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1 Introduction

In two recent papers [10, 11], the author presented new methods to generate sequences
of rational numbers approximating the values of the Gamma function at rational points.
The motivation was Diophantine, though no new arithmetical result was obtained. It is
conjectured that Γ(1/m) is transcendental for any integer m ≥ 2, and more generally, the
algebraic relations amongst the values of the Gamma function at the rational points are
predicted by the Rohrlich-Lang conjecture (see [12] for a precise statement). So far, only
Γ(1/2) =

√
π,Γ(1/3),Γ(1/4) and Γ(1/6) are already known to be irrationnal (and in fact

they are transcendental, see [15]). In this paper, we construct good rational approximations
not to the Gamma function itself but to certain values of the Beta function, which is defined
by B(x, y) := Γ(x)Γ(y)

Γ(x+y)
. No new result will be given here concerning the arithmetic nature

of the values of B(x, y) for x, y ∈ Q, even though our approximations fit into the now
classical pattern developped for values of the zeta functions and, more generally, periods.
However, in the particular case of Beta values, the Rohrlich-Lang conjecture is known to
be true, by a classical result of Wolfart-Wüstholz [16]. But it is still important to find new
methods in this field.

To prove the irrationality of a given number, a classical strategy is to first construct
good explicit functional rational approximations to a certain function that can be spe-
cialized to our number. Hermite-Padé approximants are natural candidates to construct
functional rational approximations. We recall that given ` ≥ 2 formal power series
F1(z), . . . , F`(z) ∈ C[[z]], there exist some polynomials Pn,1(z), . . . , Pn,` ∈ C[z] of de-
gree at most n such that Pn,1(z)F1(z) + . . . + Pn,`(z)F`(z) has order at least `(n + 1)
at z = 0; these polynomials are called the diagonal Hermite-Padé approximants [n, . . . , n]
of F1(z), . . . , F`(z) at z = 0. However, in the case of the Gamma function, it is not at all
clear at which point such approximations should be constructed. The obvious choice is to
compute Padé approximants of the function Γ(1 + x) at x = 0, where it is holomorphic.
However, its n-th Taylor coefficient at x = 0 is a polynomial in γ, ζ(2), . . . , ζ(n), and thus
presumably a transcendental number; this would at best produce some sort of approxima-
tions of Γ(1/m) in terms of these quantities, which is probably useless from a Diophantine

1



point of view. Another possibility is to compute Padé approximants of Γ(x) at x = ∞.
There are some issues either. Indeed, this function is not holomorphic at infinity and it
does not even have an asymptotic expansion in powers of 1/x. We can get rid of the extra
factor xx+1/2e−x in Stirling’s formula but at the cost of considering quotient of functions
involving the Gamma function, such as

R(x, a) :=
Γ(x)2

Γ(x+ a)Γ(x− a)
=

B(x, a)

B(x− a, a)
.

This is the reason for the shift from the Gamma function to the Beta function in this
paper. Ramanujan found an explicit continued fraction for R(x, a) (see [2, 3]), which is
equivalent to the explicit construction of Padé approximants of the divergent Taylor series
of R(x, a) at x = ∞. Our main result is a generalization of this fact, and apparently it
offers a new proof of Ramanujan’s continued fraction expansion of R(x, a).

Let us now describe our construction. For any ` ≥ 2, let a, b1, . . . , b` be complex
numbers such that bi − bj 6∈ Z for any i 6= j. We recall the definition of Pochhammer
symbol: for any x ∈ C, (x)0 = 1 and (x)n = x(x + 1) · · · (x + n− 1) for n ≥ 1. We define
the contour integral

In(x, a,b) := (−1)`(n+1)+1n!`−1

2iπ

∫
Cn

Γ(z)Γ(a)

Γ(z + a)
· (1− z − a)n∏`

j=1(z − x+ bj − n)n+1

dz. (1.1)

The factor n!`−1 is an arithmetic normalization and b stands for b1, . . . , b`. The closed
direct simple path Cn encloses the zeros x + bj + k (k = 0, . . . , n) of the polynomial∏`

j=1(z − x − bj − n)n+1, which are all distinct, but not the poles of Γ(z)/Γ(z + a). This
is possible in particular if x− bj 6∈ Z≤0 (j = 1, . . . , `), which we will assume from now on,
and In(x, a, b) is analytic at any such x. (In fact, In(x, a, b) is analytic in a larger domain,
whose definition depends on n.)

