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Abstract. Let Bn(x) denote the number of 1’s occuring in the binary expansion of an
irrational number x > 0. A difficult problem is to provide non-trivial lower bounds for
Bn(x) for interesting number numbers like

√
2, e or π: their conjectural simple normality

in base 2 is equivalent to Bn(x) ∼ n/2. In this article, amongst other things, we prove
inequalities relating Bn(x+y), Bn(xy) and Bn(1/x) to Bn(x) and Bn(y) for any irrational
numbers x, y > 0, which we prove to be sharp up to a multiplicative constant. As a by-
product, we provide an answer to a question raised by Bailey et al. (On the binary
expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16 (2004), no. 3, 487–518)
concerning the binary digits of the square of a series related to the Fibonacci sequence.
We also obtain a slight refinement of the main theorem of the same article, which provides
non-trivial lower bound for Bn(α) for any real irrational algebraic number. We conclude
the article with effective or conjectural lower bounds for Bn(x) when x is a transcendental
number.

1. Introduction

The integer B(m) is defined to be the number of 1’s in the finite binary expansion of
the non negative integer m, with B(0) = 0. It is a classical fact that B is sub-additive and
sub-multiplicative, i.e. that for all integers m,n ≥ 0, we have B(m+n) ≤ B(m)+B(n) and
B(mn) ≤ B(m)B(n): see [5, 21] or Section 2, where we provide a proof for completeness’
sake. These inequalities are sharp, as the examples 10 + 1 = 11 et 111× 100100 = 111111
(in base 2) show. The behavior of B(mj) (m fixed and j → +∞) was studied in [15, 21].

In this article, we will first prove related results when m is allowed to be an irrational
number (in Theorem 1) via a study of the function

Bn(x) = #{j ≤ n : xj = 1}
where n ≥ 0 and x = (x−p · · ·x−1x0. x1x2x3 · · · )2 is the binary expansion of x ≥ 0. The
case where x is a rational number of the form n/2m (n,m ∈ N) is ambiguous: in this case,
there are two possible binary expansions, a finite and an infinite one. The only rational
numbers of this form that we will consider in this text are the integers and we will only
use their finite binary expansion; with this convention, for any positive integer x (written
in its finite binary expansion), we have Bn(x) = B0(x) = B(x). In any occurence of the
quantity Bn(x), it will be tacitly supposed (if not explicitely stated) that x is either an
irrational number or an integer.

Theorem 1 below has some interesting consequences, which we now describe as a motiva-
tion for the article. We recall that a real number x is said to be simply normal in base 2 if
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Bn(x) ∼ n/2 and 2-normal if any blocks of m digits appears with the frequency 2−m. Cer-
tain rational numbers like 1/3 = (0.01010101 . . .)2 and certain artificial irrational numbers
are simply normal in base 2 (or even 2-normal as in the case of the base 2 Champernowne

number
∑

k≥1 k2−ck with ck = k +
∑k

j=1blog2 jc), nobody knows if this is the case for more
classical numbers.

A simple method to provide lower bound of Bn(x) for more “natural” irrational numbers
x like e or π is the following. Assume that x has a finite irrationality exposant, i.e. that
there exists µx ∈ [2, +∞[ such that |x − p/q| ≥ q−µx−ε for any ε > 0 and q Àε 1. Then,
we have that

Bn(x) ≥ log(n)

log(µx + ε)
+O(1) (1.1)

for n Àε 0. We can apply (1.1) to e and π because it has been proved that µe = 2
(Bundschuh [7] et Davis [8]) and 2 ≤ µπ ≤ 8.1 (Hata [11]) ; surprinsingly, these lower
bounds for Bn(e) and Bn(π) are the best known to date. The proof of (1.1) runs as
follows. Denoting by pk2

−nk the truncations of the binary expansion
∑∞

k=1 2−nk of x, we
have for all k Àε 0

1

2(µx+ε)nk
≤

∣∣∣x− pk

2nk

∣∣∣ ≤ 1

2nk+1−1
,

from which we deduce that nk+1 ≤ (µx + ε)nk + 1. Hence nk ≤ cε,x(µx + ε)k with cε,x > 0.
We now remark that Bn(x) = #{k : nk ≤ n} ≥ #{k : cε,x(µx + ε)k ≤ n} = #{k : k ≤
(n− log cε,x)/ log(µx + ε)} and (1.1) follows. See the final section for an elaboration of this
method.

