−1)n−k
(

2n− k − 1

n− 1

)
zk

k!
=

n

n!2

∫ ∞
0

e−ttn−1(z − t)ndt (6.6)

= (−1)n
(

2n− 1

n− 1

)
· 1F1

[
−n

−2n+ 1
;−z

]
=
zn

n!
· 2F0

[
−n, n

;
1

z

]
. (6.7)

We observe that PE
n (z) and Pe

n(z) both have expressions, trivially equivalent, that belong
to two di�erent classes of the hypergeometric hierarchy. This is an instance of the classical
theory of asymptotic expansions at z =∞ of 1F1[z] functions in terms of 2F0[1/z] ; See [22,
�4.6].

7. Proofs of Theorems 1 and 2

Both proofs make use of the following lemma at some point.

Lemma 1. For any integers a, b, c ≥ 0, there exists two polynomials Q0(z) and Q1(z) such
that deg(Q0) ≤ b, deg(Q1) ≤ a and

(−1)c−1
∫ 1

0

ta(1− t)b

(z − t)c+1
dt =

1

c!
(za(1− z)b)(c) · log

(
1− 1

z

)
− Q0(z)

zc−a
− Q1(z)

(1− z)c−b
.

Démonstration. This follows by integrating c times by parts the left hand side. �
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Since

1

c!
(za(1− z)b)(c) · log

(
1− 1

z

)
= − 1

c!

∫ 1

0

(ta(1− t)b)(c)

z − t
dt+ polynomial(z),

Lemma 1 quanti�es the di�erence between

1

c!

∫ 1

0

(ta(1− t)b)(c)

z − t
dt and (−1)c

∫ 1

0

ta(1− t)b

(z − t)c+1
dt.

If a ≥ c and b ≥ c, both integrals are equal as we can see by integrating c times by parts,
but this is not true in general.

7.1. Proof of Theorem 1. We decompose the proof into two parts.

Properties of L(z). It is a trivial observation that L(z) = O
(

1
zc+1

)
. We now �nd its

decomposition (2.4). We have

1

d!f !

∫ ∞
0

e−ttf (x− t)ddt =
d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1

j!
xj

=
1

d!
xd+f+1e−x(x−f−1ex)(d)

provided that d, f ≥ 0, which is the case. Hence,

L(z) = (−1)c−1
d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1

j!

∫ 1

0

xa+j(1− x)b

(z − x)c+1
dx

=
d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1

j!

(
1

c!
(za+j(1− z)b)(c) log

(
1− 1

z

)
− za+j−cQ0,j(z)− (1− z)b−cQ1,j(z)

)
where Q0,j(z) and Q1,j(z) are as described in Lemma 1, used to get the second equality.
Going backwards, we see that

d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1

j!

1

c!
(za+j(1− z)b)(c)

=
1

c!d!
(za+d+f−1(1− z)be−z(z−f−1ez)(d))(c) = P(z).

It is also a routine task to see that

d∑
j=0

(−1)d−j
(
d+ f − j

f

)
1

j!

(
za+j−cQ0,j(z) + (1− z)b−cQ1,j(z)

)
= za−cQ0(z) + (1− z)b−cQ1(z)
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where Q0(z) and Q1(z) are as described in the theorem. This completes the proof of the
assertions for L(z).

Properties of E(z). We have

zd+f+1(z−f−1ez)(d) =
∞∑
k=0

1

k!
zd+f+1(zk−f−1)(d) =

∞∑
k=0

(k − f − d)d
k!

zk,

so that

P(z) exp(z) =
1

c!d!

∞∑
k=0

(k − f − d)d
k!

ez(za+k(1− z)be−z)(c)

Since (k − f − d)d = 0 for k ∈ {f + 1, . . . , f + d}, it is useful to de�ne the polynomial

Q2(z) :=
1

c!d!

f∑
k=0

(k − f − d)d
k!

ez(za+k(1− z)be−z)(c).

It is a polynomial of degree at most a + b + f and order at z = 0, resp. z = 1, equal to
(a− c)+, resp. (b− c)+, and

P(z) exp(z)−Q2(z) =
1

c!d!

∞∑
k=f+d+1

(k − f − d)d
k!

ez(za+k(1− z)be−z)(c)

is equal to E(z). The order at z = 0 of E(z) is clearly at least (a+ d+ f − c+ 1)+ and its
order at z = 1 is at least (b− c)+.