We shall use the integral In(x, a, b) to construct diagonal Hermite-Padé approximations
to the Taylor series at x =∞ of the functions

B(x− bj, a) :=
Γ(a)Γ(x− bj)
Γ(x+ a− bj)

, j = 1, . . . , `.

Note that B(x − bj, a) is defined at least for any x such that x − bj 6∈ Z≤0 (j = 1, . . . , `),
but it is not meromorphic at x = ∞. It has there a (divergent) asymptotic expansion
of the form

∑
n≥0 cj,n/x

n+a+1 as x → ∞ in at least the half-plane Pj := {x : Re(x) >
max(Re(bj),Re(bj − a))}. We denote by

P := {x : Re(x) > max(Re(b1),Re(b1 − a), . . . ,Re(b`),Re(b` − a))}

the half-plane defined as the intersection of the Pj’s, j = 1, . . . , `. For simplicity, we will
consider asymptotic expansions as x→∞ in P .

By definition, the Hermite-Padé approximants are defined for (formal) series of the form∑
n≥0 cj,n/x

n+a+1. Strictly speaking, we should get rid of the factor 1/xa by normalizing
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the functions to
B(x−bj ,a)

B(x−a,a)
or to xaB(x−bj, a) for instance. We will not explicitly choose such

a normalization in Theorem 1 because the context is clear. Nonetheless, we will choose
the normalized factor as 1

B(x−a,a)
:= Γ(x)

Γ(a)Γ(x−a)
in Corollary 1. Given a formal Laurent

expansion or an asymptotic expansion
∑

n≥−N dn/x
a+n, we say that it is O(1/xa+m+1) if

d−N = d−N−1 = . . . = dm = 0.
For any j = 1, . . . , `, let us now define the polynomial of degree n in x:

Pn,j(x, a,b) := (−1)`(n+1)+1

n∑
k=0

(
n

k

)
n!`−2(x− bj)k(1− x+ bj − a)n−k∏`

p=1,p 6=j(k − bj + bp − n)n+1

. (1.2)

If a is an integer, the B(x − bj, a) are rational functions and this case is of no interest to
us. From now on, we assume that a 6∈ Z, even though some of the results below might be
true when a ∈ Z.

Theorem 1. (i) For any x− bj 6∈ Z≤0 (j = 1, . . . , `), we have the identity

In(x, a,b) =
∑̀
j=1

Pn,j(x, a,b)B(x− bj, a) (1.3)

and the asymptotic expansion of this function is O
(
1/xa+(`−1)(n+1)

)
when x→∞ in P.

In particular, the polynomials Pn,1(x, a,b), . . . , Pn,`(x, a,b) are the diagonal Hermite-
Padé approximants [n, . . . , n] of the formal Taylor series at x = ∞ of the (normalized)
functions B(a, x− b1), . . . , B(a, x− b`).

(ii) For any x such that Re(x) > maxj Re(bj) and if (`− 1)(n+ 1) > −Re(a), we have

In(x, a,b) =
(1− a)n

n!

∫
[0,1]`

∏`
j=1 u

x−bj−1
j (1− uj)n

(1− u1 · · ·u`)n−a+1
du1 · · · du`. (1.4)

Remarks. In (ii), the conditions on x, n, a and the bj’s are sufficient to ensure that both
sides of (1.4) are defined simultaneously. They could be relaxed.

We provide more details in the case ` = 2, b1 = 0, b2 = a of Theorem 1. We define two
polynomials in Q(a)[x] of degree n in x by

Pn(x, a) = −
n∑
k=0

(
n

k

)
(x− a)k(1− x)n−k

(k − a− n)n+1

, Qn(x, a) =
n∑
k=0

(
n

k

)
(x)k(1− x− a)n−k

(k + a− n)n+1

,

which are equal to Pn,2(x, a, 0, a) and −Pn,1(x, a, 0, a) respectively.

