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1. Introduction

We denote the integer part of a real number α by ⌊α⌋, its fractional part by {α} and the
nearest integer to α by ⌊α⌉, with the convention that it is ⌊α⌋ if α ∈ Z+ 1

2
. The distance

of α to Z is ||α|| :=
∣∣α− ⌊α⌉

∣∣, whose value does not depend of the above convention.
The two main objects studied in this paper are the following sequences of continuous

functions of α:

Fn(α) :=
n∑

k=1

∣∣∣∣kα− ⌊knα⌉
n

∣∣∣∣ = 1

n

n∑
k=1

||nkα||,

whose value is approximately 1
4
(and the understanding of the word “approximately” is

the aim of the present work), and its weighted average

Gs,N(α) :=
N∑

n=1

1

ns
Fn(α). (1.1)

A priori, α and s can be any real numbers but restriction will be made later.
In a certain sense, Fn(α) and Gs,N(α) are tools to measure how far the (multi)set{
{α}, {2α}, . . . , {nα}

}
is from being equal to a subset of

{
0
n
, 1
n
, . . . , n−1

n

}
. This is a prob-

lem related to uniform distribution of the sequence ({nα})n and rational approximations
of α. Before going into the core of the paper in Section 1.2, we set a few definitions and
recall some basic facts.

1.1. Lagrange constants and other diophantine statistics. We will occasionaly use
the notion of Lagrange constant L(α) of an irrational number α. It is defined as L(α) :=

lim supq
1

q||qα|| . The smallest value of L(α) is
√
5 and is achieved at

√
5−1
2

and numbers

equivalent to it (in the sense of continued fractions, see below). The next smallest value√
8 is achieved at

√
2 and numbers equivalent to it, etc. Furthermore, the lim sup defining

L(α) is achieved along the subsequence (qn)n of the denominators of the continued fraction
of α. The set of values of L(α) forms the Lagrange spectrum; see [6] for a survey of its
properties. Moreover, L(α) = +∞ if and only if, in the continued fraction [a0, a1, a2, . . .]
of α, the sequence of the partial quotients (an)n is unbounded; this is due to the inequality
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2∣∣α− pn
qn

∣∣ ≤ 1
an+1q2n

. In particular, L(α) is finite for α in a set of measure 0. The irrationality

exponent m(α), another classical diophantine statistic defined in Section 1.3, is equal to
2 almost surely and therefore does not really distinguish irrational numbers. Baxa [2]
showed that a statistic related to the discrepancy of {nα}-sequences is minimal at

√
2,

and another one (related to the discrepancy) is conjectured to be minimal at
√
5−1
2

. In
the context of irregularities of distribution of {nα}-sequences, we can also mention the
“dispersion constant” of Niederreiter [12] and the similar one of Jager-De Jong [7], both of

which are minimal at
√
5−1
2

(and its equivalents). In this paper, we define in a natural way

two functions Gs(α) and Φs(α) that also seem to be extremal at
√
5−1
2

, at least for s = 1.
This observation, which remains unproven, is the main motivation to the study undertaken
here.

1.2. Description of Fn(α) and Gs,N(α). The behavior of Fn(α) strongly depends on the
(ir)rationality of α and also on whether or not n is a denominator of a convergent of α. The
function Gs,N(α) smoothens the dependence on n. In this respect, since 0 ≤ Fn(α) ≤ 1

2
, it

is clear that the sequence (Gs,N(α))N≥1 converges as N → +∞ for any real number α and
any s > 1. We will no longer consider this case because it gives too much weight to the
first values of (Fn(α))n≥1 whereas we seek average results.

We will first study the sequence (Fn(α))n≥1 whose behavior is not easy to understand.
We will show in Theorem 4 in Section 2 that, in particular, (Fn(α))n≥1 tends to be periodic
when α is rational. When α is irrational, we will obtain lower and upper bounds for the

lim inf and lim sup of Fn(α), in particular lim infn Fn(α) ≤
(
2L(α)

)−1
. We also observe

that each function Fn(α) is 1-periodic in α and satisfies the equation Fn(1− α) = Fn(α);
these two properties are also inherited by Gs,N(α) and the limiting cases studied in the
paper, the first one justifying that we limit ourselves to the case α ∈ [0, 1].

We will investigate in much more details the behavior of the sequence (Gs,N(α))N≥1. We
will focus on the case s ≤ 1 and in fact our results will be proved in the case s ∈ (0, 1].
See Theorem 2 (v), for the case s ≤ 0, which leads to results of a different nature that will
not be investigated in depth. We set HN(s) := 1+ 1

2s
+ · · ·+ 1

Ns and denote HN(1) by HN .

When 0 ≤ s < 1, HN(s) =
N1−s

1−s
+O(1), whereas HN = log(N) +O(1) as N → +∞.

We will show that, given s ∈ (0, 1] and a rational number α, 1
HN (s)

Gs,N(α) converges

to a rational number < 1
4
that depends on the denominator of α and not on s. On the

other hand, this sequence converges to 1
4
for almost all irrational numbers α, including for

example the real irrational algebraic numbers, the numbers e and π – only conjecturally
for the latter when s < 1. This does not seem to be the kind of result that helps to classify
irrational numbers. However, our most striking results will concern the remainder

Gs,N(α) := Gs,N(α)−
1

4
HN(s) =

N∑
n=1

1

ns

(
Fn(α)−

1

4

)
,
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Figure 1. “Bear’s pawprint” graph of G1,200 and the constant G1,200

(√
5−1
2

)
when α is irrational. We will show that the sequence converges also almost surely as
N → +∞ to a function Gs(α) for (1) any given s ∈ (0, 1]. (For the definition of the
diophantine notions used from now on, see Section 1.3.) One of our results will be that
the sequence (G1,N(α))N≥1 converges for all irrational numbers with finite m(α) exponent
and diverges for all rational numbers, leaving mainly open the question of convergence or
divergence of (G1,N(α))N≥1 for the rather sparse set of Liouville numbers. For s ∈ (0, 1),
we will show that (Gs,N(α))N≥1 diverges for all rational numbers and that it converges,
resp. diverges, for all irrational numbers α with m(α) < 1 + 1

1−s
, resp. m(α) > 2 + 4

1−s
.

Figure 1 illustrates the case s = 1. It should be taken with precautions because our
estimate for the speed of convergence of (G1,N(α))N≥1 to G1(α) is not uniform on R \ Q.

Nonetheless, it is quite surprising to observe that G1,200

(√
5−1
2

)
≈ 0.2169 seems to be very

close to the maximum of G1,200. We don’t know if in the limit, G1

(√
5−1
2

)
coincides with

the maximum of G1; this would be a very interesting problem to solve.

1.3. The results. We denote by (pn/qn)n≥0 the sequence of convergents of an irrational
number α. Its partial quotients (an)n≥0 are such that qn+1 = an+1qn + qn−1. Let us define
a family As, s ∈ (0, 1], of sets of irrational numbers α ∈ [0, 1] such that, for s ∈ (0, 1),∑

m

q1−s
m+1

qm
< ∞

and, for s = 1, ∑
m

log
(
max(qm+1/qm, qm)

)
qm

< ∞.

We recall that an irrational number α is said to have a finite irrationality exponent µ(α) ≥ 2
if there exists a constant c(α) > 0 such that (2) |α− p

q
| ≥ 1

c(α)qµ(α) for all integers p, q with

1Although this is not the point of view adopted in this paper, we can consider Gs(α) as the Dirichlet
series

∑∞
n=1

1
ns

(
Fn(α) − 1

4

)
of the variable s, α being a parameter: our results will show the strong

dependence of the abscissa of convergence on the diophantine properties of α, mainly m(α).
2When we will talk about an irrationality exponent for an irrational number α, one should understand

the couple (µ(α), c(α)).
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q ≥ 1. (c(α) ≥ 1 follows by putting q = 1 and p = ⌊α⌋.) We denote by m(α) the
irrationality exponent of α, defined as the infinimum of all possible µ(α), regardless of
the value of c(α). By definition, Liouville numbers are precisely those irrational numbers
which don’t have a finite irrationality exponent; they are not only irrational but also
transcendental.

We first state a lemma, whose proof is postponed to Section 3.

Lemma 1. (i) The set A1 contains all irrational numbers with a finite irrationality expo-
nent. Some Liouville numbers belong to A1, some do not.

(ii) For any s ∈ (0, 1), the set As contains all irrational numbers with m(α) < 1 + 1
1−s

but no real number whose irrationality exponent m(α) is > 1 + 1
1−s

. In particular, it does

not contain any Liouville number. Some irrational numbers with m(α) = 1 + 1
1−s

belong
to As, some do not.

(iii) The sets As, s ∈ (0, 1], all have measure 1.

Set

Φs(α) :=
∞∑
n=1

1

ns+1

n∑
m=1

cos
(
2mnπα

)
=

∞∑
n=1

cos
(
πn(n+ 1)α

)
sin
(
πn2α

)
ns+1 sin

(
πnα

) (1.2)

and

Φs,N(α) :=
N∑

n=1

1

ns+1

n∑
m=1

cos
(
2mnπα

)
=

N∑
n=1

cos
(
πn(n+ 1)α

)
sin
(
πn2α

)
ns+1 sin

(
πnα

) (1.3)

the N -th partial sum. In (1.2), the second equality holds only for irrational numbers α and
one has to use the definition in (1.2) if α is rational. In (1.3) the second equality holds for
irrational numbers α as well as for some rational numbers; but if α is a rational number,
we shall only use the first equality in (1.3).

We discard the case s > 1 because the series trivially converges for any α (as is clear
from the first expression for Φs(α)). We consider Φs(α) because of the relation

Gs,N(α) = − 2

π2

∞∑
k=0

Φs,N

(
(2k + 1)α

)
(2k + 1)2

, (1.4)

which will be proved later. Hence, Φs,N is a building block in the study of Gs,N and this
explains why we study it in Theorem 1. Given some non-zero integers a and b, we denote
the greatest common divisor of a and b by gcd(a, b).

We can now state our main results.