When α is a real irrational algebraic number, we can obtain the same kind of bound by
using Roth’s theorem [20] that µα = 2. Ridout’s theorem [18] (which claims that µα = 1
when q is restricited to a power of an integer) gives a result better than Roth’s theorem
but the improvement is marginal: for all ε > 0, we have Bn(α) ≥ log(n)/ log(1+ε)+O(1).
However, a dramatic improvement was recently obtained by Bailey et al. [5], who proved
that

Bn(α) ≥ cα n1/d
(
1 + o(1)

)
(1.2)

for all real positive algebraic numbers α of degree d ≥ 2 over Q. Denoting by adX
d + · · ·+

a1X + a0 the minimal polynomial of α over Q, they obtained cα = (1 + log ad)
−1/d when

a0 < 0 and aj ≥ 0 otherwise (“case S” –for special– in the rest of the article). They only
got cα = (2ad)

−1/d in the general case, whose proof is much more complicated (1): it seems
that the use of Ridout’s theorem instead of Roth’s theorem in their proof improves the

constant to cα = a
−1/d
d . They used the bound (1.2) to prove that the number

∑
n≥1 2−f(n)

is transcendental over Q provided f(n) grows faster than any power of n.
As a consequence of Theorem 1, we provide another proof of case S in Corollary 1 and

also obtain a simpler proof of the bound Bn(α) À n1/d for a class of algebraic numbers α

1This result suggests an analogy with the Liouville-Thue-Siegel-Roth theorem concerning the diophan-
tine approximation of algebraic numbers α of degree d by rationals: (1.2) can be viewed as the analogue
of Liouville’s theorem (µα ≤ d) and the expected bound that Bn(α) À n would be the analogue of Roth’s
theorem (µα = 2).
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that do not fall obviously into case S. We also note that a recent result of Adamczewski,
Bugeaud and Luca [1, 2] implies in particular that the binary digits of algebraic real
numbers can not be generated by an automaton (see [3] for definitions). These two results
are the most important ones towards the conjectural normality in all bases of algebraic
numbers.

We now state some of the results proved in this article.

Theorem 1. Let x, y > 0 be real irrational numbers, otherwise stated.
(i) If x + y is irrational, we have for all n À 0,

Bn(x + y) ≤ Bn(x) + Bn(y) + 1. (1.3)

If x + y ∈ N, then we replace Bn(x + y) by n + 1.

(ii) If xy is irrational, we have for all n À 0,

Bn(xy) ≤ Bn(x) ·Bn(y) + log2bx + y + 1c. (1.4)

If y is an integer, we have Bn(xy) ≤ Bn(x) ·B(y) + B(y).

(iii) For all integer A > 0, we have for all n À 0,

Bn(x) ·Bn(A/x) ≥ n− 1− blog2(x + A/x + 1)c. (1.5)

(iv) The three inequalities (1.3), (1.4) and (1.5) are sharp, up to a multiplicative factor
for the last two.

Remark. When 0 < x, y < 1, results slightly better than (1.3) and (1.4) are indicated
in [4, p. 157]: Bn(x + y) ≤ Bn(x) + Bn(y) and Bn(xy) ≤ Bn(x) · Bn(y). On the other
hand, inequality (iii) seems to be new. The results proved in Theorem 1 are sufficient for
our purposes.

The sharpness of (1.3) (up to an additive constant) follows from the examples x =∑
k≥1 2−2k

and y =
∑

k≥1 2−3k
. We shall prove the sharpness of (1.4) and of (1.5) (which

are less obvious) in Section 4: the Theorem 2 of that section answers a question in [5].
We obtain lower bounds of Bn(α) for certain classes of algebraic numbers α of the same

form as (1.2) above.

Corollary 1. (i) Let α be an algebraic number in class S of degre d ≥ 2 and dominant
coefficient ad. We have that

Bn(α) ≥ B(ad)
−1/dn1/d

(
1 + o(1)

)
.

(ii) Let β be a positive irrational algebraic number, of degree d ≥ 2, such that there exist
two polynomials P, Q with positive integers coefficients and two positive integers a, b such
that P (β) = a + bQ(β)−1. Then, we have

Bn(β) ≥ (
B(p)B(q)

)−1/δ
n1/δ

(
1 + o(1)

)
,

where δ = deg(PQ) and p, q are the dominant coefficients of P and Q respectively.
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Remarks. The lower bound in (i) is a small improvement on Theorem 5.2 in [5] (proved
with 1 + log(ad) instead of our B(ad)). It is presented here in order to illustrate the use-
fulness of the simple bounds in Theorem 1.

The most favorable case in (ii) is when P (X)Q(X)−aQ(X)−b is the minimal polynomial
of β, in which case δ is the degree of β over Q. For example, the positive real root β of
the polynomial 8x3 − 2x2 + 4x − 3, which is irreducible over Q, satisfies the equation
4β = 1 + 2(2β2 + 1)−1 and therefore, by (ii), we have Bn(β) ≥ n1/3(1 + o(1)). Note that
β does not belong to class S and Theorem 7.1 in [5] yields the weaker bound Bn(β) ≥
16−1/3 n1/3(1 + o(1)).

If we allow the case b = 0 in (ii), we recover (i) provided the constant term of P is < a.
However, the proof of (ii) requires that b > 0.