Corollary 1. (i) As x→∞ in the half-plane {x : Re(x) > |Re(a)|}, we have

Qn(x, a)R(x, a)− Pn(x, a) = O
( 1

xn+1

)
. (1.5)
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In particular, Pn(x,a)
Qn(x,a)

is the n-th diagonal Padé approximant [n/n] of the Taylor series of

Ramanujan’s quotient R(x, a) at x =∞
(ii) The sequences (Pn(x, a))n≥0 and (Qn(x, a))n≥0 satisfy the linear recurrence of or-

der 2:

Un+2 =
(2n+ 3)(2x− 1)

(n− a+ 2)(n+ a+ 2)
Un+1 +

(n− a+ 1)(n+ a+ 1)

(n− a+ 2)(n+ a+ 2)
Un. (1.6)

Recurrence (1.6) can be rephrased as follows: we have the continued fraction “identity”

R(x, a) ≈

1− 2a2

2x− 1 + a2 +
(a2 − 1)2

6x− 3
+

(a2 − 4)2

10x− 5
+ · · ·+ (a2 −m2)2

(2m+ 1)(2x− 1)
+ · · · . (1.7)

For any n ≥ 0, the n-th convergent of the continued fraction is Pn(x, a)/Qn(x, a) and
≈ means exactly (1.5). This continued fraction is essentially due to Ramanujan [2] (see
Section 3.1 for the details) so that Theorem 1 is indeed a generalization of Ramanujan’s
work, as claimed before.

In principle, diagonal Padé approximants may provide effective numerical approxi-
mations to the values of the underlying function, i.e. we may have the pointwise limit
limn→+∞[n/n]f (x) = f(x). It is natural to expect that we could replace ≈ by equality
in (1.7) for any given x in a suitable domain. This is not always the case in the present
situation. For instance, we will show in Section 3.2 that for all n and a 6∈ Z, we have
Pn(1/2,a)
Qn(1/2,a)

= (−1)n+1, which clearly does not converge to Γ(1/2)2

Γ(1/2+a)Γ(1/2−a)
= cos(πa). How-

ever, this example is extremal because it is known that we have pointwise convergence
in (1.7) when Re(x) > 1

2
; see Section 3.1.

Similar non-convergence phenomenons occur in the more general setting of Theorem 1.
We did not try to find out when we have pointwise convergence because the resulting
numerical approximations are a priori too slow to be of any use. Instead, we shall show
how to accelerate the convergence. For this, we change x to x + rn (for some new fixed
integer parameter r ≥ 1) and observe that

B(x+ rn− bj, a) =
(x− bj)rn

(x+ a− bj)rn
B(x− bj, a).

We now set

P̃n,j(x, a,b) =
(x− bj)rn

(x+ a− bj)rn
Pn,j(x+ rn, a,b), (1.8)

which is no longer a polynomial in x but is in Q(x, a).

Theorem 2. For any x, n such that rn > maxj Re(bj − x), and x− bj are not in Z≤0 (for
any j = 1, . . . , `), we have

∑̀
j=1

P̃n,j(x, a,b)B(x− bj, a) =
(1− a)n

n!

∫
[0,1]`

∏`
j=1 u

x+rn−bj−1
j (1− uj)n

(1− u1 · · ·u`)n−a+1
du1 · · · du`. (1.9)
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For any ` ≥ 2, r ≥ 1, let ρ be the unique number in (0, 1) such that rρ` − r + ρρ
`−1−1
ρ−1

= 0.
Then

lim
n→+∞

∣∣∣∣∣∑̀
j=1

P̃n,j(x, a,b)B(x− bj, a)

∣∣∣∣∣
1/n

=
ρr`(1− ρ)`

1− ρ`
< 1. (1.10)

For any ` ≥ 2, r ≥ 1, let η be the unique number in (0, 1) such that (r+η)(1−η)`

η`(r+η−1)
= 1.

Then, for any j ∈ {1, . . . , `},

lim sup
n→+∞

∣∣∣P̃n,j(x, a,b)
∣∣∣1/n ≤ (r + η)r

(1− η)`(r + η − 1)r−1
, (1.11)

When ` is even, the limsup is a limit and there is equality in (1.11).

Remarks. The conditions on x and n are sufficient to ensure the convergence of the integral.
We can split x and n in the condition rn > maxj Re(bj − x) by assuming the stronger
conditions Re(x) > 0 and rn ≥ maxj Re(bj).

When ` is odd, the method giving equality in (1.11) for ` even does not work and it

is an open problem to determine the exact rate of growth of each P̃n,j(x, a,b) as n→∞.
We comment on this after the proof of Theorem 2.