Theorem 1. Let us fix s ∈ (0, 1].
(i) For any rational number a/b with gcd(a, b) = 1, b ≥ 1, we have

lim
N→+∞

1

HN(s)
Φs,N

(a
b

)
=

1

b
.

In particular, limN Φs,N(
a
b
) = +∞.

(ii) for α ∈ As, the series Φs(α) converges absolutely.
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(iii) The sequence (Φs,N)N≥1 converges to Φs almost surely and in L2(0, 1).
(iv) If s ∈ (0, 1) and if the irrational number α has an irrationality exponent µ(α) >

2 + 4
1−s

, then for any ε > 0,

lim sup
N→+∞

Φs,N(α)

HN(s)
1− 3−s

µ(α)(1−s)
−ε

= +∞.

This also holds if α is a Liouville number when we put 1/µ(α) = 0.
If s = 1, there exists a dense set of Liouville numbers α such that, for any ε > 0,

lim sup
N→+∞

Φ1,N(α)

H1−ε
N

= +∞.

In all these cases, the sequence (Φs,N(α))N≥1 does not converge.
(v) For any real numbers α and s ≤ 0, the sequence (Φs,N(α))N≥1 does not converge.

Remarks 1. a) For s ∈ (0, 1), the result in (iv) is probably not optimal and in particular
one may expect the divergence of the series Φs(α) for all α such that m(α) > 1 + 1

1−s
.

Nonetheless, for Liouville numbers (where one puts 1/µ(α) = 0), it is essentially best
possible, even when s = 1, because |Φs,N(α)| ≤ HN(s) for any real numbers α and s.

b) From (iv) and (ii), we deduce that (Φs,N(α))N≥1 converges if s = 1 for many more
numbers that in the case s ∈ (0, 1), thereby including all Liouville except a few ones. The
same dichotomy can also be obtained from statements (ii) and (iv) of Theorem 2 below
for the functions Gs.

c) We will use the identity∫ 1

0

Φs(α)
2 dα =

1

2

∞∑
m=1

∞∑
n=1

gcd(m,n)

(mn)s+1
,

which will be a consequence of the proof of (iii) where, in particular, the convergence of
the double series will be proved.

The results of Theorem 1, as well as the methods of proof, will be useful to understand the
behavior of Gs,N(α), which we now describe. We recall that Gs,N(α) = Gs,N(α)− 1

4
HN(s).

Here and in the sequel, vp(n) denotes the p-adic valuation of a positive integer n.

Theorem 2. (i) Let us fix s ∈ (0, 1]. For any rational number a/b with gcd(a, b) = 1,
b ≥ 1, we have

lim
N→+∞

1

HN(s)
Gs,N

(a
b

)
=

1

4
− 2

π2

∞∑
k=0

gcd(b, 2k + 1)

b(2k + 1)2

=
1

4
− 1

4b

∏
p≥3

p|b

(
(pvp(b)+1 − 1)(p+ 1) + pvp(b)

pvp(b)+2

)
.

This limit is a rational number < 1
4
. In particular, limN Gs,N(

a
b
) = −∞.
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(ii) For any s ∈ (0, 1) and any α ∈ As with m(α) < 1 + 1
1−s

, or for s = 1 and any α
with finite m(α), we have

lim
N→+∞

Gs,N(α) = − 2

π2

∞∑
k=0

Φs

(
(2k + 1)α

)
(2k + 1)2

=: Gs(α),

where the series Gs(α) converges absolutely.
(iii) The sequence (Gs,N)N≥1 converges to Gs almost surely and in L2(0, 1).
(iv) For any s ∈ (0, 1), any ε > 0 and any irrational number α with an irrationality

exponent µ(α) > 2 + 4
1−s

(in particular, if it is a Liouville number), then,

lim inf
N→+∞

Gs,N(α)

HN(s)
1− 3−s

µ(α)(1−s)
−ε

= −∞.

This also holds if α is a Liouville number by setting 1/µ(α) = 0.
For s = 1, there exists a dense set of Liouville numbers such that, for any ε > 0,

lim inf
N→+∞

G1,N(α)

H1−ε
N

= −∞.

In all these cases, the sequence (Gs,N(α))N≥1 does not converge.
(v) For any real numbers α and s ≤ 0, the sequence (Gs,N(α))N≥1 does not converge.

Remark 2. It is useful to have in mind the trivial bound |Gs,N(α)| ≤ 1
4
HN(s), which holds

for any real numbers α and s.

We will also prove the following theorem, which is of independent interest. It provides
examples of Fourier series that converge almost everywhere but at no rational point. For
s ∈ (0, 1], we define Bs as the set of irrational numbers in [0, 1] such that

∑
n qn+1/q

s+1
n

is convergent. This set is of measure 1 and contains all the irrational numbers with irra-
tionality exponent < s+2 and no numbers with irrationality exponent > s+2; we always
have Bs ⊆ As.

Theorem 3. Let us fix s ∈ (0, 1].
(i) The Fourier series of Φs is given by

S(Φs)(α) :=
∞∑
k=1

( ∑
n|k, n≥

√
k

1

ns+1

)
cos(2πkα).

The series S(Φs)(α) converges almost surely. More precisely, it is equal to Φs(α) for all
α ∈ Bs. It also converges to Φs in L2(0, 1).

(ii) The series S(Φs) converges for no rational number. More precisely, let Ss,N denote
the N-th partial sum of S(Φs). Then, for any rational number a/b with gcd(a, b) = 1,
b ≥ 1, we have

lim
N→+∞

1

H⌊
√
N⌋(s)

Ss,N

(a
b

)
=

2

b(1 + s)
.

(iii) There exists a dense set of Liouville numbers on which S(Φs) does not converge.
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The initial impulse to prove these results is given by the Fourier series of the function
||α||, which converges normally on R:

||α|| = 1

4
− 2

π2

∞∑
k=0

cos(2(2k + 1)πα)

(2k + 1)2
. (1.5)

Its form already “explains” (1.4).

Acknowledgement. Stéphane Fischler and Michel Waldschmidt made comments that
helped to improve the manuscript. I warmly thank the referee for his very detailed report;
in particular, he suggested an important improvement on the first version of Lemma 4,
that undid the effects of a mistake he had found in the first version of Proposition 1.

2. Properties of (Fn(α))n≥1

In this section, we prove a few results concerning the sequence (Fn(α))n≥1. A more
exhaustive study would be desireable.

Theorem 4. (i) The sequence (Fn)n≥1 converges to 1
4
in L2(0, 1).

(ii) For any rational number a/b with gcd(a, b) = 1, we have

Fn

(a
b

)
=

1

4
− 2

π2

∞∑
ℓ=0

b|n(2ℓ+1)

1

(2ℓ+ 1)2
+O

( b
n

)
,

where the constant is absolute. In particular, lim infn Fn(
a
b
) = 0 and lim supn Fn(

a
b
) ≤ 1

4
.

(iii) For any irrational number α and any ε > 0, there exist infinitely many n such that
qn||qnα|| ≤ 1

L(α)−ε
and simultaneously Fqn(α) =

qn+1
2

||qnα||.
(iv) For any irrational number α, we have

lim inf
n→+∞

Fn(α) ≤
1

2L(α)
and lim sup

n→+∞
Fn(α) ≥

1

4
,

the latter only if m(α) is finite.

Remarks 3. a) Since the sequence n 7→
∑∞

ℓ=0
b|n(2ℓ+1)

1
(2ℓ+1)2

is positive and periodic of period b,

we see that Fn(a/b) oscillates nearly periodically without converging. The lim supn Fn(a/b)
can be < 1

4
but it can also be equal to 1

4
(consider F2m+1(a/b) when b is even, for example).

b) For irrational numbers α, we always have lim infn Fn(α) ≤ 1
2
√
5
< 1

4
and the lim inf

is 0 when L(α) = +∞, i.e. for almost all real numbers. Concerning the lim sup, numerical

experiments suggest that lim supn Fn(α) = limn F2qn(α) >
1
4
if α is equivalent to

√
5+1
2

.

Proof of Theorem 4. We will use various properties of continued fractions in the the sequel.
The reader is refered to Kintchine’s classical book [8] on this subject.
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(i) Using the Fourier expansion (1.5) of ||α||, we find that, for any real number α,

Fn(α)−
1

4
=

1

n

n∑
k=1

(
||knα|| − 1

4

)
= − 2

π2n

n∑
k=1

∞∑
ℓ=0

cos
(
2(2ℓ+ 1)knπα

)
(2ℓ+ 1)2

= − 2

π2n

∞∑
ℓ=0

1

(2ℓ+ 1)2

n∑
k=1

cos
(
2(2ℓ+ 1)knπα

)
= − 2

π2n

∞∑
ℓ=0

1

(2ℓ+ 1)2
cos
(
(2ℓ+ 1)n(n+ 1)πα

)
sin
(
(2ℓ+ 1)n2πα

)
sin
(
(2ℓ+ 1)nπα

) ,

with standard conventions when sin
(
(2ℓ + 1)nπα

)
= 0. Set un(α) :=

∑n
k=1 cos

(
2knπα

)
.

We claim that ||un(α)||2 =
√

n/2. Indeed,∫ 1

0

un(α)
2 dα =

n∑
k=1

n∑
ℓ=1

∫ 1

0

cos
(
2knπα

)
cos
(
2ℓnπα

)
dα =

1

2

∑
1≤k=ℓ≤n

1 =
n

2
.

Moreover by 1-periodicity of un(α), we also have ||un((2ℓ+1)α)||2 =
√
n/2 for any integer

ℓ ≥ 0. Hence,∣∣∣∣∣∣∣∣Fn(α)−
1

4

∣∣∣∣∣∣∣∣
2

≤ 2

π2n

∞∑
ℓ=0

1

(2ℓ+ 1)2
||un((2ℓ+ 1)α)||2

≤ 2||un(α)||2
π2n

∞∑
ℓ=0

1

(2ℓ+ 1)2
≤ 1

4n
||un(α)||2 ≪

1√
n
.

It follows that (Fn)n≥1 converges to 1
4
in L2(0, 1).