We now state a second application of Theorem 1. At first sight, it is not completely
improbable that certain powers of a transcendental number x might not be simply normal
when x itself is not simply normal in base 2: indeed, the rather impredictable “mixing”
effect of carries might produce a smoothing “law of large powers”. However, this is generally
not the case as shown by the following result.

Corollary 2. There exists a transcendental real number ξ such that none of its powers ξj

(j ∈ N?) is simply normal in base 2.

Remark. Let α be a real irrational algebraic number which is not of the form α = (a/b)1/d,
a, b, d ∈ N. Then,for all integer j ≥ 1, the number αj is again a real irrational algebraic
number and it is therefore expected that all the powers of α are normal in all bases.

Proof. It is enough to produce transcendental numbers ξ such that, for example, Bn(ξ) ¿
log(n): inequality (1.4) implies that Bn(ξj) ¿ log(n)j for all integer j ≥ 1, and thus the
numbers ξj all fail to be simply normal in base 2. Any one of the numbers ξ =

∑∞
n=1 a−bn

,
with the integers a ≥ 2, b ≥ 2, is suitable. Its transcendence follows, for instance, from
Roth’s theorem when b ≥ 3 and from Mahler’s method when b = 2 (see [17]).

Incidentaly, Kempner [12] was the first to provide a transcendence proof of these num-
bers. When b = 2, an unusual and original proof, based on the counting of non-zero digits
of powers of ξj, was recently given by Knight [13]; as noticed by Bailey et al., the lower
bound (1.2) provides a proof in the same “digital” spirit. ¤

2. Warmup

In this short section, we provide a proof of the subadditivity and submultiplicativity of
the function B. We follow the presentation in [5].

Subadditivity of B. Let m denote a positive integer written in base 2 as (mk · · ·m0)2 with
mk = 1 and mi ∈ {0, 1}. Let Lj denotes the minimal integer ` ≥ 0 such that mj+` = 0.
The usual rule of add with carry implies that B(m + 2j) = B(m) + 1− Lj ≤ B(m) + 1.
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If n is a positive integer written as n =
∑d

`=1 2j` , then by successive applications of the
previous equality, we obtain

B(m + n) = B

(
m +

d∑

`=1

2j`

)
≤ B

(
m +

d−1∑

`=1

2j`

)
+ 1 ≤ B

(
m +

d−2∑

`=1

2j`

)
+ 2

≤ · · · ≤ B

(
m +

0∑

`=1

2j`

)
+ d = B(m) + d = B(m) + B(n).

Submultiplicativity of B. We first remark that obviously B(2jm) = B(m). Therefore

with n =
∑d

`=1 2j` , we have

B(mn) = B

(
m

d∑

`=1

2j`

)
≤

d∑

`=1

B(2j`m) =
d∑

`=1

B(m) = B(m)B(n),

where we have used the subadditivity of B.

3. Proof of Theorem 1, parts (i), (ii) and (iii)

For all integer n ≥ 0, let xn = b2nxc, yn = b2nyc, sn = b2n(x + y)c and pn = b2nxyc.
(i) For all n ≥ 0, we have xn + yn ≤ sn < xn + yn + 2 hence sn = xn + yn + zn with

zn ∈ {0, 1}. It follows that

B(sn) = B(xn + yn + zn) ≤ B(xn) + B(yn) + B(zn).

Let’s suppose that x + y is irrational. Then, since B(sn) = Bn(x + y), B(xn) = Bn(x),
B(yn) = Bn(y) and B(zn) ≤ 1, we obtain

Bn(x + y) ≤ Bn(x) + Bn(y) + 1.

If x + y ∈ N, then Bn(x) + Bn(y) ≥ n because the sum of the n-th digits after the point
of x and y is 1 (x, y are irrational numbers).

(ii) We now show the second inequality.
We first assume that x, y and xy are irrational. Since there exist two reals zn and σn

satisfying

x =
xn

2n
+ ρn, y =

yn

2n
+ σn and 0 < ρn, σn <

1

2n
,

we have

0 < xy − xnyn

22n
= ρn

yn

2n
+ σn

xn

2n
+ ρnσn <

x + y + 1/2n

2n
.