7.2. Proof of Theorem 2. We decompose the proof into two parts.

Properties of L̃(z). It is clear that L̃(z) = O
(

1
zc−d+1

)
. We now set

L̂(z) := −
∫ 1

0

P̃(t)

z − t
dt = P̃(z) log

(
1− 1

z

)
− q1(z) (7.1)

where

q1(z) = −
∫ 1

0

P̃(z)− P̃(t)

z − t
dt.
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Expanding P̃(z) in the integral de�nition of L̂(z), we have

L̂(z) = − 1

c!d!

d∑
j=0

(
d

j

)∫ 1

0

td+f+1e−t(t−f−1et)(d−j)(ta(1− t)b)(c+j)

z − t
dt

= − 1

c!d!

d∑
j=0

(
d

j

) d∑
`=j

(
d− j
d− `

)
(−1)d−`(f + 1)d−`

∫ 1

0

t`(ta(1− t)b)(c+j)

z − t
dt

=
1

d!

d∑
j=0

(
d

j

) d∑
`=j

(
d− j
d− `

)
(−1)d−`(f + 1)d−`

(
1

c!

∫ 1

0

z` − t`

z − t
(ta(1− t)b)(c+j)dt (7.2)

− z`

c!

∫ 1

0

(ta(1− t)b)(c+j)

z − t
dt

)
. (7.3)

We denote by q2(z) the polynomial on the line (7.2) ; it is of degree d+ (a+ b− c)+ − 1.
Let us now study the integral on the line (7.2). We have

− 1

c!

∫ 1

0

(ta(1− t)b)(c+j)

z − t
dt =

1

c!
(za(1− z)b)(c+j) log

(
1− 1

z

)
+

1

c!

∫ 1

0

(za(1− z)b)(c+j) − (ta(1− t)b)(c+j)

z − t
dt. (7.4)

We denote by q2,j(z) the polynomial on the second line of (7.4). By uniqueness of the

decomposition of L̂(z), we have

q1(z) = −q2(z)− 1

d!

d∑
j=0

(
d

j

) d∑
`=j

(
d− j
d− `

)
(−1)d−`(f + 1)d−`z

`q2,j(z).

By Lemma 1, we know that

1

c!
(za(1− z)b)(c+j) · log

(
1− 1

z

)
=

(−1)c+j−1(c+ j)!

c!

∫ 1

0

ta(1− t)b

(z − t)c+j+1
dt+ za−c−jq0,j(z) + (1− z)b−c−jq1,j(z) (7.5)

with deg(q0,j) ≤ b and deg(q0,j) ≤ a. We then put the right-hand side of (7.5) into (7.4),
and the right-hand side of the resulting equation into (7.3). We obtain

L̂(z) = −q1(z) +
1

d!

d∑
j=0

(
d

j

) d∑
`=j

(
d− j
d− `

)
(−1)d−`(f + 1)d−`

(
za+`−c−jq0,j(z) (7.6)

+ z`(1− z)b−c−jq1,j(z) +
(−1)c+j−1(c+ j)!

c!
z`
∫ 1

0

ta(1− t)b

(z − t)c+j+1
dt

)
= −q1(z) + za−cQ̃0(z) + (1− z)b−c−dQ̃1(z)

+
(−1)c−1

d!
zd+f+1e−z

∫ 1

0
ta(1− t)b ∂

d

∂zd

( z−f−1ez

(z − t)c+1

)
dt, (7.7)
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where Q̃0(z) and Q̃1(z) are as de�ned in the statement of the theorem. To conclude, we

simply compare the two expressions (7.1) and (7.7) of L̂(z).

Properties of Ẽ(z). We have

P̃(z) exp(z) =
1

c!d!

∞∑
k=0

zd+f+1

k!
(zk−f−1(za(1− z)b)(c))(d)

=
1

d!

b∑
j=0

(−1)j
(
b

j

)(
a+ j

c

) ∞∑
k=0

zd+f+1

k!
(zj+k+a−c−f−1)(d)

=
1

d!

d∑
j=0

(−1)j
(
b

j

)(
a+ j

c

) ∞∑
k=0

(j + k + a− c− f − d)d
k!

zj+k+a−c

Since (j + k + a − c − f − d)d = 0 for j + k ∈ {f + c − a + 1, . . . , f + d + c − a}, we can
de�ne the polynomial

Q̃2(z) :=
1

d!