(ii) Let us fix a rational number a/b, with gcd(a, b) = 1 and b ≥ 1. We start again with
the Fourier series (1.5):

Fn

(a
b

)
− 1

4
= − 2

π2

∞∑
ℓ=0

1

(2ℓ+ 1)2
1

n

n∑
k=1

cos
(
2π(2ℓ+ 1)kn

a

b

)
.

In order to use the periodicity of cos, we write k = rb + j with 1 ≤ j ≤ b and r ≥ 0, so
that

n∑
k=1

cos
(
2(2ℓ+ 1)πkn

a

b

)
=

b∑
j=1

∑
r≥0

rb+j≤n

cos
(
2π(2ℓ+ 1)(rb+ j)n

a

b

)
=

b∑
j=1

cos
(
2π(2ℓ+ 1)jn

a

b

) ∑
r≥0

rb+j≤n

1

=
b∑

j=1

cos
(
2π(2ℓ+ 1)jn

a

b

)⌊n− j

b
+ 1

⌋
=

n

b

b∑
j=1

cos
(
2π(2ℓ+ 1)jn

a

b

)
+O(b),

where the constant in the O is absolute.
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Hence,

Fn

(a
b

)
− 1

4
= − 2

π2

∞∑
ℓ=0

1

(2ℓ+ 1)2
1

b

b∑
j=1

cos
(
2π(2ℓ+ 1)jn

a

b

)
+O

(
b

n

)

= − 2

π2

∞∑
ℓ=0

b|n(2ℓ+1)

1

(2ℓ+ 1)2
+O

(
b

n

)
,

where we have used the fact that, for any integer k and any rational u/v, with gcd(u, v) = 1
and v ≥ 1,

v∑
j=1

cos
(
2π

jku

v

)
=

{
0 if v - k
v if v | k.

(2.1)

The estimates for the lim inf and lim sup follow from the two obvious facts: Fbn(
a
b
) = 0

and Fn(
a
b
) ≤ 1

4
+O( b

n
) respectively.

(iii) By definition, L(α) = lim sup
q→+∞

1

q||qα||
, hence for any ε, there exist infinitely many

positive integers bn (depending on α and ε) such that bn||bnα|| ≤ 1
L(α)−ε

. (Without loss of

generality, we can even assume that an := ⌊bnα⌉ and bn are coprime.) Since L(α) ≥
√
5

for any irrational number α, we can choose ε small enough such that L(α) > 2 + ε (and
thus bn||bnα|| < 1

2
, which implies that an/bn are convergents to α by a classical property

of continued fractions).
Now, for any integer k ∈ {1, 2, . . . , bn}, we have

|kbnα− kan| = k|bnα− an| ≤
k

bn(L(α)− ε)
≤ 1

L(α)− ε
<

1

2
.

This forces that kan = ⌊kbnα⌉ and therefore

Fbn(α) =
1

bn

bn∑
k=1

||bnkα|| =
1

bn

bn∑
k=1

|kbnα− kan| =
||bnα||
bn

bn∑
k=1

k =
bn + 1

2
||bnα||,

as claimed.
(iv) For any ε > 0 such that L(α) > 2 + ε, we have

lim inf
n→+∞

Fn(α) ≤ lim inf
n→+∞

Fbn(α) = lim inf
n→+∞

bn + 1

2
||bnα|| =

1

2
lim inf
n→+∞

bn||bnα|| ≤
1

2(L(α)− ε)
.

Since lim inf
n→+∞

Fn(α) does not depend on ε, we get that lim infn Fn(α) ≤ 1
2L(α)

.

If we now assume that α has a finite irrationality exponent, then α ∈ A1 and by Theo-

rem 2, (3) the series
∑∞

n=1

1
4
−Fn(α)

n
is convergent. Let us assume that lim supn Fn(α) <

1
4
.

Then there exists a constant c > 0 such that
1
4
−Fn(α)

n
≥ c

n
for all n large enough and

3Statement (iv) of Theorem 4 will not be used in the proof of Theorem 2.
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the above series cannot converge. This contradiction proves that lim supn Fn(α) ≥ 1
4
and

finishes the proof of Theorem 4. �

3. Proof of Lemma 1

(i) Let α be an irrational number with a finite irrationality exponent µ(α) ≥ 2, so that
|α − p

q
| ≥ 1

c(α)qµ(α) for all integers p, q with q ≥ 1. In particular, if p/q = pn/qn is the n-th

convergent of α, classical properties of continued fractions imply that

1

c(α)q
µ(α)
n

≤
∣∣∣α− pn

qn

∣∣∣ ≤ 1

qnqn+1

.

Thus, qn+1 ≤ c(α)q
µ(α)−1
n . Moreover, it is known that qn ≥ (1+

√
5

2
)n−1 for all n ≥ 1 and all

irrational number α. It follows that both series∑
n

log
(
max(qn+1/qn, qn)

)
qn

≪
∑
n

log(qn)

qn

are convergent (at geometric rate). The real number β whose partial quotients are an =

2(n−1)!2 is a Liouville number and the inequalities 2n!
2
qn ≤ qn+1 ≤ 2n!

2+1qn ensure that
β ∈ A1. On the other hand, the number κ =

∑∞
n=1 1/bn with bn+1 = 2bn , b1 = 1, is also

a Liouville number but it has infinitely many convergents such that qn+1 = 2qn , so that
κ ̸∈ A1.

(ii) Similarly as above, we prove that∑
n

q1−s
n+1

qn
≪
∑
n

1

q
1−(1−s)(µ(α)−1)
n

and both series are convergent (at geometric rate) when µ(α) < 1 + 1
1−s

.

The convergence of the series
∑

m q1−s
m+1/qm implies that qm+1 = o

(
q

1
1−s
m

)
and this in turn

implies that α ∈ As impliesm(α) ≤ 1+ 1
1−s

, hence cannot be a Liouville number. Examples

of continued fractions can be contructed that have exact irrationality exponent 1+ 1
1−s

for

which the series
∑

m q1−s
m+1/qm converges or not.

(iii) Almost all real numbers have m(α) = 2 (see [8, page 69, Theorem 32]). Hence, for
any s ∈ (0, 1], almost all real numbers belong to As.

4. Some diophantine estimates

In this section, we prove side results which we use in the proofs of Theorems 1 and 2.
They are interesting in themselves and therefore we prove them separetely. We state them
explicitely so that they can be used for numerical computations. But the value of the
constants is not essential for the proofs of Theorem 1, 2 and 3, for we only need to know
what they depend on. The sets As have been defined in the Introduction. The function ζ
that appears below is the Riemann zeta function.



11

Proposition 1. (i) Let us fix s ∈ (0, 1]. For any irrational number α ∈ As, the series
∞∑
n=1

||n2α||
ns+1||nα||

(4.1)

is convergent. In particular, it converges almost everywhere.
(ii) For any irrational number α ∈ As, we have the following estimate for the speed of

convergence: for any integer m ≥ 2,

∞∑
n=qm

||n2α||
ns+1||nα||

≤


2ζ(s+ 1)

∞∑
k=m

1 + log(qk)

qsk
+

2

1− s

∞∑
k=m

1 + q1−s
k+1

qk
if 0 < s < 1

2
(
1 + ζ(2)

) ∞∑
k=m

1 + log
(
max(qk+1/qk, qk)

)
qk

if s = 1.

(4.2)

(iii) If α ∈ As (for some s ∈ (0, 1)) and α has an irrationality exponent µ(α) < 1+ 1
1−s

,

then for any m ≥ 2 such that qm ≥ 3 and log(qm) ≤ q
s/2
m , we have

∞∑
n=qm

||n2α||
ns+1||nα||

≤ 4ζ(s+ 1) · 2
s/4+1 − 1

2s/4 − 1
· log(qm)

qsm
+

9

1− s
· 1

qm

+
2c(α)1−s

1− s
· 2

√
2
1−(µ(α)−1)(1−s) − 1

√
2
1−(µ(α)−1)(1−s) − 1

· 1

q
1−(µ(α)−1)(1−s)
m

. (4.3)

(iv) If α ∈ A1 has a finite irrationality exponent µ(α), then for any m ≥ 7, we have

∞∑
n=qm

||n2α||
n2||nα||

≤ 2(1 + ζ(2)) · (3 +
√
2) · log(e · c(α)) · 1

qm

+ 2(1 + ζ(2)) · 2
5/4 − 1

21/4 − 1
· (µ(α)− 1) · log(qm)

qm
. (4.4)

Remarks 4. a) The series (4.1) also converges for all real number α ∈ [0, 1] when s > 1,
a result that follows immediately from Lemma 2. It is interesting to compare the upper
bounds obtained in (ii) with the following ones, due to Kruse [9]: for any s ≥ 0 and any
irrational number α, we have

qℓ−1∑
n=qm

1

ns+1||nα||
≪

ℓ−1∑
k=m

qk+1

qs+1
k

. (4.5)

The upper bound in (4.5) (which is optimal) displays the influence of our term ||n2α||, in
particular when s = 1.

b) In a preprint version of the paper [13], the equation analogous to (4.2) was incorrectly
stated in the case 0 < s < 1. The estimate analogous to (4.3) was thus wrong. This has no
influence on the numerical computations done at the end the paper because they are only
presented in the case s = 1: indeed, the estimate for s = 1 in (4.2) was the same in [13],
and (4.4) is even an improvement on the analogous estimate in [13]. This improvement
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was suggested by the referee (see Lemma 4 below). However, the analogue of Proposition 1
of [13] was quoted and used in [14] for s ∈ (0, 1]: there, one must use Proposition 1 above
and, again, one can check that the numerical results in [14] are correct.

A few lemmas are necessary for the proof of Proposition 1.

Lemma 2. For any real number α ∈ [0, 1] and any integer n ≥ 0, we have

||n2α||
||nα||

≤ n

2⌊n||nα||⌋+ 1
.

Proof. Let j be an integer such that 0 ≤ j < n. The function Dn(α) :=
||nα||
||α|| is defined and

continuous on [0, 1], with Dn(0) = Dn(1) = n. It is increasing on [ j
n
, j+1/2

n
] and decreasing

on [ j+1/2
n

, j+1
n
].