Again, we extract the case ` = 2, b1 = 0, b2 = a. With the notations of Corollary 1 and
in accordance with (1.8), we set

P̃n(x, a) =
(x− a)rn

(x)rn
Pn(x+ rn, a), Q̃n(x, a) =

(x)rn
(x+ a)rn

Qn(x+ rn, a).

Corollary 2. For any r ≥ 1, let ρ =
√

4r2+1−1
2r

∈ (0, 1).
(i) For any x 6∈ Z≤0, when n→ +∞,∣∣∣Q̃n(x, a)R(x, a)− P̃n(x, a)

∣∣∣ ∼ (ρ2r(1− ρ)

1 + ρ

)n+o(n)

→ 0. (1.12)

(ii) For any x ∈ C, when n→ +∞,∣∣∣Q̃n(x, a)
∣∣∣ ∼ ( 1 + ρ

ρ2r(1− ρ)

)n+o(n)

→ +∞. (1.13)

(iii) When r = 1, the function R(x, a) can be represented as a rapidly convergent

continued fraction with elements in Q[x, a] whose n-th convergent is P̃n(x, a)/Q̃n(x, a).

The polynomials P̃n(x, a) and Q̃n(x, a) are solutions of a linear recurrence of finite
order with polynomials coefficients in n, x, a that also depend on r (see the beginning
of Section 4). We don’t know how to write down explicitely the recurrence if we don’t
specify the value of r. We display the recurrence in the case r = 1 in Section 4, which is
of order 2. Together with (i), this immediately translates into the convergent continued

5



fraction alluded to in (ii), whose n-th convergent is P̃n(x, a)/Q̃n(x, a). As an illustration,

we write down the continued fraction for x = 1/3, a = 2/3. In this case, (P̃n(x, a))n≥0 and

(Q̃n(x, a))n≥0 satisfy

Un+2 =
s(n)

r(n)
Un+1 +

t(n)

r(n)
Un

with
r(n) = 3(3n+ 8)(15n+ 13)(3n+ 4)(n+ 2),

s(n) = 4455n4 + 23166n3 + 43668n2 + 35199n+ 10204,

t(n) = (3n+ 5)(3n− 1)(3n+ 1)(15n+ 28).

We thus obtain the convergent continued fraction

−Γ(1/3)3

2π
√

3
=

Γ(1/3)2

Γ(−1/3)
= 1 +

104
s(−1)

+
r(−1)t(0)

s(0)
+ · · ·+ r(m− 1)t(m)

s(m)
+ · · · ,

whose rate of convergence is given in Corollary 2, (ii) with r = 1.

In [4], the authors construct simultaneous Padé approximants of type II to functions
of the form B(aj, x). They do not require a large order of approximations at x = ∞, but
instead the cancellation of the approximating forms at many chosen distinct points. This
approach does not overlap with ours. We also refer to [11] for the construction of numerical
approximations of the values Γ(α) for any α ∈ C, based on Padé approximation to series
of the form

∑
n≥0 Γ(n+α)xn; the approximations to Gamma values are obtained in a very

indirect way, not as in this paper. We also refer to [10] for the constuction of numerical
rational approximations to the values Γ(a/b)b, a, b integers; the construction involves an
integral similar to In(x, a,b), but no interpretation in terms of Padé approximation is
given. A continued fraction for the period Γ(1/3)3 is also given.

2 Proof of the results

2.1 Proof of Theorem 1

Since a is not an integer, the poles of the integrand of In(x, a, b) are simple. By the residue
theorem, we thus readily obtain

In(x, a,b) =
∑̀
j=1

Pn,j(x, a,b)B(x− bj, a)

for any x such that x− bj 6∈ Z≤0 (j = 1, . . . , `), where the Pn,j(x, a,b) are the polynomials
of degree n in x defined by (1.2) in the Introduction.
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To prove the other assertions, we will first find another expression for In(x, a,b). We
define the integral

K(N) := (−1)`(n+1)+1n!`−1

2iπ

∫
C̃N

Γ(z)Γ(a)

Γ(z + a)
· (1− z − a)n∏`

j=1(z − x+ bj − n)n+1

dz

over the circle C̃N of center 0 and radius half an integer N + η (where η ∈ (0, 1) depends
on a and the bj’s, but not N) and is such that the circle does not pass on the poles of
the integrand. By standard estimates based on Stirling’s formula (and the complements
formula when z is closed to the negative axis), we get the estimate∣∣∣∣∣Γ(z)Γ(a)