∑
j,k≥0

j+k≤f+c−a

(−1)j
(
b

j

)(
a+ j

c

)
(j + k + a− c− f − d)d

k!
zj+k (7.8)

so that

P̃(z) exp(z)− za−cQ̃2(z)

=
∑
j,k≥0

j+k≥f+d+c−a+1

(−1)j
(
b

j

)(
a+ j

c

)
(j + k + a− c− f − d)d

k!d!
zj+k+a−c,

which is equal to Ẽ(z) by the de�nition (2.7). It is a simple observation that the order of

Ẽ(z) at z = 0 is ≥ (f + d+ c− a+ 1)+ + a− c. It is also easy to determine the degree of

Q̃2(z) from (7.8).

8. Proof of Theorem 4

Before proving this theorem, we state a lemma, whose proof is straightforward by Leibniz
formula.

Lemma 2. For any c, z ∈ C, any integers `, s ≥ 0, we have

e−ct
(

ect

(z − t)`+1

)(s)

=
s∑

k=0

cs−k
(
s

k

)
(`+ k)!

`!

1

(z − t)`+k+1
(8.1)

where the di�erentiation is with respect to t.

Proof of Theorem 4. The �rst estimate to be proved can be restated as follows :

R1(z) := −
∫ 1

0

P(t)

z − t
dt = O

( 1

zm+1

)
.
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After m successive integrations by parts, followed by n integrations by parts, we have

R1(z) =
(−1)m−1

m!n!

∫ 1

0

et(tm+n(1− t)m+ne−t)(n)

(z − t)m+1
dt

=
(−1)m−1

m!n!

∫ 1

0

(
et

(z − t)m+1

)(n)

tm+n(1− t)m+ne−tdt

= (−1)m−1
n∑
k=0

(
n

k

)
(m+ k)!

m!n!

∫ 1

0

tm+n(1− t)m+n

(z − t)m+k+1
dt (8.2)

=
(−1)m−1

n!

∫ 1

0

tm+n(1− t)m+n

(z − t)m+1
· 2F0

[
−n,m+ 1

;− 1

z − t

]
dt,

where we used Lemma 2 with c = 1, ` = m and s = n. It is clear that the integrals on the
right hand side of (8.2) can be expanded as power series of 1/z with order at least m+ 1,
which proves the claim.

Similarly, the second estimate to be proved can be restated as follows :

R2(z) :=

∫ ∞
0

P(t)

z − t
e−tdt = O

( 1

zn+1

)
.

After m successive integrations by parts, followed by n integrations by parts, we have

R2(z) =
(−1)m

m!n!

∫ ∞
0

(
e−t

z − t

)(m)

et(tm+n(1− t)m+ne−t)(n)dt

=
m∑
k=0

(−1)k
(
m

k

)
k!

m!n!

∫ ∞
0

(tm+n(1− t)m+ne−t)(n)

(z − t)k+1
dt (8.3)

=
m∑
k=0

(−1)n+k
(
m

k

)
(n+ k)!

m!n!

∫ ∞
0

tm+n(1− t)m+n

(z − t)n+k+1
e−tdt, (8.4)

=
(−1)n

m!

∫ ∞
0

tm+n(1− t)m+n

(z − t)n+1 2F0

[
−m,n+ 1

;
1

z − t

]
e−tdt,

where we used Lemma 2 with c = −1, ` = 0 and s = m to get the second equality. Again,
it is clear that the integral on the right hand side of (8.4) can be expanded as a power
series of 1/z with order at least n+ 1, which proves the claim.

Finally, the third estimate to be proved can be restated as follows :

R3(z) :=

∫ 1

0

P(t)

z − t
e−tdt = O

( 1

zn+1

)
.
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After m successive integrations by parts, followed by n integrations by parts, we have

R3(t) =
(−1)m

m!n!

∫ 1

0

(
e−t

z − t

)(m)

et(tm+n(1− t)m+ne−t)(n)dt

=
m∑
k=0

(−1)k
(
m

k

)
k!

m!n!

∫ 1

0

(tm+n(1− t)m+ne−t)(n)

(z − t)k+1
dt (8.5)

=
m∑
k=0

(−1)k+n
(
m

k

)
(n+ k)!

m!n!

∫ 1

0

tm+n(1− t)m+n

(z − t)n+k+1
e−tdt, (8.6)

=
(−1)n

n!

∫ 1

0

tm+n(1− t)m+n

(z − t)n+1 2F0

[
−m,n+ 1

;
1

z − t

]
e−tdt,

where we used Lemma 2 with c = −1, ` = 0 and s = m to get the second equality. Again,
it is clear that the integral on the right hand side of (8.6) can be expanded as a power
series of 1/z with order at least n+ 1, which proves the claim. �

We close this section by mentioning that Theorem 4 is simply the translation of the
multiple orthogonalities satis�ed by P(t). The proof appears in disguise in the above lines.