Since Dn(j/n) = Dn((j + 1)/n) = 0, we deduce that for all α ∈ [ j
n
, j+1

n
[, we have

0 ≤ Dn(α) ≤ Dn

(
j+1/2

n

)
If α ≤ 1/2, ||α|| = α whereas if α > 1/2, ||α|| = 1− α, whence

Dn

(j + 1/2

n

)
=

n

2⌊n||α||⌋+ 1

for any α ∈ [ j
n
, j+1

n
[.

We note that the right-hand side of the previous formula does not explicitly use the
variable j. Therefore, we have shown that for any α ∈ [0, 1], we have

0 ≤ Dn(α) ≤
n

2⌊n||α||⌋+ 1
. (4.6)

This formula enables to bound not only Dn(α) for α ∈ [0, 1] but also for all α ∈ R because
||α|| and Dn(α) are 1-periodic. Therefore, the upper bound (4.6) holds for any real number
α and the lemma follows when replacing α by nα. �

Lemma 3. For any α ∈ [0, 1] and any integer N such that qm ≤ N < qm+1, with m ≥ 2,
we have

N∑
k=qm

||k2α||
ks+1||kα||

≤


2
(
1 + ζ(2)

)
·
1 + log

(
max(qm+1/qm, qm)

)
qm

if s = 1

2ζ(s+ 1)
1 + log(qm)

qsm
+

2

1− s
·
1 + q1−s

m+1

qm
if 0 < s < 1.

Proof. By Lemma 2, it is enough to show that the same bound holds for the sum

RN :=
N∑

k=qm

1

ks
(
2⌊k||kα||⌋+ 1

) .
Since

0 ≤ 1

2⌊k||kα||⌋+ 1
≤ 1

k||kα||
, (4.7)
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it is tempting to bound RN by
∑N

k=qm
1

ks+1||kα|| and then use Kruse’s bound (4.5). But then

we would lose the benefit of the inequalities

0 ≤ 1

2⌊k||kα||⌋+ 1
≤ 1 (4.8)

because the quantity 1/||kα|| can take on very large values. We will consider three cases:
in the first one, we will use (4.7) only, while for the remaining two, (4.8) will be used.

To studyRN , we adapt Kruse’s ideas and cut the sumRN in three parts : k ̸≡ 0, qm−1[qm],
k ≡ 0[qm] and k ≡ qm−1[qm]. Remember that we suppose qm ≤ N < qm+1, with qm+1 =
am+1qm + qm−1. Set Q = ⌊N/qm⌋, rh = qm − 1 if 0 ≤ h < Q and rh = N −Qqm if h = Q.
In particular, 0 ≤ rh ≤ qm − 1 and Q < qm+1/qm. The assumption that m ≥ 2 ensures
that qm ≥ 2 (a necessary assumption for Kruse’s estimates) because qm ≥ q2 ≥

√
2 > 1.

• first step. We use (4.7):

N∑
k=qm

k ̸≡0,qm−1[qm]

1

ks

1

2⌊k||kα||⌋+ 1
=

Q∑
h=1

rh∑
j=1

j ̸=qm−1

1

(hqm + j)s
(
2⌊(hqm + j)||(hqm + j)α||⌋+ 1

)
≤

Q∑
h=1

rh∑
j=1

j ̸=qm−1

1

(hqm + j)s+1||(hqm + j)α||
.

To deal with the sum over j, we again follow Kruse [9, pp. 240-241] to get (even when the
sums are empty, in which case their values are 0):

rh∑
j=1

j ̸=qm−1

1

(hqm + j)s+1||(hqm + j)α||
≤ 1

(hqm)s+1

rh∑
j=1

j ̸=qm−1

1

||(hqm + j)α||

≤ 2

(hqm)s+1

rh∑
k=1

1
k
qm

≤ 2qm(1 + log(rh + 1))

(hqm)s+1
≤ 2

1 + log(qm)

qsmh
s+1

.

Hence, finally,

N∑
k=qm

k ̸≡0,qm−1[qm]

1

ks

1

2⌊k||kα||⌋+ 1
=

Q∑
h=1

rh∑
j=1

j ̸=qm−1

1

(hqm + j)s
(
2⌊(hqm + j)||(hqm + j)α||⌋+ 1

)
≤ 2

1 + log(qm)

qsm

Q∑
h=1

1

hs+1
≤ 2ζ(s+ 1)

1 + log(qm)

qsm
. (4.9)
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• Second and third steps. We now use the inequality (4.8) twice. We have

N∑
k=qm

k≡0[qm]

1

ks

1

2⌊k||kα||⌋+ 1
=

Q∑
h=1

1

(hqm)s
1

2⌊hqm||hqmα||⌋+ 1
≤ 1

qsm

Q∑
h=1

1

hs

≤


1 + log(qm+1/qm)

qm
if s = 1

1

1− s
·
1 + q1−s

m+1

qm
if 0 < s < 1.

(4.10)

Similarily, we have

N∑
k=qm

k≡qm−1[qm]

1

ks

1

2⌊k||kα||⌋+ 1
≤

am+1−1∑
h=1

1

(hqm + qm−1)s
≤ 1

qsm

am+1∑
h=1

1

hs

≤


1 + log(qm+1/qm)

qm
if s = 1

1

1− s
·
1 + q1−s

m+1

qm
if 0 < s < 1,

(4.11)

Adding (4.9), (4.10) and (4.11), whose sum is RN , we immediately obtain the claimed
inequalities. �

We need another lemma.

Lemma 4. Fix an irrational number α. For any ω > 0 and any integer m ≥ 1, we have
∞∑

j=m

1

qωj
≤ 2ω/2+1 − 1

2ω/2 − 1
· 1

qωm
. (4.12)

For any ω > 0 and any integer m ≥ 1 such that qm ≥ 2 and log(qm) ≤ q
ω/2
m , we have

0 ≤
∞∑

j=m

log(qm)

qωj
≤ 2ω/4+1 − 1

2ω/4 − 1
· log(qm)

qωm
. (4.13)

If ω = 1, (4.13) holds for any m ≥ 7.

Remark 5. The inequality (4.14) below and its proof were suggested by the referee, leading
to the upper bounds stated in lemma, which are better than those previously obtained
in [13].

Proof. The inequality qm ≥ 2(m−1)/2 is well-known: the proof given in [8] can be modified
to give

qm+k ≥ 2(k−1)/2qm, m ≥ 0, k ≥ 1. (4.14)

Indeed, we have qk+2 ≥ qk+1 + qk ≥ 2qk, so that qm+2k ≥ 2kqm and qm+2k+1 ≥ 2kqm+1 ≥
2kqm, and (4.14) follows.
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We have
∞∑

j=m

1

qωj
=

1

qωm

(
1 +

∞∑
j=1

qωm
qωm+j

)
≤ 1

qωm

(
1 +

∞∑
j=1

1

2(j−1)ω/2

)
=

2ω/2+1 − 1

2ω/2 − 1
· 1

qωm
.

For m ≥ 2, let us define εm := log log(qm)
log qm

, that is by log(qm) = qεmm . For all j ≥ m,

log(qj) ≤ qεmj , hence (since the assumption ensures that εm ≤ ω/2), we have

0 ≤
∞∑

j=m

log(qj)

qωj
≤

∞∑
j=m

1

qω−εm
j

≤ 2(ω−εm)/2+1 − 1

2(ω−εm)/2 − 1
· 1

qω−εm
m

≤ 2ω/4+1 − 1

2ω/4 − 1
· log(qm)

qωm
.

If ω = 1, the inequality εm ≤ 1/2 holds form ≥ 7. Indeed, the function log log(x)/ log(x)
is decreasing for x ≥ 17 and we have qm ≥ ((1 +

√
5)/2)m−1 ≥ 17 for all m ≥ 7. �

Proof of Proposition 1. Let us assume that s = 1 and fix α ∈ A1. By Lemma 3, for any
integers n,m such that 2 ≤ n < m, we have

qm−1∑
k=qn

||k2α||
k2||kα||

=
m−1∑
j=n

qj+1−1∑
k=qj

||k2α||
k2||kα||

≤ 2
(
1 + ζ(2)

)m−1∑
j=n

1 + log
(
max(qj+1/qj, qj)

)
qj

.

Since both series converge when m → +∞, we deduce that

∞∑
k=qn

||k2α||
k2||kα||

≤ 2
(
1 + ζ(2)

) ∞∑
j=n

1 + log
(
max(qj+1/qj, qj)

)
qj

.

This proves (i) and (ii) in the case s = 1. The proof can immediately be adapted to the
case 0 < s < 1.

Let us prove (iii). Consider α ∈ As with an irrationality exponent µ := µ(α) < 1+ 1
1−s

,

with the associated constant c(α) ≥ 1. We have already shown that qj+1 ≤ c(α)qµ−1
j .

Hence, q1−s
j+1/qj ≤ c(α)1−s/q

1−(µ−1)(1−s)
j . It also follows that

∞∑
j=m

q1−s
j+1

qj
≤ c(α)1−s

∞∑
j=m

1

q
1−(µ−1)(1−s)
j

.

For m ≥ 2, we have qm ≥ 3 and log(qm) ≤ q
s/2
m . We use (4.12) with ω = s and ω =

1− (µ− 1)(1− s) and (4.13) with ω = 1 and ω = s on the right hand side of the inequality
in (ii). This gives (4.3) after some simple computations.

It remains to prove (iv). If α ∈ A1 has a finite irrationality exponent µ(α), we have
qj+1 ≤ c(α)qµ−1

j . Hence log(qj+1) ≤ (µ(α)− 1) log(qj) + log c(α). It follows that

∞∑
k=qm

||k2α||
k2||kα||

≤ 2
(
1 + ζ(2)

)(
(1 + log c(α))

∞∑
j=m

1

qj
+ (µ(α)− 1)

∞∑
j=m

log(qj)

qj

)
.