Furthermore, we have the binary expansion xnyn =
∑2n+n0

`=0 ε`2
` where n0 ∈ Z (depending

only on x and y), ε` ∈ {0, 1} and ε2n+n0 = 1. For all n ≥ −n0, we write

xnyn =
n−1∑

`=0

ε`2
` +

2n+n0∑

`=n

ε`2
` = an + 2nbn



6

with 0 ≤ an ≤ 2n − 1. Thus we get

0 < xy − bn

2n
<

x + y + 1/2n

2n
+

an

22n
≤ x + y + 1

2n
. (3.1)

We now remark that 2n(pn + 1) = 2n(b2nxyc + 1) > b2nxcb2nyc = xnyn ≥ 2nbn, which
implies that pn > bn − 1 and hence pn ≥ bn (these are integers). Therefore, comparing the
bound

0 < xy − pn

2n
<

1

2n

and the bound (3.1), we obtain that pn = bn + vn with vn ∈ {0, 1, . . . , bx + y + 1c}.
Finally, using the fact that B(vn) ≤ log2bx + y + 1c and that B(xnyn) ≥ B(bn) (because

B(xnyn) = B(an + 2nbn) = B(an) + B(bn) ≥ B(bn)), we obtain that

B(pn) = B(bn + vn) ≤ B(bn) + B(vn)

≤ B(xnyn) + log2bx + y + 1c
≤ B(xn) ·B(yn) + log2bx + y + 1c,

which is nothing but (1.4) because B(pn) = Bn(xy) (we use here the fact that xy is
irrational).

We now suppose that x is irrational and that y = 2`1 + · · · + 2`k is an integer. Then,
by (i) we have

Bn(xy) = Bn

(
2`1x + · · ·+ 2`kx

) ≤ Bn

(
2`1x) + · · ·+ Bn

(
2`kx

)
+ k

= k ·Bn

(
2`1x) + k = Bn(x) ·B(y) + B(y).

This concludes the proof of (ii).

(iii) For all integer n ≥ 0, letting xn = b2nxc and yn = b2nA/xc, we have that

0 < un = x− xn

2n
<

1

2n
et 0 < vn =

A

x
− yn

2n
<

1

2n
.

(The inequalities for vn hold because A > 0.) Hence,

A = x · A

x
=

(
xn

2n
+ un

)
·
(

yn

2n
+ vn

)
=

xnyn

22n
+ vn

xn

2n
+ un

yn

2n
+ unvn

and

0 < vn
xn

2n
+ un

yn

2n
+ unvn <

x + A/x + 1

2n
.

For n ÀA,x 1, we have 1− (x + A/x + 1)/2n > 0 and thus

{xnyn

22n

}
=

{
A− vn

xn

2n
− un

yn

2n
− unvn

}

=
{

1− vn
xn

2n
− un

yn

2n
− unvn

}
> 1− x + A/x + 1

2n
> 1− 1

2n−b1+log2(x+A/x+1)c > 0.
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(The fact that A is an integer is used to invoke the 1-periodicity of the fractional part
function {·}.) These inequalities imply that we have at least B(xnyn) ≥ n− 1− blog2(x +
A/x + 1)c.

Since x and A/x are irrational, we have B(xn) = B(x) et B(yn) = B(A/x). The
submultiplicativity of B finally yields that

Bn(x) ·Bn(A/x) ≥ n− 1− blog2(x + A/x + 1)c.

4. Proof of Theorem 1, part (iv)

Borel proved that almost all real numbers are normal in all bases ([16, p. 98]) and thus
the set of pairs of real numbers which are normal in base 2 is of full measure. Hence, for
almost all pairs of irrational numbers (x, y), inequality (1.4) is of the trivial form 2n ≤ n2:
therefore, we could expect to prove a stronger inequality for all pairs of real numbers.
However, this is not the case; the following examples show that there exist pairs (x, y) for
which (1.4) is optimal (up to a multiplicative constant) without further hypothesis on x
and y. Let

K =
∞∑

n=1

1

22n and F =
∞∑

n=2

1

2Fn
,

where (Fn)n≥0 is the Fibonacci sequence defined by F1 = F2 = 1 and Fn+2 = Fn+1 + Fn

for n ≥ 1. Let φ = (1 +
√

5)/2.

Theorem 2. As n → +∞, we have

Bn(K ) ∼ log(n)

log(2)
and Bn(K 2) ∼ log2(n)

2 log2(2)
,

as well as

Bn(F ) ∼ log(n)

log(φ)
and Bn(F 2) ∼ log2(n)

2 log2(φ)
.

Remarks. The powers of K are also considered in [14], where it is proved that their binary
expansions are automatic.

The result for F 2 answers the second question in Section “Open problems”, p. 27 of [5].
More generally, numerical computations suggest that, for all j ∈ N?, we have

Bn(K j) ∼ logj(n)

j! logj(2)
and Bn(F j) ∼ logj(n)

j! logj(φ)
.

as n → +∞.

Proof of Theorem 2. The statements for Bn(K ) and Bn(F ) are clear. We now consider
the cases of K 2. We have

K 2 =

( ∑

j=k≥1

+2
∑

j>k≥1

)
1

22j+2k =
∞∑

n=2

1

22n + 2
∞∑

m=1

em

2m
,
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where em is the number of ways of writing m as m = 2j + 2k with j > k ≥ 1. Obviously,
by uniqueness of the binary expansion, we have em ∈ {0, 1}. Since the sets P = {2j, j ≥ 1}
and Q = {2j + 2k − 1, j > k ≥ 1} have empty intersection, we have

K 2 =
∑

n∈PtQ

1

2n
.