Γ(z + a)
· (1− z − a)n∏`

j=1(z − x+ bj − n)n+1

∣∣∣∣∣� 1

|N |(n+1)(`−1)+Re(a)+1

for z ∈ C̃N as N → +∞. Therefore, limN→+∞K(N) = 0 provided that (` − 1)(n + 1) >
−Re(a). Hence, under this condition on n, the sum of the residues over all the poles of the
integrand is equal to 0. In other words,

In(x, a,b) = (−1)`(n+1)n!`−1

∞∑
k=0

Residue

(
Γ(z)Γ(a)

Γ(z + a)
· (1− z − a)n∏`

j=1(z − x+ bj − n)n+1

, z = −k

)
.

The poles involved here are those of Γ(z) at the negative integers −k, which are simple
with residue (−1)k/k!.

After some simplifications, we get that, when (`− 1)(n+ 1) > −Re(a),

In(x, a,b) = (−1)`(n+1)n!`−1(1− a)n

∞∑
k=0

(n− a+ 1)k

k!
∏`

j=1(k + x− bj)n+1

=
n!`−1(1− a)n∏`
j=1(x− bj)n+1

· `+1F`

[
n− a+ 1, x− b1, . . . , x− b`

n+ x− b1 + 1, . . . , n+ x− b` + 1
; 1

]
.

(The last equality is just the definition of an hypergeometric series.)
We now use a classical integral represention of such series to obtain

In(x, a,b) =
(1− a)n

n!

∫
[0,1]`

∏`
j=1 u

x−bj−1
j (1− uj)n

(1− u1 · · ·u`)n−a+1
du1 · · · du`

for any x ∈ P , provided (`− 1)(n+ 1) > −Re(a). Under the same condition on n, we can
relax the condition x ∈ P to Re(x) > maxj Re(bj) by analytic continuation of both sides
of the identity.

Since each B(x− bj, a) has an asymptotic expansion
∑

m≥0 cj,m/x
m+a as x→∞ in P ,

In(x, a,b) also has an asymptotic expansion of the form
∑

m≥−nCm/x
m+a. We will now

prove that C−n = C−n+1 = · · · = C(`−1)(n+1)−1 = 0. Let us assume for the moment that
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x is a real number and set A = Re(a), Bj = Re(bj). For any u1, . . . , u` ∈ [0, 1], we have
(1− u1 · · ·u`)` ≥ (1− u1) · · · (1− u`) so that∣∣∣∣ ∫

[0,1]`

∏`
j=1 u

x−bj−1
j (1− uj)n

(1− u1 · · ·u`)n−a+1
du1 · · · du`

∣∣∣∣ ≤ ∫
[0,1]

∏̀
j=1

u
x−Bj−1
j (1− uj)n−

n−A+1
` duj

=
∏̀
j=1

Γ(x−Bj)Γ(n− n−A+1
`

+ 1)

Γ(x−Bj + n− n−A+1
`

+ 1)
.

Therefore,

|In(x, a,b)| ≤

∣∣∣∣∣(1− a)n
n!

∏̀
j=1

Γ(x−Bj)Γ(n− n−A+1
`

+ 1)

Γ(x−Bj + n− n−A+1
`

+ 1)

∣∣∣∣∣ . (2.1)

As x→ +∞, x > 0, Stirling’s formula shows that for any complex numbers α, β, we have∣∣∣∣Γ(x+ α)

Γ(x+ β)

∣∣∣∣� 1

xRe(β−α)
.

Applying this estimate to the right-hand side of (2.1), we see that it is O(1/x(`−1)(n+1)+A)
as x → +∞. Now, if we denote by M the smallest integer such that CM 6= 0 in the
asymptotic expansion of In(x, a, b) in P , we have∣∣∣∣ 1

xM+a

∣∣∣∣� 1

x(`−1)(n+1)+A

as x→ +∞, x > 0, where the implicit constant is independent of x. Since |xa| = xA when
x > 0, this forces M ≥ (`− 1)(n+ 1) as expected.