Equation (4.4) follows (4.12) and (4.13) with ω = 1 in both cases, when m ≥ 7. �
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5. Proof of Theorem 1

5.1. Proof of (i). We fix a rational a/b such that gcd(a, b) = 1 and b ≥ 1. We have

Φs,N

(a
b

)
=

N∑
n=1

1

ns+1

n∑
m=1

cos
(
2mnπ

a

b

)
As in the proof of Theorem 4 (ii), we write m = rb+ j with 1 ≤ j ≤ b and r ≥ 0 and get

Φs,N

(a
b

)
=

1

b

b∑
j=1

N∑
n=1

1

ns
cos
(
2πjn

a

b

)
+O

(
bHN(s+ 1)

)
,

where the implicit constant is absolute. Similarily we treat the sum over n to get

Φs,N

(a
b

)
=

1

b

b∑
j=1

b∑
k=1

cos
(
2πjk

a

b

) ∑
n≤N

n≡k[b]

1

ns
+O

(
bζ(s+ 1)

)
.

Hence, since
∑

n≤N
n≡k[b]

1
ns = 1

b
HN(s) + O(1) where the constant depends at most on s, we

deduce that

Φs,N

(a
b

)
= HN(s)

1

b2

b∑
j=1

b∑
k=1

cos
(
2πjk

a

b

)
+O

(
b
)
,

where the constant depends at most on s. We now need a lemma that will be used again
later.

Lemma 5. Let u, v be integers such that v ≥ 1. We have

1

v

v∑
j=1

v∑
k=1

cos
(
2πjk

u

v

)
= gcd(u, v). (5.1)

Proof. We denote by S the quantity on the left hand side of (5.1). The inner sum over k
equals v if v divides ju and 0 otherwise. Thus,

S =
v∑

j=1

v|ju

1 =
∑

j=1,...,v
v

gcd(u,v)
|j u

gcd(u,v)

1 =
∑

j=1,...,v
v

gcd(u,v)
|j

1 =

gcd(u,v)∑
j=1

1 = gcd(u, v).

�

Applying the lemma with u = a and v = b (which are coprime), we obtain that

Φs,N

(a
b

)
=

1

b
HN(s) +O

(
b
)
, (5.2)

(the constant depends on s), which proves the assertion, in an even more precise form that
will be used later.
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5.2. Proof of (ii). We remark that∣∣∣∣∣cos
(
πn(n+ 1)α

)
sin
(
πn2α

)
sin
(
πnα

) ∣∣∣∣∣ ≤ | sin
(
πn2α

)
|

| sin
(
πnα

)
|
=

sin
(
π||n2α||

)
sin
(
π||nα||

) ≤ π

2

||n2α||
||nα||

.

(We have used the inequalities 2x ≤ sin(πx) ≤ πx, which hold for any x such that 0 ≤
x ≤ 1/2.)

From the definition of Φs,N(α), we get

∣∣∣Φs,N(α)
∣∣∣ ≤ N∑

n=1

∣∣∣∣∣cos
(
πn(n+ 1)α

)
sin
(
πn2α

)
ns+1 sin

(
πnα

) ∣∣∣∣∣ ≤ π

2

N∑
n=1

||n2α||
ns+1||nα||

. (5.3)

We can now use Proposition 1 (i), to conclude that both series converge for any α ∈ As.

5.3. Proof of (iii). • Almost sure convergence of Φs,N . We have proved that Φs,N(α)
converges to Φs(α) for all α ∈ As and moreover, that As is of measure 1.

• Convergence of Φs,N to Φs in L2(0, 1).
Let us first show that (Φs,N)n≥1 converges in L2. For this, it is enough to show that the

sequence is Cauchy. For any integers N ≥ M ≥ 1, we have∫ 1

0

(
Φs,N(α)− Φs,M(α)

)2
dα

=
N∑

m=M+1

N∑
n=M+1

1

(mn)s+1

m∑
k=1

n∑
ℓ=1

∫ 1

0

cos
(
2kmπα

)
cos
(
2ℓnπα

)
dα

=
1

2

N∑
m=M+1

N∑
n=M+1

1

(mn)s+1

∑
1≤k≤m,1≤ℓ≤n

ℓm=kn

1 =
1

2

N∑
m=M+1

N∑
n=M+1

1

(mn)s+1

∑
1≤ℓ≤n

n|ℓm

1

=
1

2

N∑
m=M+1

N∑
n=M+1

gcd(m,n)

(mn)s+1
.

(In the last line, we have used an identity already obtained in the proof of Lemma 5.) For

any integer m ≥ 1, the Dirichlet series with positive terms Am(s + 1) :=
∑∞

n=1
gcd(m,n)
ns+1 is

convergent and thus∫ 1

0

(
Φs,N(α)− Φs,M(α)

)2
dα ≤ 1

2

N∑
m=M+1

Am(s+ 1)

ms+1
.

It remains to prove that the series with term Am(s + 1)/ms+1 converges. For this, we
proceed as follows. The arithmetic function n 7→ gcd(m,n) is multiplicative and bounded
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by m. Therefore, Am(t) converges for any t such that Re(t) > 1 and we have

Am(t) =
∏
p

( ∞∑
k=0

gcd(m, pk)

pkt

)
=
∏
p|m

( vp(m)∑
k=0

pk

pkt
+

∞∑
k=vp(m)+1

pvp(m)

pkt

)
·
∏
p-m

( ∞∑
k=0

1

pkt

)

= ζ(t)
∏
p|m

(
1

p(t−1)vp(m)

(
p(t−1)(vp(m)+1) − 1

pt−1 − 1
+

1

pt − 1

)(
1− 1

pt

))
.

In particular, substituting s+ 1 for t with s > 0, we obtain the bound

Am(s+ 1) ≪
∏
p|m

(
1 +

1

ps

)
,

where the implicit constant depends on s. For any s > 0, we have∏
p|m

(
1 +

1

ps

)
=
∑
d|m

|µ(d)|
ds

≤
∑
d|m

1 ≤ eO(log(m)/ log log(m))

for some absolute constant (See Tenenbaum [16, p. 84]). Hence we have proved that∣∣∣∣Am(s+ 1)

ms+1

∣∣∣∣≪ eO(log(m)/ log log(m))

ms+1
,

where the right-hand side is the term of a convergent series, as was to be proved.
Therefore, ||Φs,N − Φs,M ||2 tends to 0 when N ≥ M → +∞, so that the sequence

(Φs,N)N≥0 converges in L2(0, 1) to a certain function Φ̂s. By a classical property (see [15,
p.68, Theorem 3.12]), we deduce the existence of a subsequence (ΦNk,s)k such that ΦNk,s →
Φ̂s almost surely, which implies that Φs = Φ̂s almost surely.

5.4. Proof of (iv). Given some irrational number α and s ∈ (0, 1], that will be further
specified later, we consider a sequence of coprime rational numbers (am/bm)m that con-
verges to α.

By the mean value theorem, we have∣∣∣Φs,N(α)− Φs,N

(am
bm

)∣∣∣ ≤ N∑
n=1

1

ns+1

n∑
k=1

∣∣∣ cos(2πknα)− cos
(
2πkn

am
bm

)∣∣∣
≤

N∑
n=1

1

ns+1

n∑
k=1

∣∣∣2πknα− 2πkn
am
bm

∣∣∣ ≤ 2π
∣∣∣α− am

bm

∣∣∣ · N∑
n=1

1

ns

n∑
k=1

k

≪ N3−s
∣∣∣α− am

bm

∣∣∣, (5.4)

where the implicit constant depends only on s. Hence,

Φs,N(α) = Φs,N

(am
bm

)
+O

(
N3−s

∣∣∣α− am
bm

∣∣∣) =
HN(s)

bm
+O(bm) +O

(
N3−s

∣∣∣α− am
bm

∣∣∣) (5.5)
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by (5.2) and where the implicit constants depend on s only. We now distinguish the two
cases s = 1 and s ∈ (0, 1).

• Case s = 1. Since HN = log(N) +O(1), Equation (5.5) becomes

Φs,N(α) =
log(N)

bm
+O(bm) +O

(
N2
∣∣∣α− am

bm

∣∣∣). (5.6)

Let us now assume that α is such that

0 <
∣∣∣α− am

bm

∣∣∣ ≤ 1

eδmb2m
, (5.7)

where δm is some function tending to +∞ withm. We can take for example α =
∑

n≥1 1/bn

with bn+1 = 2b
3
n and b1 = 1: for any m ≥ 1, we have

∑m
n=1 1/bn =: am

bm
and obviously

(am, bm) = 1 because am is odd and bm is a pure power of 2. Of course, the diophantine
condition (5.7) implies that α is a Liouville number.

We choose N = Nm = ⌊e 1
2
δmb2m⌋, so that (5.6) becomes

Φ1,Nm(α) =
1

2
δmbm +O(bm) +O(1). (5.8)

From this follows that lim supN Φ1,N(α) = +∞. In fact, (5.8) even implies that Φ1,Nm(α) ≫√
δm log(Nm), with Nm ≈ e

1
2
δmb2m . We can choose δm much larger than bm and would get

bm = O(log(Nm)
ε) for any given ε ∈ (0, 1). Therefore, there exist infinitely many choices

for the sequence (δm)m (corresponding to infinitely many α) such that δm ≫ log(Nm)/b
2
m ≫

log(Nm)
1−2ε, in which case we have

lim sup
N→+∞

Φ1,N(α)

log(N)1−ε
> 0.

Since ε ∈ (0, 1) is arbitrary, this is in fact equivalent to the fact that

lim sup
N→+∞

Φ1,N(α)

log(N)1−ε
= +∞,

for all ε ∈ (0, 1), as claimed. Clearly, we can make this contruction for a dense set of
Liouville numbers.

• Case s ∈ (0, 1). Since HN(s) =
N1−s

1−s
+O(1), Equation (5.5) becomes

Φs,N(α) =
N1−s

(1− s)bm
+O(bm) +O

(
N3−s

∣∣∣α− am
bm

∣∣∣). (5.9)

Let us assume for the moment that α is not a Liouville number and is such that 0 <
|α− am

bm
| ≤ 1

bµm
, where (am, bm) = 1, for some µ > 2+ 4

1−s
, which implies that the irrationality

exponent of α is ≥ 2 + 4
1−s

.