Let P tQ = R = {R1, R2, . . .}: by definition, Bn(K 2) = #{k : Rk ≤ n}. For all ` ≥ 1,
there exist exactly `−1 elements in Q∩{2` +1, . . . , 2`+1}, which are of the form 2` +2k−1
with 1 ≤ k < `. Hence, the set Q∩{1, 2, . . . , 2n+1} has

∑n
`=1(`−1) = n(n−1)/2 elements.

Furthermore, P ∩ {1, 2, . . . , 2n+1} = n hence R ∩ {1, 2, . . . , 2n+1} has kn = n(n + 1)/2
elements, whose largest is 2n+1, i.e. Rkn = 2n+1.

Let now j ≥ 1 be any integer: there exists an integer n ≥ 0 such that j ∈ {kn, kn +
1, . . . , kn+1}. We then have

2(n + 1)

(n + 2)
=

log2

(
Rkn

)2

kn+1

≤ log2

(
Rj

)2

j
≤ log2

(
Rkn+1

)2

kn

=
2(n + 2)2

n(n + 1)
,

which implies that lim
j→+∞

log
(
Rj

)2
/j = 2 log2(2) and hence that

#
{
k : Rk ≤ n

}
= #

{
k : log2(Rk) ≤ log2(n)

} ∼ log2(n)

2 log2(2)
,

as desired.

For F 2, we adapt the previous proof by using the fact that every positive integer N
can be written uniquely in the form N = Fn1 + Fn2 + · · · + Fnk

, where the set {1 < n1 <
n2 < . . . < nk} does not contain two consecutive integers. This expansion is known as
Zeckendorf decomposition [22], Z-decomposition in short. We have

F 2 =

( ∑

j=k≥2

+2
∑

j=k+1
k≥2

+2
∑

j≥k+2
k≥2

)
1

2Fj+Fk

=
∞∑

n=2

1

2Fn+Fn
+

∞∑
n=2

1

2Fn+1+Fn−1
+

∑
j≥k+2

k≥2

1

2Fj+Fk−1

=
4∑

n=2

1

22Fn
+

∞∑
n=5

1

22Fn
+

∞∑
n=4

1

2Fn−1
+

∑
j≥k+2

k≥2

1

2Fj+Fk−1
. (4.1)

We will now show that the terms of the three infinite sums in (4.1) are pairwise distinct
and thus that these three series provides the binary expansion of F 2, up to the first finite
sum, which implies a possible finite number of harmless carries.

For this, we note that the Z-decomposition of 2Fn +1 is Fn+1 +Fn−2 +F2 for n ≥ 5 and
that Fm (m ≥ 4) and Fj +Fk (j ≥ k +2, k ≥ 2) are already Z-decompositions. We deduce
that the equations 2Fn = Fm−1 (n ≥ 5,m ≥ 4), 2Fn = Fj +Fk−1 (n ≥ 5, j ≥ k+2, k ≥ 2)
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and Fm = Fj + Fk (m ≥ 4, j ≥ k + 2, k ≥ 2) have no solution, which proves the above
claim.

Thus, we have

F 2 =
4∑

n=2

1

22Fn
+

∑
m∈A1tA2tA3

1

2m

where the sets A1 = {2Fn, n ≥ 5}, A2 = {Fm − 1,m ≥ 4} and A3 = {Fj + Fk − 1, j ≥
k + 2, k ≥ 2} have pairwise empty intersections. The rest of the proof is now similar to
that of K 2. We note that for ` ≥ 4, the set

A3 ∩ {F` + 1, F` + 2, . . . , F`+1} = {F` + F3 − 1, F` + F4 − 1, . . . , F` + F`−2 − 1}
has `− 4 elements while A1 ∩ {F` + 1, F` + 2, . . . , F`+1} and A2 ∩ {F` + 1, F` + 2, . . . , F`+1}
have (at most) one element. It follows that Bn(F 2) ∼ log2(n)/2 log2(φ). ¤

We now consider the optimality of (1.5). It will be enough to produce an irrational
number E > 0 such that Bn(E ) ³ √

n and Bn(1/E ) ³ √
n: such a number was mentionned

in [5] (for another purpose) but no proof of the growth of Bn(E ) was provided. We therefore
give one below. Starting from the binary expansion n = (xp · · · x1x0)2 of an integer n, we
define the sets S = {n ∈ N : ∀j ≥ 0, x2j = 0} and T = {n ∈ N : ∀j ≥ 0, x2j+1 = 0} (which
satisfy S ∩ T = {0} et 2T = S) and then the real numbers

E =
∞∏

n=0

(
1 +

1

222n

)
=

∑
s∈S

1

2s
and Ê =

∞∏
n=0

(
1 +

1

222n+1

)
=

∑
t∈T

1

2t
.

