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E-functions

We fix an embedding of Q into C.

Definition 1
An E-function is a formal power series E(z) = Yoo 222" such that
a, € Q and there exists C > 0 such that:
(i) the maximum of the moduli of the conjugates of a, is < C"*1 for
any n.
(ii) there exists a sequence of rational integers d,, with |d,| < C™1,
such that d,a,, is an algebraic integer for all m < n.

(iii) E(z) satisfies a homogeneous linear differential equation with
coefficients in Q(z).

A G-function Y72 a,z" is defined similarly.



Three sets of numbers related to E and G-functions

Definition 2

(7)

(iif)

The set E is the set of all the values taken at algebraic points by
E-functions.

It is a ring. Its group of units contains @* and exp(Q).

The set G is the set of all the values taken at algebraic points by
(analytic continuation of) G-functions.

It is a ring. Its group of units contains @* and the Beta values

B(Q, Q).

The set S is the module generated over G by all the values of
derivatives of the Gamma function at rational points.

It is also the module generated over G[v] by all the values of T at
rational points, where v is Euler’s constant.

It is a ring.



E-operators

Definition 3 (André, 2000)
d

A differential operator L € Q[x, &
M € Q[z, % obtained from L by formally changing

| is an E-operator if the operator

d d
— =z (Fourier-Laplace transform of L)

X%_E’ dx

is a G-operator, i.e. My(z) =0 has at least one G-function solution for
which it is minimal.

Motivation: Given an E-function E(x) = > 2x", there exists an

E-operator L, of order u say, such that LE(x) = 0. Moreover, let

fe's) oo
g(z) = /0 E(x)eZdx = 2_;) z‘::l (Laplace transform of E).

Then

((:Z)“ o M>g(z) 0.



Basis of solutions of L at z =10

Theorem 1 (André 2000)

(1) An E-operator has at most 0 and co as singularities: 0 is always a
regular singularity, while oo is an irregular one in general.

(i) An E-operator L of order yi has a basis of solutions at z =0 of the

form
(Ei(2),...,Eu(2)) - zM
where M is an upper triangular . X p matrix with coefficients in Q

and the Ej(z) are E-functions.

Any local solution F(z) of Ly(z) =0 at z =0 is of the form
Z(ZZ¢JSkz log(2)* ) Ei(2) (1)
j=1  seS;kekK;

where 5; C Q, K; C N are finite and ¢; s« € C.

Interesting case for us: ¢; ., € Q.



Connection constants at finite distance
Let F(z) be a local solution of L at z =0, of the form given in (?7).

Any point o € Q\ {0} is a regular point of L.

There exists a basis of local solutions Fi(z), ..., F,(z) € Q[[z — o],
holomorphic around z = «, such that

F(z) = wiFi(2) + -+ wuFu(2) (2)
where wy, ..., w, are connection constants.

Theorem 2 (Fischler-R, 2014)

If §j sk € Q in (7?), then wi,...,w, belong to E[loga], and even to E if
F(z) is an E-function.

Proof: Differentiate n — 1 times (??) to construct a p x u linear system
with the wj’'s as unknown. Solve it at z = a using the wronskian built on
the F;'s (Cramer’s rule). Use in particular the fact that, by André’s result
on singularities of E-operators, the wronskian = czPeP” with c € Q,

p€Qand e



Basis of solutions of L at z = o0

The situation is more complicated because of divergent series and of
Stokes’ phenomenon.

Let 6 € [0,27) not in some explicit finite set which contains the
anti-Stokes directions. We have a generalized asymptotic expansion

Zepzz Z'Og(z Z ep,a,(n) (3)

pEX a€ES ieT n=0

as |z| — oo in a large angular sector bisected by {z : arg(z) = 6}.
Thesets L C Q, SC Qand T C N are finite, and ¢p,,.4.i(n) € C.

We have found a new explicit construction of (??) by deforming the
integral

1
2im

E(x) = /g(z)ezxdz (L “vertical).
L



—n

The series Y2 €p,p.a,i(n)z~" in (?7) are divergent, but

— 1
Z mcé,p,a,i(”)zn
n=0
are finite linear combinations of G-functions.
André (2000): Construction of a special basis Hi(z),..., H,(z) of

formal solutions at infinity of the E-operator L that annihilates E(z). The
H,'s involve series like in (??) but with coefficients in ¢,Q for some c.

The asymptotic expansion (??) of E(z) in a large sector bisected by
{z : arg(z) = 0} can be rewritten with this basis as

OJ971H1(Z)+"'+UJ97#HH(Z) (4)

with Stokes’ constants wy .