We choose N = Nm =
⌊
b

µ
3−s
m

⌋
so that Eq (5.9) becomes

Φs,Nm(α) =
1

1− s
b

(1−s)µ
3−s

−1
m +O(bm) +O(1). (5.10)
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The condition on µ ensures that (1−s)µ
3−s

− 1 > 1 and thus lim supN Φs,N(α) = +∞. In
fact, (5.10) even implies that for any ε > 0, we have

lim sup
N→+∞

Φs,N(α)

N (1−s)− 3−s
µ

−ε
= +∞.

The reader will easily adapt this argument to the case of Liouville numbers where she will
replace µ by a sequence (µm)m that tends to +∞ with m. In this case, we obtain

lim sup
N→+∞

Φs,N(α)

N (1−s)−ε
= +∞.

Again, this contruction can be done for a dense set of Liouville numbers.

5.5. Proof of (v). To prove the divergence of Φs,N(α) for any α and s ≤ 0, it is enough
to prove that that

∑n
m=1 cos(2πmnα) does not tend to 0 as n → +∞. For a rational

α = a/b, this is immediate because, for any integer n, we have
∑bn

m=1 cos(2πmnbα) =∑bn
m=1 cos(2πmna) = bn, hence

lim sup
n→+∞

1

n

n∑
m=1

cos
(
2πmn

a

b

)
= 1.

For α irrational, this is a consequence of the following lemma.

Lemma 6. For any irrational number α, we have

lim sup
n→+∞

∣∣∣∣ 1n
n∑

m=1

cos(2πmnα)

∣∣∣∣ ≥ L(α)

2π
sin
( 2π

L(α)

)
> 0,

where, by convention, L(α)
2π

sin
(

2π
L(α)

)
= 1 if L(α) = +∞.

Remark 6. We believe that equality holds in Lemma 6. This is in fact the case for any α
such that L(α) = +∞ (hence for almost all irrational numbers), because the right-hand
side equals 1 while the left-hand side is obviously ≤ 1.

Proof. We have

1

n

n∑
m=1

cos(2πmnα) =
cos(πn(n+ 1)α) sin(πn2α)

n sin(πnα)

=
cos(πnα) sin(2πn2α)

2n sin(πnα)
−
(
sin(πn2α)

)2
n

.

Hence ∣∣∣∣1n
n∑

m=1

cos(2πmnα)

∣∣∣∣ =
∣∣ cos(π||nα||)∣∣ · ∣∣ sin(2πn||nα||)∣∣

2n sin(π||nα||)
+O

( 1
n

)
.

Let us denote by (Qk)k a subsequence of the denominators (qk)k of the convergents to α
such that

lim
k→+∞

Qk||Qkα|| =
1

L(α)
.
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We have

lim
k→+∞

∣∣ cos(π||Qkα||)
∣∣ = 1, lim

k→+∞

∣∣ sin(2πQk||Qkα||)
∣∣ = ∣∣ sin(2π/L(α))∣∣,

lim
k→+∞

2Qk sin(π||Qkα||) = 2π/L(α).

Moreover, since L(α) ≥
√
5, we have 0 < 2π/L(α) < π and thus sin(2π/L(α)) > 0.

Therefore,

lim sup
n→+∞

∣∣∣∣ 1n
n∑

m=1

cos(2πmnα)

∣∣∣∣ ≥ lim sup
k→+∞

∣∣∣∣ 1Qk

Qk∑
m=1

cos(2πmQkα)

∣∣∣∣ = L(α)

2π
sin
( 2π

L(α)

)
> 0

and this completes the proof of the lemma. �

6. Proof of Theorem 2

6.1. Proof of (i). We recall that Gs,N(α) is defined by (1.1). We fix a rational number
a/b with gcd(a, b) = 1 and b = 1. Using the Fourier expansion of ||α|| as for FN(α), we
obtain

1

HN(s)
Gs,N(α) =

1

4
− 2

π2

∞∑
ℓ=0

1

(2ℓ+ 1)2
1

HN(s)
Φs,N

(
(2ℓ+ 1)α

)
. (6.1)

We now use Equation (5.2) which says for coprime u, v ≥ 1 that Φs,N(
u
v
) = 1

v
HN(s)+O(v),

where the constant depends only on s. Hence, if u and v are not necessarily coprime, we
have

Φs,N

(u
v

)
=

gcd(u, v)

v
HN(s) +O

( v

gcd(u, v)

)
.

It follows from this and (6.1) that

1

HN(s)
Gs,N

(a
b

)
=

1

4
− 2

π2

∞∑
ℓ=0

gcd(b, 2ℓ+ 1)

b(2ℓ+ 1)2
+O

( b

HN(s)

)
, (6.2)

where the constant depends only on s.
We now represent the main term as a product. The principle is very similar to what was

done earlier. We observe that the arithmetic function ℓ 7→ gcd(b, ℓ) is multiplicative and
that, for any complex number t such that Re(t) > 1,

∞∑
ℓ=0

gcd(b, 2ℓ+ 1)

(2ℓ+ 1)t
=
∏
p≥3

( ∞∑
k=0

gcd(b, pk)

pkt

)
=
∏
p≥3

p|b

( vp(b)∑
k=0

pk

pkt
+

∞∑
k=vp(b)+1

pvp(b)

pkt

)
·
∏
p≥3

p-b

( ∞∑
k=0

1

pkt

)

= ζ(t)

(
1− 1

2t

)∏
p≥3

p|b

(
1

p(t−1)vp(b)

(
p(t−1)(vp(b)+1) − 1

pt−1 − 1
+

1

pt − 1

)(
1− 1

pt

))
.
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Using this for t = 2, we find

lim
N→+∞

1

HN(s)
Gs,N

(a
b

)
=

1

4
− 1

4b

∏
p≥3

p|b

(
(pvp(b)+1 − 1)(p+ 1) + pvp(b)

pvp(b)+2

)
,

which is a rational number < 1
4
.

6.2. Proof of (ii). From (6.1), we have

Gs,N(α) := Gs,N(α)−
1

4
HN(s) = − 2

π2

∞∑
ℓ=0

Φs,N

(
(2ℓ+ 1)α

)
(2ℓ+ 1)2

.

To justify that we can pass to the limit N → +∞ under the sum sign, we will use
Tannery’s theorem, which is a special case of Lebesgue dominated convergence theorem:
Let (An(k))n≥0 be a sequence of complex numbers that depends on an integer parameter
k ≥ 0. Let us assume that

• for all n ≥ 0, limk→+∞ An(k) exists and is finite;
• for all n ≥ 0, there exists Mn such that |An(k)| ≤ Mn for all k ≥ 0 and such that∑

n Mn is convergent.

Then, lim
k→+∞

∞∑
n=0

An(k) =
∞∑
n=0

lim
k→+∞

An(k) < ∞.

We will also need the following lemma.

Lemma 7. (i) For any α ∈ A1 with a finite irrationality exponent µ(α), any integer N ≥ 1
and any integer k ≥ 1, we have |Φ1,N(kα)| ≪ log(k+1), where the constant depends on α.

(ii) Given s ∈ (0, 1), for any α ∈ As with an irrationality exponent µ(α) < 1 + 1
1−s

,

any integer N ≥ 1 and any integer k ≥ 1, we have |Φs,N(kα)| ≪ k(µ(α)−1)(1−s), where the
constant depends at most on α and s.

Proof. Using the inequality (5.3) and statements (iii) and (iv) of Proposition 1, we find

that |Φ1,N(α)| ≪ µ(α) + log c(α) and |Φs,N(α)| ≪ c(α)1−s · 2
√
2
1−(µ(α)−1)(1−s)−1√

2
1−(µ(α)−1)(1−s)−1

, where the

first constant is absolute and the second one depends at most on s. Furthermore, it is
straitghforward to see that if α has a finite irrationality exponent, then for all integer
k ≥ 1, the irrational number kα also has a finite irrationality exponent and that we can
take µ(kα) and c(kα)) such that µ(kα) = µ(α) and c(kα) ≤ c(α)kµ(α)−1. Hence,

|Φ1,N(kα)| ≪ µ(kα) + log c(kα) ≤ µ(α) + (µ(α)− 1) log(k) + log c(α) ≪ log(k)

and similarly

|Φs,N(kα)| ≪ c(kα)1−s · 2
√
2
1−(µ(kα)−1)(1−s) − 1

√
2
1−(µ(kα)−1)(1−s) − 1

≤ c(α)1−sk(µ(α)−1)(1−s) · 2
√
2
1−(µ(α)−1)(1−s) − 1

√
2
1−(µ(α)−1)(1−s) − 1

≪ k(µ(α)−1)(1−s),
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where both constants depend at most on α and s, respectively. �
We can now easily finish the proof of statement (ii) of Theorem 2. Indeed, in the case

s = 1, for any α ∈ A1 with finite irrationality exponent and any integer ℓ ≥ 0, (2ℓ + 1)α
also has a finite irrationality exponent and therefore belongs to A1 (by Lemma 1, (i)).
Hence Φ1,N((2ℓ+ 1)α) converges to Φ1((2ℓ+ 1)α) and by (i) of Lemma 7, we have∣∣∣∣Φ1,N((2ℓ+ 1)α)

(2ℓ+ 1)2

∣∣∣∣≪ log(ℓ+ 1)

(2ℓ+ 1)2
,

where the right-hand side is the term of a convergent series. By Tannery’s theorem, we
have therefore

lim
N→+∞

Gs,N(α) = − lim
N→+∞

2

π2

∞∑
ℓ=0

Φ1,N

(
(2ℓ+ 1)α

)
(2ℓ+ 1)2

= − 2

π2

∞∑
ℓ=0

Φ1

(
(2ℓ+ 1)α

)
(2ℓ+ 1)2

.