We have thus proved that the asymptotic expansion of

∑̀
j=1

Pn,j(x, a,b)B(x− bj, a)

is O(1/x(`−1)(n+1)+a) as x→∞ in P . We refer to [9, Section 2] for the explanation of why
this implies that the polynomials Pn,1(x, a,b), . . . , Pn,`(x, a,b) are the diagonal Hermite-
Padé approximants [n, . . . , n] of the formal Taylor series at x = ∞ of the (normalized)
functions B(a, x− b1), . . . , B(a, x− b`).

2.2 Proof of Corollary 1

The first assertion (i) is an immediate consequence of Theorem 1. To prove (ii), we run
Zeilberger’s algorithm on Pn(x, a) and Qn(x, a): we observe that they do satisfy the same
recurrence (1.6).
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2.3 Proof of Theorem 2

Eq. (1.9) is an immediate consequence of Eqs. (1.3) and (1.4) with x+ rn instead of x.

It is standard that

lim
n→+∞

∣∣∣∣∣
∫

[0,1]`

∏`
j=1 u

x+rn−bj−1
j (1− uj)n

(1− u1 · · ·u`)n−a+1
du1 · · · du`

∣∣∣∣∣
1/n

= sup
(u1,...,u`)∈[0,1]`

∏`
j=1 u

r
j(1− uj)

1− u1 · · ·u`
.

This supremum is achieved on the diagonal u1 = . . . = u` = ρ where ρ is the unique number

in (0, 1) such that rρ`−r+ρρ
`−1−1
ρ−1

= 0. (Note that for fixed `, we have ρ = 1− `−1
`r

+O( 1
r2

)

as r → +∞.) See [1] for more details in a similar situation. We thus have

lim
n→+∞

∣∣∣∣∣
∫

[0,1]`

∏`
j=1 u

x−bj−1
j (1− uj)n

(1− u1 · · ·u`)n−a+1
du1 · · · du`

∣∣∣∣∣
1/n

=
ρr`(1− ρ)`

1− ρ`
=

ρr`(1− ρ)`−1

1 + ρ+ . . .+ ρ`−1
< 1.

(2.2)

For fixed `, we have ρr`(1−ρ)`

1−ρ` ∼ ``

(`+1)`+1 · 1
e`r`

as r → +∞.

We shall now indicate how to bound P̃n,j(x, a,b) as n→ +∞. We recall that

P̃n,j(x, a,b) =
(x)rn

(x+ a)rn

n∑
k=0

(
n

k

)
n!`−2(x+ rn− bj)k(1− x− rn+ bj − a)n−k∏`

p=1,p 6=j(k − bj + bp − n)n+1

, (2.3)

which is defined for any x ∈ C.
We first assume that ` is even. By Stirling’s formula, we obtain that

P̃n,j(x, a,b) = cn(x, a,b)
n∑
k=0

(
n

k

)`
(rn)k((r − 1)n+ k)n−k

n!
(2.4)

where |cn(x, a,b)|1/n → 1 when n → +∞. To prove (2.4), it is important that the sum
has positive terms (the fact that ` is even is implicitly used here) and moreover this fact
even enables us to estimate precisely the sum by the discrete Laplace method. We refer
to [1] or [5] where the details are given in similar situations. We first change k to tn for

t ∈ [0, 1] and we determine the asymptotic behavior of
(
n
k

)` (rn)k((r−1)n+k)n−k

n!
as n to +∞.

By Stirling’s formula,(
n

k

)`
(rn)k((r − 1)n+ k)n−k

n!
= dn(t)

(
(r + t)r+t

t`t(1− t)`(1−t)(r + t− 1)r+t−1

)n
where dn(t)1/n → 1. Taking logarithmic derivatives to simplify the computations, one
proves that

ϕ(t) :=
(r + t)r+t

t`t(1− t)`(1−t)(r + t− 1)r+t−1

9



has a unique maximum in (0, 1) achieved at t = η, where η is the unique number in (0, 1)
such that

(η + r)(1− η)`

η`(η + r − 1)
= 1.

(For fixed `, η = 1
2

+ 1
4`r

+O( 1
r2

) when r → +∞.) We conclude that, when ` is even,

lim
n→+∞

∣∣∣P̃n,j(x, a,b)
∣∣∣1/n = ϕ(η) =

(r + η)r

(1− η)`(r + η − 1)r−1
> 1. (2.5)

For fixed `, we have ϕ(η) ∼ 2`r as r → +∞.