When 6 “crosses” one of the anti-Stokes directions, the values of the
wg,,k may change . This is the Stokes phenomenon.



Stokes’ constants at infinity

Setting:

E(z) ~worHh(2) + -+ wo, Hu(2)

o

NZepZZzo‘Zlog ’Zc’p’a'

pEX a€ES ieT n=0

Theorem 3 (Fischler-R, 2014)

Let 0 € [0,27) be a direction not in some explicit finite set. Then:
(i) The Stokes constants wy x belong to S.

(ii) All the coefficients cg , o.i(n) belong to S.

(iii) Let F(z) be a local solution at z =0 of L, with ¢; s € Q in (2?).
Then Assertions (i) and (ii) hold with F(z) instead of E(z).



Applications to E-approximations

Definition 4
Sequences (P,) and (Q,) of algebraic numbers are said to form
E-approximations of a € C if

lim — =«
n—+o0o Qp

and

Z Pn,z" = a(z) - E(b(z)), Z Qnz" = c(2) - F(d(2))

where E and F are E-functions, and a, b, c, d are algebraic functions in

Q[[z]] with b(0) = d(0) = 0.

Diophantine motivation: Many sequences of algebraic approximations
of classical numbers are E-approximations. For instance diagonal Padé
approximants to exp(z) evaluated at z algebraic, and in particular the
convergents to e.



The set of E-approximable numbers
Given two subsets X and Y of C, let

X~Yz{xy{x€X7y€ Y}, é:{;‘XGX,yG Y\{O}}

Theorem 4 (Fischler-R, 2014)

The set of numbers having E-approximations contains

EUT(Q)
m U Frac G (5)
and it is contained in
EU(M(Q)-G) =

Proof of (??): Explicit constructions.

Proof of (??): Saddle point method, singularity analysis, and Theorems
?? and ?? because E-approximable numbers appear either as connection
constants or as Stokes’ constants.



E-approximations of Gamma values

Let -
Zn
Ea(z)zzoin!(nqLa)’ aEQ\ZSO

and define P,(a) by

(1_12)a+15a< 1_Z> ipn a)z" € Q[[z]].

n=0

Then,

= [nta) (-1 .
P,,(cu)fk:0 <k+a>k!(k—|—a) — () if o<1

The number I'(«) appears as a Stokes constant in the expansion

o0
ey (-~
Zn—t—l

n=0

Eo(—2z) ~



What about Euler’s constant v = —I'(1)?

We conjecture that « does not have E-approximations. However, let

oo z"
E(z) = Z n'n
n=1 """

and define the sequence (P,) by

S——: ( - Z) poglod) LI

Then .
Nk (™YoL
Pn = 1( 2 <k)k(l k!)—>v'

Again, v appears as a Stokes’ constant in the asymptotic expansion

E(~2) ~ —y — log(2) — e * (-1

n=0



Linear recurrences

(n+3)(n+3+ ) Pass(a)
— (3n® + 4na + 14n + a? 4+ 9a + 17) P, 1o(a)
+ (Bn+54+2a)(n+2+ a)Pyi1(a)
—(n+24+a)(n+1+a)Py(a)=0

with Po(a) = 2, Pi(a) = Late and Py(a) = #43ateefpderiat,

(n+43)2Poy3 — (3n% 4 14n + 17) P,y
+Bn+5)(n+2)Poy1 —(n+2)(n+1)P,=0

with Pp =0, P =0and P, = 3



Connection constants for G-functions

Let G(z) be a G-function solution of the minimal differential equation
My(z) = 0 of order p.

By a deep theorem due to André, Chudnovskii and Katz, at any point
o € QU {oo}, there is a basis of solutions Gi(z), ..., G,(z) of

My(z) = 0, locally holomorphic in a slit neighbourhood of «, which are
(essentially) G-functions of z — « or 1/z.

Locally around o € Q U {00}, we have

G(z) =wi1Gi(2) + - +wuGu(2).

Theorem 5 (Fischler-R, 2012)

The connection constants wy, . ..,w, belong to G.



The set of G-approximable numbers

Definition 5
Sequences (P,) and (Q,) of algebraic numbers are said to form
G-approximations of o € C if

! P,
m -— =«
n——+oo Qn

and the generating functions

o0 oo
n n
§ P,z", E Qnz
n=0 n=0

are both G-functions.

Theorem 6 (Fischler-R, 2012)

The set of numbers having G-approximations is Frac G.