In the case s ∈ (0, 1), for any α ∈ As with an irrationality exponent µ(α) < 1+ 1
1−s

and for

any integer ℓ ≥ 0, (2ℓ+1)α also has an irrationality exponent µ((2ℓ+1)α) = µ(α) < 1+ 1
1−s

and therefore belongs to As (by Lemma 1, (ii)). Hence Φs,N((2ℓ + 1)α) converges to
Φs((2ℓ+ 1)α) and by (ii) of Lemma 7, we have∣∣∣∣Φs,N((2ℓ+ 1)α)

(2ℓ+ 1)2

∣∣∣∣≪ 1

(2ℓ+ 1)2−(µ(α)−1)(1−s)
,

where the right-hand side is the term of convergent series, which is implied by (µ(α) −
1)(1− s) < 1. Again, by Tannery’s theorem, we therefore have

lim
N→+∞

Gs,N(α) = − lim
N→+∞

2

π2

∞∑
ℓ=0

Φs,N

(
(2ℓ+ 1)α

)
(2ℓ+ 1)2

= − 2

π2

∞∑
ℓ=0

Φs

(
(2ℓ+ 1)α

)
(2ℓ+ 1)2

.

6.3. Proof of (iii). The almost sure convergence of Gs,N to Gs is a consequence of (ii)
because the sets As all have measure 1. It remains to prove the convergence in L2(0, 1). We
note first that for any integer k ≥ 0 and any integers M ≥ N ≥ 1, we have

∣∣∣∣Φs,M

(
(2k +

1)α
)
− Φs,N

(
(2k + 1)α

)∣∣∣∣
2
=
∣∣∣∣Φs,M(α) − Φs,N(α)

∣∣∣∣
2
by the 1-periodicity of the Φs,N .

Therefore,∣∣∣∣Gs,M(α)− Gs,N(α)
∣∣∣∣

2
≤ 2

π2

∞∑
k=0

1

(2k + 1)2
∣∣∣∣Φs,M

(
(2k + 1)α

)
− Φs,N

(
(2k + 1)α

)∣∣∣∣
2

≤ 2

π2

∞∑
k=0

1

(2k + 1)2
∣∣∣∣Φs,M(α)− Φs,N(α)

∣∣∣∣
2

≤ 1

4

∣∣∣∣Φs,M(α)− Φs,N(α)
∣∣∣∣

2
.

Since the right hand side converges to 0 by Theorem 1 when M ≥ N → +∞, we have
obtained the convergence of the Gs,N in L2(0, 1) to a function which is necessarily equal to
Gs.



24

6.4. Proof of (iv). We will use the same method as in the proof of statement (iv) in
Theorem 1. The proof is based on the “identity” (6.3) given in Lemma 8 below. We will
then leave most of the details to the reader as no new idea will be involved.

Lemma 8. Let us fix s ∈ (0, 1], an irrational number α and a rational number a/b with
gcd(a, b) = 1 and b ≥ 1. For any integers M ≥ 1, N ≥ 1 we have

Gs,N(α) =

(
1

4
− 2

π2

∞∑
ℓ=0

gcd(b, 2ℓ+ 1)

b(2ℓ+ 1)2

)
HN(s)

+O(b) +O
(
HN(s)

M

)
+O

(
HM ·N3−s

∣∣∣α− a

b

∣∣∣), (6.3)

where the implicit constants depend at most on s.

Proof. As the reader will check, all the implicit constants below depend at most on s.
Firstly, starting from the definition, we find that for any integer M ≥ 1∣∣∣∣Gs,N(α)−Gs,N

(a
b

)∣∣∣∣ ≤ 2

π2

( M∑
ℓ=0

+
∞∑

ℓ=M+1

)
1

(2ℓ+ 1)2

∣∣∣Φs,N

(
(2ℓ+ 1)α

)
−Φs,N

(
(2ℓ+ 1)

a

b

)∣∣∣.
Secondly, using the upper bound (5.4), we have

M∑
ℓ=0

1

(2ℓ+ 1)2

∣∣∣Φs,N

(
(2ℓ+ 1)α

)
− Φs,N

(
(2ℓ+ 1)

a

b

)∣∣∣≪ N3−s
∣∣∣α− a

b

∣∣∣ M∑
ℓ=0

1

2ℓ+ 1

≪ HM ·N3−s
∣∣∣α− a

b

∣∣∣.
Thirdly, we know that |Φs,N(α)| ≤ HN(s) in all cases. Hence,

∞∑
ℓ=M+1

1

(2ℓ+ 1)2

∣∣∣Φs,N

(
(2ℓ+ 1)α

)
− Φs,N

(
(2ℓ+ 1)

a

b

)∣∣∣≪ HN(s)
∞∑

ℓ=M+1

1

(2ℓ+ 1)2
≪ HN(s)

M
.

Therefore, we have obtained

Gs,N(α) = Gs,N

(a
b

)
+O

(
HN(s)

M

)
+O

(
HM ·N3−s

∣∣∣α− a

b

∣∣∣)
and the lemma follows by using (6.2). �

To conclude the proof of statement (iv), we first choose a sequence of rational (am/bm)m
that converges to α, with (am, bm) = 1, bm ≥ 1. Then, we take M = ⌊HN(s)⌋ ≪ N1−s, so
that HM ≪ log(N). After some simplifications, (6.3) becomes

Gs,N(α) =

(
1

4
− 2

π2

∞∑
ℓ=0

gcd(bm, 2ℓ+ 1)

bm(2ℓ+ 1)2

)
HN(s) +O(bm) +O

(
log(N)N3−s

∣∣∣α− am
bm

∣∣∣).
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Since
∑∞

ℓ=0
gcd(bm,2ℓ+1)
bm(2ℓ+1)2

≥ 1
bm
, it follows that

Gs,N(α)−
1

4
HN(s) ≤ −2HN(s)

π2bm
+O(bm) +O

(
log(N) ·N3−s

∣∣∣α− am
bm

∣∣∣). (6.4)

For s = 1 or s ∈ (0, 1), we can take for α the same reals as those used during the proof of
statement (v) of Theorem 1 and with the same choices for N in function of bm. In (6.4),

the main term is −2HN (s)
π2bm

and we obtain the divergence at the rate indicated for irrational

numbers with irrationality exponent m(α) > 2 + 4
1−s

when s ∈ (0, 1), or for a dense set of
Liouville numbers when s = 1.

6.5. Proof of (iv). Since L(α) ≥
√
5 for any irrational number α, it follows from statement

(iv) of Theorem 4 that lim infn Fn(α) <
1
4
. Thus, for any s ≤ 0, the sequence n−s

(
Fn(α)− 1

4

)
does not tend to zero and a fortiori the series

∑
n n

−s
(
Fn(α)− 1

4

)
does not converge.

The divergence for α a rational number is a consequence of the oscillating (and nearly
periodic) behavior of Fn(α)− 1

4
as shown in statement (ii) of Theorem 4.

7. Proof of Theorem 3

7.1. Proof of (i). The Fourier expansion of Φs,N(α) is

Φs,N(α) =
N2∑
k=1

cos(2πkα)
∑

1≤m≤n≤N

mn=k

1

ns+1
=

N2∑
k=1

cos(2πkα)
∑
n|k

√
k≤n≤N

1

ns+1

=
∞∑
k=1

cos(2πkα)
∑
n|k

√
k≤n≤N

1

ns+1

and the difficulty is to justify that we can pass to the limit under the sum sign.
By Carleson’s theorem [4], we know that the Fourier expansion of Φs converges almost

surely to Φs because Φs ∈ L2(0, 1). We will give a direct proof of the almost sure conver-
gence that avoids this deep theorem.

Set Ŝs,N(α) :=
∑N

k=1 ϕ̂s,k cos(2πkα), where ϕ̂s,k :=
∑

n|k,n≥
√
k

1

ns+1
. We will show that, for

all α ∈ Bs, limN Ŝs,N(α) = Φs(α). This will prove that the trigonometric series Ŝs(α) :=∑∞
k=1 ϕ̂s,k cos(2πkα) converges almost surely to Φs(α). It will remain to show that Ŝs is

the Fourier series of Φs, i.e. that the coefficients ϕ̂k,s coincide with the Fourier coefficients
ϕk,s of Φs by the usual integrals.
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• Almost sure convergence of a trigonometric series to Φs. For any real number α, we
observe that

Ŝs,N(α) =
N∑

n=1

1

ns+1

∑
1≤k≤n2,k≤N,n|k

cos(2πkα) =
N∑

n=1

1

ns+1

∑
1≤k≤n, k≤N/n

cos(2πknα)

=
∑

1≤n≤
√
N

1

ns+1

n∑
k=1

cos(2πknα) +
∑

√
N<n≤N

1

ns+1

∑
1≤k≤N/n

cos(2πknα) (7.1)

=
∑

1≤n≤
√
N

1

ns+1

n∑
k=1

cos(2πknα) +O
( ∑

√
N<n≤N

1

ns+1||nα||

)
.

In the last step, we have used the following fact: we have∑
1≤k≤N/n

cos(2πknα) = O
( 1

| sin(πnα)|

)
= O

( 1

||nα||

)
,

where the constants are absolute, so that∑
√
N<n≤N

1

ns+1

∑
1≤k≤N/n

cos(2πknα) = O
( ∑

√
N<n≤N

1

ns+1||nα||

)
.

We have thus obtained the equality

Ŝs,N(α) = Φ⌊
√
N⌋,s(α) +O

( ∑
√
N<n≤N

1

ns+1||nα||

)
.

If α ∈ As, then Φ⌊
√
N⌋,s(α) converges to Φs(α) while if α ∈ Bs, then the series

∑
n

1
ns+1||nα||

is convergent by Kruse’s inequality (4.5). Therefore, limN Ŝs,N(α) exists and is equal to
Φs(α) for all irrational numbers α ∈ As ∩ Bs = Bs (at least).

• Convergence of Ŝs to Φs in L2(0, 1). It is clear that, for any s ∈ (0, 1],

|ϕ̂s,k| ≤
1

k(s+1)/2

∑
n|k

1 ≪ eO(log(k)/ log log(k))

k(s+1)/2
.

Hence
∑

k ϕ̂
2
k,s < ∞ and by the Riesz-Fischer Theorem the series Ŝs converges in L2(0, 1).

Its L2-sum is Φs because it converges to it also almost surely (again, by [15, p. 68, Theorem
3.12]).