If ` is odd, it is more complicated to obtain the exact behavior of |P̃n,j(x, a,b)|. We
comment on the issues after the proof. However, an upper bound is easily obtained. Indeed,
from (2.3), we have

|P̃n,j(x, a,b)| ≤
∣∣∣∣ (x)rn
(x+ a)rn

∣∣∣∣ n∑
k=0

(
n

k

)
n!`−2|(x+ rn− bj)k(1− x− rn+ bj − a)n−k|

|
∏`

p=1,p 6=j(k − bj + bp − n)n+1|
,

from which we deduce that

|P̃n,j(x, a,b)| ≤ c̃n(x, a,b)
n∑
k=0

(
n

k

)`
(rn)k((r − 1)n+ k)n−k

n!

where |c̃n(x, a,b)|1/n → 1. Hence, we deduce as above that lim supn→+∞ |P̃n,j(x, a,b)|1/n ≤
ϕ(η). This completes the proof of Theorem 2.

We now explain the difficulties when ` is odd. A computation similar to the one giving
(2.4) would formally lead to

P̃n,j(x, a,b)
?
= ĉn(x, a,b)

n∑
k=0

(−1)n−k
(
n

k

)`
(rn)k((r − 1)n+ k)n−k

n!
(2.6)

where |ĉn(x, a,b)|1/n → 1. However, it is not clear to us that (2.6) is true because the
sum on the right-hand side is alternating. Even if (2.6) holds, getting the exact asymtotic
behavior of this sum does not seem to be easy. It might be possible to estimate precisely
P̃n,j(x, a,b) by applying the saddle point method after transformation of (2.3) into the
contour integral:

P̃n,j(x, a,b) = n!`−1 Γ(rn+ x− bj + a)

Γ(rn+ x− bj)
(x)rn

(x+ a)rn

× 1

2iπ

∫
C

Γ(x+ rn− bj + t)Γ(t)

Γ((r − 1)n+ t+ a− bj + x)Γ(t− n)
∏`

p=1,p 6=j(t− bj + bp − n)n+1

dt.

Here, C is a closed contour that surrounds the points 0, 1, . . . , n but no other poles of the
integrand. The usual procedure would then be to change t to tn, apply Stirling’s formula
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(like we did above), estimate the critical points and deform the contour through these
points to be in position to apply the saddle point method. However, doing so involves a lot
of technicalities and we did not try to transform this procedure into a formal proof because
this is not essential for potential applications. Indeed, even though there is apparently no
interesting Diophantine applications here (see Section 5.3), we point out that an upper

bound for |P̃n,j(x, a,b)| is enough when one applies Nesterenko’s linear independence cri-
terion (see [1] for the statement of the criterion), because in our situation we know the
exact rate of decrease of the linear form in Beta values.

2.4 Proof of Corollary 2

(i) Since we let n→ +∞, the assumption rn > max(Re(−x),Re(a−x)) and x 6∈ Z≤0 simply

becomes x 6∈ Z≤0. From the proof of Theorem 2, we see that when ` = 2, ρ =
√

4r2+1−1
2r

and (2.2) gives (1.12).

(ii) We now prove the assertion for Q̃n(x, a), which is defined for any x ∈ C. Since ` is
even, by Theorem 2, we have

lim
n→+∞

∣∣∣Q̃n(x)
∣∣∣1/n =

(r + η)r

(1− η)2(r + η − 1)r−1
,

where η is the unique number in (0, 1) such that (η+r)(1−η)2

η2(r+η−1)
= 1. Solving this equation, we

get η = 1
2

√
4r2 + 1 + 1

2
− r and using the relation η = rρ+ 1

2
− r, we see that

(r + η)r

(1− η)2(r + η − 1)r−1
=

1 + ρ

ρ2r(1− ρ)
,

which completes the proof of (1.13).

3 Remarks on the continued fraction (1.7)

3.1 Ramanujan’s continued fraction

Let x, α, β be complex numbers and set

Q :=
Γ(x+α−β+1

2
)Γ(x−α+β+1

2
)

Γ(x+α+β+1
2

)Γ(x−α−β+1
2

)
.