Since any integer n can be written exactly once under the form n = s+t with (s, t) ∈ S×T,
we have

E Ê =
∑

(s,t)∈S×T

1

2s+t
=

∞∑
n=0

1

2n
= 2.

The inverse of E is thus simply Ê /2 and it remains to check the property (which is probably

well-known, as it is given in [5] without proof) that Bn(E ) ³ √
n et Bn(Ê ) ³ √

n. Only
the upper bounds are useful for our purposes.

Proposition 1. As n → +∞, we have that

lim inf
n→+∞

Bn(E )√
n

≥ 2
√

2/3 , lim sup
n→+∞

Bn(E )√
n

≤
√

2

and

lim inf
n→+∞

Bn(Ê )√
n

≥ 2/
√

3 , lim sup
n→+∞

Bn(Ê )√
n

≤ 2.

In particular, for all ε > 0 and all n Àε 0, we have Bn(E ) ·Bn(Ê /2) ≤ (2
√

2 + ε)n.

Remark. These inequalities are probably not sharp.
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Proof of proposition 1. Let us write the elements of the set S = {0, 2, 8, 10, 32, 34, . . .} as
{S0 < S1 < S2 < . . .} and those of T = {0, 1, 4, 5, 16, 17, . . .} as {T0 < T1 < T2 < . . .}.
Clearly,

lim inf
n→+∞

Bn(E , n)√
n

= lim sup
k→+∞

Sk

k2
and lim sup

n→+∞

Bn(E , n)√
n

= lim inf
k→+∞

Sk

k2

and similar expressions for Ê and Tk. It can be easily proved that

Sk =
∞∑

j=0

(⌊
k

2j

⌋
mod 2

)
22j+1

from which it follows that S2n = 22n+1 and S2n−1 = 2
3

(
4n−1

)
. For all k ∈ {2n, . . . , 2n+1−1},

we thus have
S2n

(2n−1 − 1)2
≤ Sk

k2
≤ S2n+1−1

22n
.

Hence,

lim inf
k→+∞

Sk

k2
≥ lim

n→+∞
S2n

(2n+1 − 1)2
=

1

2
and lim sup

k→+∞

Sk

k2
≤ lim

n→+∞
S2n+1−1

(2n)2
=

8

3
.

Since T = S/2, we also deduce that

lim inf
k→+∞

Tk

k2
≥ 1

4
and lim sup

k→+∞

Tk

k2
≤ 4

3
.

This completes the proof. ¤

The transcendence of E and Ê can be proved thanks to Mahler’s method: the proof can
be found in an article of Blanchard and Mendès-France [6]. It is in fact easy to produce
other pairs of numbers which are inverse of each others and whose binary expansions are
explicitly known: given any given subset A of N, we can use the identity

∏
n∈A

(
1 + z2n)×

∏

n∈N\A

(
1 + z2n)

=
∏

n∈N

(
1 + z2n)

=
1

1− z
.

This suggests looking at the inverse of real numbers with few 1 in base 2: if ψ : N→ N
is strictly increasing, of inverse ψ[−1], let Dψ =

∑∞
n=0 2−ψ(n): we have

Bn(1/Dψ) ≥ n

ψ[−1](n)
(1 + o(1)).

A related problem, due to Mendès-France, is to prove (or disprove) the existence of an
irrational number simply normal in base b whose inverse is not simply normal or numbers
with this property with respect to normality in base b or absolute normality. Clearly, the
answer is positive in the case of simple normality in base 2 if we allow rational numbers
(for example: 3 = (11)2 and 1/3 = (0, 01010101010 . . .)2). It would be equally interesting
to prove (or disprove) the existence a real number x such that both x and 1/x are simply
normal in base b (or b-normal or normal in all bases).
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5. Proof of Corollary 1

(i) Since α is of degree d ≥ 2, the number |a0|/α is irrational, as are the numbers ajα
j−1

for those j ∈ {2, . . . , d} such that aj 6= 0. Since

|a0|α−1 = a1 + a2α + · · ·+ adα
d−1,

the various inequalities in Theorem 1 imply that

Bn(|a0|α−1) ≤ d + B(a1) + Bn(a2α) + · · ·+ Bn(adα
d−1)

≤ d + B(a1) + B(a2)
(
Bn(α) + 1

)
+ · · ·+ B(ad)

(
Bn(αd−1) + 1

)

≤ B(ad)Bn(α)d−1
(
1 + o(1)

)
.

The last inequality holds because Bn(α) → +∞ as n → +∞. Furthermore, we have that

Bn(|a0|α−1) ≥ n

Bn(α)
− c0,

with c0 > 0 independent of n. Therefore

B(ad)Bn(α)d
(
1 + o(1)

)
+ c0Bn(α) ≥ n

and we finally obtain that Bn(α) ≥ B(ad)
−1/dn1/d

(
1 + o(1)

)
as desired.