Proposition 1. For any m,n ≥ 0, we have∫ 1

0

tkP(t) dt = 0, k ∈ {0, . . . ,m− 1},∫ ∞
1

tkP(t)e−t dt = 0, k ∈ {0, . . . , n− 1},∫ 1

0

tkP(t)e−t dt = 0, k ∈ {0, . . . , n− 1}.

9. Proof of Theorem 5

Let us prove the �rst part. We have

P(z)e−z =
1

m!
(zme−zPe

n(−z))(m).

Furthermore, since Pe
n(−z) = 1

n!
ezz2n(z−ne−z)(n), we have

e−zPe
n(−z) =

1

n!
z2n(z−ne−z)(n) =

∞∑
k=0

(−1)k
(k − 2n+ 1)n

k!n!
zk,

so that

P(z) exp(−z) =
∞∑
k=0

(−1)k
(k − 2n+ 1)n

k!

1

m!
(zk+m)(m)

=

(
n−1∑
k=0

+
∞∑

k=2n

)
(−1)k

(k − 2n+ 1)n(k + 1)m
k!m!

zk
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and the result follows after setting

Q1(z) :=
n−1∑
k=0

(−1)k
(k − 2n+ 1)n(k + 1)m

k!m!
zk

and

R1(z) :=
∞∑

k=2n

(−1)k
(k − 2n+ 1)n(k + 1)m

k!m!
zk = O(z2n)

and after simpli�cations of the expressions.
The series representation of R1(z) is hypergeometric, for we have

R1(z) =

(
m+ 2n

m

)
z2n

(2n)!
2F2

[
m+ 2n+ 1, n+ 1

2n+ 1, 2n+ 1
;−z

]
.

We now observe that, by Euler's integral identity,

2F2

[
m+ 2n+ 1, n+ 1

2n+ 1, 2n+ 1
;−z

]
= n

(
2n

n

)∫ 1

0

tn(1− t)n−1 · 1F1

[
m+ 2n+ 1

2n+ 1
;−zt

]
dt

= n

(
2n

n

)∫ 1

0

tn(1− t)n−1e−tz · 1F1

[
−m

2n+ 1
; zt

]
dt

where in the last step we used Kummer's transformation. This proves the �rst part of the
theorem.

For the second part, we have to prove that

R2(z) :=

∫ ∞
0

P(t)

z − t
e−tdt = O

( 1

zm+1

)
.

This follows after m successive integrations by parts :

R2(z) = (−1)m
∫ ∞
0

tmPe
n(−t)

(z − t)m+1
e−tdt,

which is obviously O(1/zm+1). To get the integral expression of R2(z), we integrate by
parts n consecutive times :

R2(z) = (−1)m+n

∫ ∞
0

1

n!tn

(
tm+2n

(z − t)m+1

)(n)

e−tdt

= (−1)m+n

(
m+ 2n

n

)∫ ∞
0

tm

(z − t)m+1
· 2F1

[
−n,m+ 1
m+ n+ 1

;− t

z − t

]
e−tdt.

where we used Leibniz's formula.
The asymptotic expansion of R2(z) is

R2(z) ∼
∞∑
k=0

1

zk+1

∫ ∞
0

tkP(t)e−tdt.
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These integrals are easily computed by successive integrations by parts :∫ ∞
0

tkP(t)e−tdt = (−1)m
(k −m+ 1)m

m!n!

∫ ∞
0

tk+2n(t−ne−t)(n)dt

= (−1)m+n (k −m+ 1)m(k + n+ 1)n
m!n!

∫ ∞
0

tke−tdt

= (−1)m+n (k −m+ 1)m(k + n+ 1)n
m!n!

k!.

This �nishes the proof of the theorem.