• Fourier coefficients of Φs. Let (cs,k)k∈Z and (ĉs,k)k∈Z denote the Fourier coefficients of

Φs and Ŝs respectively (which are already known to be 0 for k = 0 and k odd). Since both
functions belong to L2(0, 1), the coefficients can be computed by the usual integrals, and

by the Cauchy-Schwarz inequality, for any k ∈ Z, |cs,k − ĉk,s| ≤ ||Φs − Ŝs||2 = 0. Hence, Ŝs

is the Fourier series of Φs.
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7.2. Proof of (ii). We now know that Ŝs,N(α) = Ss,N(α) and we start again with the
identity (7.1):

Ss,N(α) =
∑

1≤n≤
√
N

1

ns+1

n∑
k=1

cos(2πknα) +
∑

√
N<n≤N

1

ns+1

∑
1≤k≤N/n

cos(2πknα).

We now specify α = a/b ∈ Q with gcd(a, b) = 1, b ≥ 1.
We use again a computation done during the proof of Theorem 4, (ii):∑

1≤k≤N/n

cos
(
2πkn

a

b

)
=

N

bn

b∑
j=1

cos
(
2πjn

a

b

)
+O(b).

Hence, using the fact that
∑b

j=1 cos(2πjn
a
b
) = 0 and = b according to whether b - n or not,

we obtain that

Ss,N

(a
b

)
= Φ⌊

√
N⌋,s

(a
b

)
+N

∑
√
N<n≤N

b|n

1

ns+2
+O

(
b
∑

√
N<n≤N

1

ns+1

)
(7.2)

=
1

b
H⌊

√
N⌋(s)(1 + o(1)) +

1

b(s+ 1)
N

1−s
2 (1 + o(1)) +O(b)

where the implicit constant is absolute.
For s ∈ (0, 1), H⌊

√
N⌋(s) ∼ 1

1−s
N

1−s
2 and therefore

lim
N→+∞

1

H⌊
√
N⌋(s)

Ss,N

(a
b

)
=

2

b(1 + s)
. (7.3)

For s = 1, the term 1
b(s+1)

N
1−s
2 (1 + o(1)) is O(1) and hence

lim
N→+∞

1

H⌊
√
N⌋

S1,N

(a
b

)
=

1

b

and (7.3) also holds for s = 1. This completes the proof of (ii).

7.3. Proof of (iii). Statement (iii) is proved by the same method as the one used to show
that the sequence Φ1,N does not converge for certain Liouville numbers: for this we use
the approximations (5.2) and (7.2).

8. Numerical values

In this section, we present approximate values of the function Φ1(α) for some values of
α, obtained using the freeware GP-Pari. For this, we need to find an upper bound for the
speed of convergence of the sequence Φs,N(α) to its limit. We were not bale to compute
values of Gs(α) despite of the fact that explicit bounds for the speed of convergence of
Gs,N(α) are available. We explain this in more detail below.
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8.1. Speed of convergence.

Proposition 2. (i) If α ∈ A1 has a finite irrationality exponent µ(α), we have∣∣Φ1(α)− Φ1,N(α)
∣∣ ≤ π(1 + ζ(2)) · (3 +

√
2) · log(e · c(α)) · 1

qm

+ π(1 + ζ(2)) · 2
5/4 − 1

21/4 − 1
· (µ(α)− 1) · log(qm)

qm
.

for any integer N such that N ≥ qm with m ≥ 7.
(ii) If s ∈ (0, 1), α ∈ As has an irrationality exponent µ(α) < 1 + 1

1−s
and N ≥ qm ≥ 3,

log(qm) ≤ q
s/2
m and m ≥ 2, then

∣∣Φs(α)− Φs,N(α)
∣∣ ≤ 2πζ(s+ 1) · 2

s/4+1 − 1

2s/4 − 1
· log(qm)

qsm
+

9π/2

1− s
· 1

qm

+
πc(α)1−s

1− s
· 2

√
2
1−(µ(α)−1)(1−s) − 1

√
2
1−(µ(α)−1)(1−s) − 1

· 1

q
1−(µ(α)−1)(1−s)
m

for any integer N such that N ≥ qm with m ≥ 2, qm ≥ 3 and log(qm) ≤ q
s/2
m .

Proof. During the proof of Theorem 1(ii), we saw that
∣∣∣ cos(πn(n+1)α) sin(πn2α)

sin(πnα)

∣∣∣ ≤ π
2
||n2α||
||nα|| for

any n ≥ 1. Hence,

∣∣Φs(α)− Φs,N(α)
∣∣ ≤ ∞∑

n=N

∣∣∣∣∣cos
(
πn(n+ 1)α

)
sin
(
πn2α

)
ns+1 sin

(
πnα

) ∣∣∣∣∣ ≤ π

2

∞∑
n=N

||n2α||
ns+1||nα||

and the conclusion follows by Proposition 1(iii) and (iv). �

The bounds given by Proposition 2 are good enough to provide a few digits of Φs(α)
with a computer for any given α and s and with N of a reasonable size. The situation is
somewhat different for the computation of Gs(α). It is possible to obtain explicit bounds
for the difference

∣∣Gs(α)− Gs,N(α)
∣∣, using the fact that

∣∣Gs(α)− Gs,N(α)
∣∣ ≤ 2

π2

∞∑
k=0

1

(2k + 1)2
∣∣Φs

(
(2k + 1)α

)
− Φs,N

(
(2k + 1)α

)∣∣.
We now use Proposition 2 to bound Φs

(
(2k + 1)α

)
− Φs,N

(
(2k + 1)α

)
but we have to be

careful that the bound depends on qm = qm
(
(2k + 1)α

)
. There does not seem to exist

general results providing a simple link between the sequences (qm(α))m and (qm(ℓα))m,
where ℓ is any positive integer. Therefore, we uniformize the bounds of Proposition 2 by
means of the (already multiply used) inequality qm(α) ≥ 2(m−1)/2. We don’t note the exact
result which seems useless in practice because, for example, to compute the first digit of
G1(

√
2) one needs to compute G1,259717522849(

√
2).
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8.2. Explicit irrationality measures. Our remaining problem is to find numerical ex-
pressions of µ(α) and c(α) for a given α. There is no general recipe. In the proposition
below, we present a small collection of known explicite values of of µ(α) and c(α) for in-
teresting irrational numbers. The values of µ(α) below are not necessarily the best known
(see [11] for more recent results) but, usually, the authors of these refinements take c(α) = 1
and state their results for large enough q, which is not the kind of result we need. In the
case of algebraic numbers, bounds for µ(α) close to Roth’s result have been obtained, but
at the cost of too large values of c(α).

Proposition 3. (i) (Liouville’s inequality [11]) Assume that α is a real algebraic irra-

tional number of degree d, with minimal polynomial P (X) =
∑d

j=0 cjX
j ∈ Z[X]. For

any rational number p/q, q ≥ 1, we have |α − p
q
| ≥ 1

c(α)qµ(α)
with µ(α) = d and c(α) =

(|α|+ 1)d−1
∑d

j=1 j|aj|.
(ii) (Baker’s inequality [1]) For any rational number p/q with q ≥ 1, we have | 3

√
2− p

q
| ≥

10−6

q2.955
. Hence we can take µ( 3

√
2) = 2.955 and c( 3

√
2) = 106.

(iii) (Mignotte’s inequalities [10]) For any rational number p/q with q ≥ 2, we have
|π − p

q
| ≥ 1

q21
and |π2 − p

q
| ≥ 1

q18
. Hence we can take µ(π) = 21, µ(π2) = 18 and c(π) =

c(π2) = 1.
(iv) (Bundschuh’s inequality [3]) For any rational number p/q with q ≥ 1, we have

|e− p
q
| ≥ log log(4q)

18q2 log(4q)
. Hence we can take µ(e) = 2.1 and c(e) = 77.

Proof. For (ii) to (iv), we refer to the cited references. Statement (i) is very classical (in
this or another form) and its proof is left to the reader. �
8.3. Numerical values of Φ1(α). In this section, we present approximations of various
values of Φ1(α). For this, we computed Φ1,N(α) with GP-Pari with N and the reader
will check using Propositions 2 and 3 that we get three, four or five significant digits as
indicated.

α Φ1(α) N√
5−1
2

−1.11153 2.05× 109√
2− 1 −1.08588 2.08× 109√

7565−53
82

−1.08589 2.27× 109
3
√
2 −0.1419(0) 3.39× 108

e −0.3666(3) 1.92× 108

π 0.357(10) 3.20× 108

π2 0.370(67) 2.67× 108

The digits between parentheses are stable for a long time before reaching the indicated
values of N , but our bound does not prove that they are correct. The choice of the

quadratic number
√
7565−53

82
is not arbitrary. Indeed, in the Lagrange spectrum, it is the

number with the fifth smallest Lagrange constant: we have

L

(√
5− 1

2

)
< L

(√
2− 1

)
< L

(√
221− 9

14

)
< L

(√
1517− 23

38

)
< L

(√
7565− 53

82

)
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(see [6, p. 10]). This order is not respected by Φ1:

Φ1

(√
5− 1

2

)
< Φ1

(√
7565− 53

82

)
< Φ1

(√
2− 1

)
.

Furthermore, it seems that Φ1(α) is minimal on [0, 1] at α =
√
5−1
2

.

8.4. Numerical values of Gs(α). We present approximations to four digits for a few
values of G1(α); they are computed from G1,30000(α). However, we cannot garantee that
even a single digit after the decimal point is correct, even though our computations in
Pari-GP suggest this is the case. It seems that

G1

(√
5− 1

2

)
= 0.2169 . . . , G1

(√
2− 1

)
= 0.2103 . . . , G1

(√
7565− 53

82

)
= 0.2105 . . .

and again we observe that the order of the Lagrange spectrum does not seem to be re-
spected.

Finally, let us mention that the related series (amongst many others)
∞∑
n=1

sin(2πn||nα||)
n2 sin(π||nα||)

,
∞∑
n=1

sin(2πn||nα||)
n2||nα||

,
∞∑
n=1

||n2α|| sin2(πn2α)

n2||nα||

all seem to be extremal at α =
√
5−1
2

. The series
∑∞

n=1
||n2α||
n2||nα|| seems to be minimal at

√
5− 2; it is studied in detail in [14] along with the series

∑∞
n=1(−1)n ||n2α||

n2||nα|| which seems

to be minimal at
√
2/2.
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