
Arithmetic theory of E -operators

Tanguy Rivoal,
CNRS and Université Grenoble 1
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Université Paris Sud

CIRM, september 2014



E -functions

We fix an embedding of Q into C.

Definition 1
An E-function is a formal power series E (z) =

∑∞
n=0

an
n! z

n such that

an ∈ Q and there exists C > 0 such that:

(i) the maximum of the moduli of the conjugates of an is ≤ C n+1 for
any n.

(ii) there exists a sequence of rational integers dn, with |dn| ≤ C n+1,
such that dnam is an algebraic integer for all m ≤ n.

(iii) E (z) satisfies a homogeneous linear differential equation with
coefficients in Q(z).

A G -function
∑∞

n=0 anz
n is defined similarly.



Three sets of numbers related to E and G -functions

Definition 2

(i) The set E is the set of all the values taken at algebraic points by
E-functions.

It is a ring. Its group of units contains Q∗ and exp(Q).

(ii) The set G is the set of all the values taken at algebraic points by
(analytic continuation of) G-functions.

It is a ring. Its group of units contains Q∗ and the Beta values
B(Q,Q).

(iii) The set S is the module generated over G by all the values of
derivatives of the Gamma function at rational points.

It is also the module generated over G[γ] by all the values of Γ at
rational points, where γ is Euler’s constant.

It is a ring.



E -operators

Definition 3 (André, 2000)
A differential operator L ∈ Q[x , d

dx ] is an E-operator if the operator

M ∈ Q[z , d
dz ] obtained from L by formally changing

x → − d

dz
,

d

dx
→ z (Fourier-Laplace transform of L)

is a G-operator, i.e. My(z) = 0 has at least one G-function solution for
which it is minimal.

Motivation: Given an E -function E (x) =
∑∞

n=0
an
n! x

n, there exists an
E -operator L, of order µ say, such that LE (x) = 0. Moreover, let

g(z) =

∫ ∞
0

E (x)e−xzdx =
∞∑
n=0

an
zn+1

(Laplace transform of E ).

Then (( d

dz

)µ
◦M

)
g(z) = 0.



Basis of solutions of L at z = 0

Theorem 1 (André 2000)

(i) An E-operator has at most 0 and ∞ as singularities: 0 is always a
regular singularity, while ∞ is an irregular one in general.

(ii) An E-operator L of order µ has a basis of solutions at z = 0 of the
form

(E1(z), . . . ,Eµ(z)) · zM

where M is an upper triangular µ× µ matrix with coefficients in Q
and the Ej(z) are E-functions.

Any local solution F (z) of Ly(z) = 0 at z = 0 is of the form

F (z) =

µ∑
j=1

(∑
s∈Sj

∑
k∈Kj

φj,s,kz
s log(z)k

)
Ej(z) (1)

where Sj ⊂ Q,Kj ⊂ N are finite and φj,s,k ∈ C.

Interesting case for us: φj,s,k ∈ Q.



Connection constants at finite distance
Let F (z) be a local solution of L at z = 0, of the form given in (??).

Any point α ∈ Q \ {0} is a regular point of L.

There exists a basis of local solutions F1(z), . . . ,Fµ(z) ∈ Q[[z − α]],
holomorphic around z = α, such that

F (z) = ω1F1(z) + · · ·+ ωµFµ(z) (2)

where ω1, . . . , ωµ are connection constants.

Theorem 2 (Fischler-R, 2014)
If φj,s,k ∈ Q in (??), then ω1, . . . , ωµ belong to E[logα], and even to E if
F (z) is an E-function.

Proof: Differentiate µ− 1 times (??) to construct a µ× µ linear system
with the ωj ’s as unknown. Solve it at z = α using the wronskian built on
the Fj ’s (Cramer’s rule). Use in particular the fact that, by André’s result

on singularities of E -operators, the wronskian = czρeβz with c ∈ Q∗,
ρ ∈ Q and β ∈ Q.



Basis of solutions of L at z =∞
The situation is more complicated because of divergent series and of
Stokes’ phenomenon.

Let θ ∈ [0, 2π) not in some explicit finite set which contains the
anti-Stokes directions. We have a generalized asymptotic expansion

E (z) ∼
∑
ρ∈Σ

eρz
∑
α∈S

zα
∑
i∈T

log(z)i
∞∑
n=0

cθ,ρ,α,i (n)

zn
(3)

as |z | → ∞ in a large angular sector bisected by {z : arg(z) = θ}.

The sets Σ ⊂ Q, S ⊂ Q and T ⊂ N are finite, and cθ,ρ,α,i (n) ∈ C.

We have found a new explicit construction of (??) by deforming the
integral

E (x) =
1

2iπ

∫
L

g(z)ezxdz (L “vertical”).



The series
∑∞

n=0 cθ,ρ,α,i (n)z−n in (??) are divergent, but

∞∑
n=0

1

n!
cθ,ρ,α,i (n)zn

are finite linear combinations of G -functions.

André (2000): Construction of a special basis H1(z), . . . ,Hµ(z) of
formal solutions at infinity of the E -operator L that annihilates E (z). The
Hk ’s involve series like in (??) but with coefficients in ckQ for some ck .

The asymptotic expansion (??) of E (z) in a large sector bisected by
{z : arg(z) = θ} can be rewritten with this basis as

ωθ,1H1(z) + · · ·+ ωθ,µHµ(z) (4)

with Stokes’ constants ωθ,k .

When θ “crosses” one of the anti-Stokes directions, the values of the
ωθ,k may change . This is the Stokes phenomenon.