The polynomial P(z) is not a hypergeometric polynomial in one variable, but is a spe-
cialisation in one variable of a hypergeometric polynomial in two variables. It is thus
remarkable that the remainders R1(z), R2(z) are hypergeometric series in one variable, as
well as Q1(z) :

R1(z) =

(
m+ 2n

m

)
z2n

(2n)!
· 2F2

[
m+ 2n+ 1, n+ 1

2n+ 1, 2n+ 1
;
1

z

]
R2(z) ∼ (−1)m+n

(
m+ 2n

n

)
m!

zm+1
· 3F1

[
m+ 2n+ 1,m+ 1,m+ 1

n+m+ 1
;
1

z

]
Q1(z) = (−1)n

(
2n− 1

n

)
· 2F2

[
1− n,m+ 1

1, 1− 2n
;−z

]
10. Simultaneous Padé approximants for log(1− z) and (1− z)α

For any integer n ≥ 0 and any real numbers α, β ∈ (−1, 1), let us consider the di�erential
operator Dn

α,β de�ned by

Dn
α,β(Φ(z)) :=

1

n! zα(1− z)β
(
zn+α(1− z)n+βΦ(z)

)(n)
.

Such a di�erential operator maps polynomials on polynomials.
The following lemma follows by considering Φ(z) = zk for any k ≥ 0.

Lemma 3. For any polynomial Φ(z) ∈ C[z], we have

Dn
α1,β1

(
Dn
α2,β2

(Φ(z))
)

= Dn
α2,β2

(
Dn
α1,β1

(Φ(z))
)
,

provided that α1 + β1 = α2 + β2.

The commutativity of the di�erential operators in Lemma 3 is in contrast with the va-
rious polynomials P(z) considered in our previous theorems, for which the underlying dif-
ferential operators do not commute in general (except in the case of exp(−z) and E (1/z)).
We now consider a multiset α = {α1, . . . , α1, α2, . . . , α2, . . . , αJ . . . αJ} of reals numbers

in (−1, 1) such that αm−αn 6∈ Z for any n 6= m and each αm is repeated `m times. We set

α = {a1, a2, . . . , as} where s =
∑J

j=1 `j and we de�ne a polynomial of degree sn by

P(z) := Dn
a1,−a1

(
Dn
a2,−a2

(
. . . Dn

as,−as

(
1
)
. . .
))
. (10.1)
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The order chosen for the a's is not important by Lemma 3.
By multiple integrations by parts and by Lemma 3, we see that, under the above condi-

tions, ∫ 1

0

tkP(t) tαj(1− t)−αj log(t)ρdt = 0

for all k ∈ {0, 1, . . . , n − 1}, j ∈ {1, . . . , J} and ρ ∈ {0, . . . , `j − 1}. In other words, the
polynomials P(z), n ≥ 0 form a sequence of multiple orthogonal polynomials on [0, 1]
for the s weights tαj(1 − t)−αj log(t)ρ, 0 ≤ ρ ≤ `j − 1, 1 ≤ j ≤ J . This translates into
simultaneous Padé approximants of type II for the family of functions

Ψαj ,ρ(z) :=

∫ 1

0

tαj(1− t)−αj
z − t

log(1/t)ρdt.

We set

Qj,ρ(z) :=

∫ 1

0

P(z)−P(t)

z − t
tαj(1− t)−αj log(1/t)ρdt

which is of degree sn− 1.

Theorem 7. In the above conditions, we have

P(z)Ψαj ,ρ(z)−Qj,ρ(z) = O
( 1

zn+1

)
. (10.2)

When αj ∈ Q, the coe�cients of the polynomials P(z) and sin(πα)
πα

Qj,ρ(z) are rational
numbers.
The functions Ψα,ρ(z) can sometimes be expressed in term of elementary functions. For

instance, if α ∈ (−1, 1), α 6= 0, we have

Ψα,0(1/z) =
π

sin(πα)

((
1− z

)−α − 1
)

while if α = 0, 1
ρ!

Ψ0,ρ(1/z) = Liρ+1(z) =
∑∞

k=0
zk

kρ+1 , and in particular Ψ0,0(z) = − log(1−
1/z).
As an application of Theorem 7, consider any �nite set S of functions in the in�nite set

{log(1− z),Li2(z),Li3(z), . . . , (1− z)α1 , (1− z)α2 , . . . , (1− z)αs . . . , }

where the only assumption of the α's is that αm ∈ Q and αn − αm 6∈ Z for n 6= m. By
standard arguments in number theory we omit, Theorem 7 enables us to prove the linear
independence over Q of the values of the functions in S evaluated at any rational point x
su�ciently close to 0 (depending on α ⊂ Q).
The construction seems to be new in this generality but see [23] for related considerations.

In the literature, one can �nd the case of Theorem 7 where α = {0, 0, . . . , 0} (Hata [12])
as well as simultaneous Hermite-Padé (type I) for the functions (1 − z)α1 , . . . , (1 − z)αs

(Chudnovski [9]). In both cases, arithmetical applications of the type mentioned above are
given in precise form.
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