(ii) Since a and b are positive integers, we have

Bn(P (β)) = Bn(a + b/Q(β)) ≥ Bn(b/Q(β))− c1 ≥ n

Bn(Q(β))
− c2

where c1 > 0, c2 > 0 do not depend on n. (In the right most inequality, we use the fact
that b > 0.) Hence (

Bn(P (β)) + c2

)
Bn(Q(β)) ≥ n

and essentially the same argument as above yields that

B(p)Bn(β)deg(P )B(q)Bn(β)deg(Q) ≥ n
(
1 + o(1)

)
.

The assertion follows.

6. Binary expansion of roots of analytical functions

One might wonder how to extend the lower bounds in Corollary 1 to the case of roots
of analytical functions. This could provide non trivial informations for numbers like 1− e
and π which are solutions of the equations log(1− z) = 1 et sin(z) = 0. Such results exist
but are far from satisfactory, therefore, we quote them without details.

Let F be a power series of radius of convergence R > 0,

F (z) =
∞∑

n=1

anz
bn ,
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with an = pn/qn ∈ Q+ and (bn)n≥1 a strictly increasing sequence of integer. Let dn =
lcm(q0, q1, . . . , qn), ω(n) = log2(dn) and

∣∣
∞∑

n=k+1

anzbn
∣∣ ≤ 2−Ωz(k),

where the function k 7→ Ωz(k) is assumed to be strictly increasing, with inverse k 7→
Ω

[−1]
z (k).

Theorem 3. For any rational ρ > 0, let ξρ denotes the unique real number ξ ∈ [0, R[ such

that F (ξ) = ρ. Then, with k = Ω
[−1]
ξρ

(n), we have

Bn(ξρ) ≥ B(dkak)
−1/k · (n− ω(k)

)1/k
(1 + o(n)).

The proof is a straightforward adaptation of that of Theorem 5.2 in [5]. Nothing

interesting occurs if bn grows slower than cn. With an = 1 and bn = 2n2
, we have

Bn(ξρ) À exp
(
cρ

√
log(n)

)
. When an = 1, the faster bn grows, the closer Bn(ξρ) is to n.

7. Further links between diophantine approximation and normality

We conclude this article with some reflections that could lead, in certain cases, to re-
finements of (1.1):

Bn(x) ≥ log(n)

log(µx + ε)
+O(1)

for n Àε 0 for irrational numbers x with finite irrational exposant µx (i.e. non Liouville
numbers). We remark that the proof of (1.1) only partially uses the strengh of the irra-
tionality measure |x− p/q| ≥ q−µx−ε (valid for all rational p/q with q Àε 1). Indeed, we
used this measure only when q is a power of 2. Therefore, it is enough to use an irrational-
ity measure of the following form: given an irrational number x and an integer b ≥ 2, there
exists νx,b ≥ 1 such that for all m Àε 0

∣∣∣x− p

bm

∣∣∣ ≥ 1

b(νx,b+ε)m
. (7.1)

We deduce a small improvement of (1.1):

Bn(x) ≥ log(n)

log(νx,2 + ε)
+O(1).

For example, Ridout’s theorem yields να,b = 1 for all irrational algebraic numbers α and
all b ≥ 2, where Roth’s theorem only yields να,b ≤ 2. The situation is worse for numbers
like e or π because, for all b ≥ 2, we only know the trivial upper bounds νe,b ≤ µe = 2 and
νπ,b ≤ µπ ≤ 8.1: we can not improve on the lower bounds for Bn(e) and Bn(π) provided
by (1.1) when b = 2. On a more positive note, the author recently proved in [19] that for
the numbers x = log(1 − 1/b), we have νx,|b| → 1 as b → ±∞ but this is clearly not as
good as Ridout’s theorem for algebraic numbers.

In the most favorable case where νx,2 = 1, the presence of ε rules out the possibility of
getting something better than Bn(x) À log(n). However, as we now show, an improvement
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would occur if, in (7.1), we could replace q1+ε by a more explicit function of q. It is not
difficult to prove that, given a positive-valued and non-increasing function ψ defined on
the powers (bm)m≥0, for almost all x, the equation

∣∣∣x− p

bm

∣∣∣ <
ψ(bm)

bm
(7.2)

admits finitely many solutions (p,m) ∈ Z × N if the series
∑

m≥0 ψ(bm) converges (this
result is a particuler case of more general ones: see [10, Chapter 2]). The proof runs as
follows: we restrict x ∈ [0, 1[ and consider the set

Em = [0, 1[
⋂ bm−1⋃

p=0

]
p− ψ(bm)

bm
,
p + ψ(bm)

bm

[
.