Stokes’ constants at infinity

Setting:

E (z) ∼ ωθ,1H1(z) + · · ·+ ωθ,µHµ(z)

∼
∑
ρ∈Σ

eρz
∑
α∈S

zα
∑
i∈T

log(z)i
∞∑
n=0

cθ,ρ,α,i (n)

zn
.

Theorem 3 (Fischler-R, 2014)
Let θ ∈ [0, 2π) be a direction not in some explicit finite set. Then:

(i) The Stokes constants ωθ,k belong to S.

(ii) All the coefficients cθ,ρ,α,i (n) belong to S.

(iii) Let F (z) be a local solution at z = 0 of L, with φj,s,k ∈ Q in (??).
Then Assertions (i) and (ii) hold with F (z) instead of E (z).



Applications to E -approximations

Definition 4
Sequences (Pn) and (Qn) of algebraic numbers are said to form
E-approximations of α ∈ C if

lim
n→+∞

Pn

Qn
= α

and
∞∑
n=0

Pnz
n = a(z) · E

(
b(z)

)
,

∞∑
n=0

Qnz
n = c(z) · F

(
d(z)

)
where E and F are E-functions, and a, b, c , d are algebraic functions in
Q[[z ]] with b(0) = d(0) = 0.

Diophantine motivation: Many sequences of algebraic approximations
of classical numbers are E -approximations. For instance diagonal Padé
approximants to exp(z) evaluated at z algebraic, and in particular the
convergents to e.



The set of E -approximable numbers
Given two subsets X and Y of C, let

X · Y =
{
xy
∣∣ x ∈ X , y ∈ Y

}
,

X

Y
=
{x
y

∣∣∣ x ∈ X , y ∈ Y \ {0}
}
.

Theorem 4 (Fischler-R, 2014)
The set of numbers having E-approximations contains

E ∪ Γ(Q)

E ∪ Γ(Q)
∪ FracG (5)

and it is contained in

E ∪ (Γ(Q) · G)

E ∪ (Γ(Q) · G)
∪
(

Γ(Q) · exp(Q) · FracG
)
. (6)

Proof of (??): Explicit constructions.

Proof of (??): Saddle point method, singularity analysis, and Theorems
?? and ?? because E -approximable numbers appear either as connection
constants or as Stokes’ constants.



E -approximations of Gamma values
Let

Eα(z) =
∞∑
n=0

zn

n!(n + α)
, α ∈ Q \ Z≤0

and define Pn(α) by

1

(1− z)α+1
Eα

(
− z

1− z

)
=
∞∑
n=0

Pn(α)zn ∈ Q[[z ]].

Then,

Pn(α) =
n∑

k=0

(
n + α

k + α

)
(−1)k

k!(k + α)
−→ Γ(α) if α < 1.

The number Γ(α) appears as a Stokes constant in the expansion

Eα(−z) ∼ Γ(α)

zα
− e−z

∞∑
n=0

(−1)n
(1− α)n
zn+1

.



What about Euler’s constant γ = −Γ′(1)?
We conjecture that γ does not have E -approximations. However, let

E (z) =
∞∑
n=1

zn

n!n

and define the sequence (Pn) by

− 1

1− z
E

(
− z

1− z

)
+

log(1− z)

1− z
=
∞∑
n=0

Pnz
n ∈ Q[[z ]].

Then

Pn =
n∑

k=1

(−1)k
(
n

k

)
1

k

(
1− 1

k!

)
−→ γ.

Again, γ appears as a Stokes’ constant in the asymptotic expansion

E (−z) ∼ −γ − log(z)− e−z
∞∑
n=0

(−1)n
n!

zn+1
.



Linear recurrences

(n + 3)(n + 3 + α)Pn+3(α)

− (3n2 + 4nα + 14n + α2 + 9α + 17)Pn+2(α)

+ (3n + 5 + 2α)(n + 2 + α)Pn+1(α)

− (n + 2 + α)(n + 1 + α)Pn(α) = 0

with P0(α) = 1
α , P1(α) = 1+α+α2

α(α+1) and P2(α) = 4+5α+6α2+4α3+α4

2α(α+1)(α+2) .

(n + 3)2Pn+3 − (3n2 + 14n + 17)Pn+2

+ (3n + 5)(n + 2)Pn+1 − (n + 2)(n + 1)Pn = 0

with P0 = 0, P1 = 0 and P2 = 1
4 .



Connection constants for G -functions

Let G (z) be a G -function solution of the minimal differential equation
My(z) = 0 of order µ.

By a deep theorem due to André, Chudnovskii and Katz, at any point
α ∈ Q ∪ {∞}, there is a basis of solutions G1(z), . . . ,Gµ(z) of
My(z) = 0, locally holomorphic in a slit neighbourhood of α, which are
(essentially) G -functions of z − α or 1/z .

Locally around α ∈ Q ∪ {∞}, we have

G (z) = ω1G1(z) + · · ·+ ωµGµ(z).

Theorem 5 (Fischler-R, 2012)
The connection constants ω1, . . . , ωµ belong to G.



The set of G -approximable numbers

Definition 5
Sequences (Pn) and (Qn) of algebraic numbers are said to form
G-approximations of α ∈ C if

lim
n→+∞

Pn

Qn
= α

and the generating functions

∞∑
n=0

Pnz
n,

∞∑
n=0

Qnz
n

are both G-functions.

Theorem 6 (Fischler-R, 2012)
The set of numbers having G-approximations is FracG.