The set E of those x ∈ [0, 1[ such that (7.2) admits infinitely many solutions (p,m) is
E = ∩n≥0 ∪m≥n Em and to conclude it is enough to prove that the Lebesgue measure λ(E)
of E is 0. But

λ(E) ≤
∞∑

m=n

λ(Em) ≤ 2
∞∑

m=n

ψ(bm) → 0

as n → +∞ by hypothesis.
The converse is also true but more difficult to prove: this a consequence of a theo-

rem of Duffin-Schaeffer [9, p. 245], see also [10, Theorem 2.9]. Hence, with ψ(q) =
1/(log(q) log log(q)), Equation (7.2) admits infinitely many solutions and, as pointed out
by Harman, this implies that, for almost all x, there exist infinitely many n such that
Bn+m(x) = Bn(x) + m for m = bλ log2(n)c when λ = 1 and only finitely many n when
λ > 1.

On the other hand, for all ρ > 1, Equation (7.2) admits almost surely only finitely many
solutions with ψ(q) = 1/ log(q)ρ and we can also draw some conclusions on Bn(x) from
this when b = 2.

Proposition 2. Let x be an irrational number. We suppose that there exists a constant
ρ > 1 (depending at most on x) such that, for all p ∈ Z and m ∈ N with m À 0, we have

∣∣∣x− p

2m

∣∣∣ ≥ 1

2m logρ(2m)
. (7.3)

Then, we have

Bn(x) ≥ n

ρ log(n)
(1 + o(1)). (7.4)

Remark. Since for almost all x, estimate (7.3) holds, we also have that, for almost all
x, (7.4) holds. But we already know that, for almost all x, the much stronger estimate
Bn(x) ∼ n/2 holds. Furthermore, it seems difficult to deduce something better than (7.4)
from (7.3) without further information on x. Thus, general methods based on diophantine
inequalities such as (7.3) are probably not strong enough to prove the normality of natural
constants. However, estimates of the form (7.3) might be simpler to prove than normality.
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Proof. We denote by pk2
−nk the truncations of the binary expansion

∑∞
k=1 2−nk of x. For

all k À 0, we have

1

2nk logρ(2nk)
≤

∣∣∣x− pk

2nk

∣∣∣ ≤ 1

2nk+1−1
,

which implies that nk+1 ≤ nk + ρ log(nk) + ρ log log(2) + 1 for k ≥ k0. Clearly, we have
nk ≤ uk where uk is defined by uk0 = nk0 and uk+1 = uk + ρ log(uk) + ρ log log(2) + 1 and
it will be sufficient to bound uk. We remark that in absence of further informations on
x, bounding uk is in fact the best we can do here since we can not exclude that nk+1 ≥
nk + ρ log(nk) +O(1).

We will prove below the following fact. For any a ≥ 1 and b > 0, let vk be defined by
v1 = a and vk+1 = vk + log(vk) + b (the conditions on a and b ensure that vk is defined for
all k ≥ 1). Then there exists a constant d = d(a, b) such that

vk ≤ k log(k + d) + k log log(k + d) + bk. (7.5)

Applying (7.5) to vn = un+k0/ρ (with a suitable b), we obtain that uk ≤ ρ k log(k)+g(k)
with g(k) = O(k log log(k)) for k ≥ 1. Hence, we have

Bn(x) = #{k ≥ 1 : nk ≤ n}
≥ #{k ≥ 1 : uk ≤ n}
≥ #{k ≥ 1 : ρ k log(k) + g(k) ≤ n} ∼ R(n)

where R is the inverse function of k 7→ ρ k log(k) + g(k). Since R(k) ∼ k/(ρ log(k)) as
k → +∞, equation (7.4) follows.

It remains to prove (7.5). We choose d such that firstly

log(d + 1) + b + log log(d + 1) ≥ a (7.6)

and secondly, for all k ≥ 1,

b + log log(d + k) ≤ log(d + k) (7.7)

(obviously, this is possible if d is large enough with respect to b). The inequality log(1+x) ≤
x for all x > −1 and (7.7) imply that, for all k ≥ 1, we have

log

(
1 +

b + log log(k + d)

log(k + d)

)
≤ 1. (7.8)

By calculus, one proves that

k log(k + d) + log(k) + 1 ≤ (k + 1) log(k + d + 1). (7.9)

Inequalities (7.8) and (7.9) will be implicitely used below. We now proceed by induction.
We first remark that (7.6) implies that (7.5) is true for k = 1. We suppose that (7.5) is
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true for k. Then, we have

vk+1 ≤ k log(k + d) + k log log(k + d) + bk

+ log(k log(k + d)) + log

(
1 +

b + log log(k + d)

log(k + d)

)
+ b

≤ k log(k + d) + log(k) + 1 + (k + 1) log log(k + d) + b(k + 1)

≤ (k + 1) log(k + d + 1) + (k + 1) log log(k + d + 1) + b(k + 1),

which completes the proof of the induction. ¤
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