In [2], Ramanujan stated that if either α or β is an integer, or if Re(x) > 0, then

1−Q
1 +Q

=

αβ
x

+
(α2 − 1)(β2 − 1)

3x
+

(α2 − 4)(β2 − 4)
5x

+ · · ·+ (α2 −m2)(β2 −m2)
(2m+ 1)x

+ · · · (3.1)

11



See [3] for a proof. If we set α = β = 2a and change x to 2x−1, we see that Q = Γ(x)2

Γ(x−a)Γ(x+a)

and that (3.1) is nothing but the continued fraction (1.7), in a disguised form. In particular,

the continued fraction in (1.7) converges to Γ(x)2

Γ(x−a)Γ(x+a)
as soon as Re(x) > 1

2
. The case

x = 1
2

studied in the next section shows that we cannot expect convergence to a larger
domain.

Ramanujan’s continued fraction can be proved from the general case ` = 2 in Theorem 1.
We obtain Padé approximants to the function Γ(x−b1)Γ(x+a−b2)

Γ(x+a−b1)Γ(x−b2)
, which is easily transformed

into Ramanujan’s Q quotient.

3.2 Summation of Pn(1
2 , a) and Qn(1

2 , a)

In this section, we give the proof that Pn(1/2, a) = (−1)n+1Qn(1/2, a). We recall that

Pn(x, a) = −
n∑
k=0

(
n

k

)
(x− a)k(1− x)n−k

(k − a− n)n+1

, Qn(x, a) =
n∑
k=0

(
n

k

)
(x)k(1− x− a)n−k

(k + a− n)n+1

.

defined in the Introduction in the context of Corollary 1. In hypergeometric notation, we
have:

Pn(x, a) = − (1− x)n
(−a− n)n+1

3F2

[
−a− n, x− a,−n
x− n,−1− a ; 1

]
and

Qn(x, a) =
(1− x− a)n
(a− n)n+1

3F2

[
a− n,−n, x

a+ 1, a− n+ x
; 1

]
.

In general, these hypergeometric series cannot be summed. However, if x = 1/2, both are
well-poised and can be summed by Dixon’s formula ([14, p. 52, eq. (2.3.3.5)]). We then
get

Pn(1/2, a) = −
2n+aΓ(a+n+1

2
)2Γ(−a− n) cos(π

2
(a+ n))

√
πΓ(1+a−n

2
)Γ(n−a

2
+ 1) cos(πn)

,

Qn(1/2, a) =

√
π2n−aΓ(a+n+1

2
)Γ(a− n) cos(πa)

Γ(1+a−n
2

)2Γ(a+n
2

+ 1) cos(π(a− n))
.

After some simplifications (involving the complements formula), we obtain that for all
n ∈ N and all a 6∈ Z, we have

Pn(1/2, a)

Qn(1/2, a)
= −

2 sin(π
2
(n+ 1 + a)) sin(π

2
(2 + a− n)) sin(π

2
(1 + 2a− 2n))

sin(π(n+ 1 + a)) sin(π
2
(1 + 2n)) sin(π

2
(1 + 2a))

= (−1)n+1

as expected.
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4 The linear recurrence associated to Corollary 2

Zeilberger’s algorithm can produce recurrences for P̃n(x, a) and Q̃n(x, a) for any specified
value of r but not when r is a variable. The reason is that the algorithm considers that,
for instance,

(
2n
2k

)
is hypergeometric (and thus can find the recurrence for

∑
k

(
2n
2k

)
) but not(

rn
rk

)
. At least, since P̃n(x, a) and Q̃n(x, a) can be expressed as values of 3F2(z) function at

z = 1 and with parameters of the form u(x, a)n+v(x, a), it is known that they satisfy linear
recurrences of order at most 3 with polynomials coefficients in Q[n, x, a] (that depend on
r). Presumably, the order is always 2 but we can’t prove it in general.

For instance, when r = 1, Zeilberger’s algorithm readily computes the linear recurrence
of order 2 satisfied by P̃n(x, a) and Q̃n(x, a). Both sequences satisfy

pn(x, a)Un+2 = qn(x, a)Un+1 + rn(x, a)Un

with

pn(x, a) = (x + n + 1)(n + 2 + a)(n + 2− a)(x + 1 + n + a)(a2 − 5n2 − 6nx− 2x2 − 4n− 2x− 1)

qn(x, a) = (x + n)(n + a + 1)(n + 1− a)(x + n− a)(a2 − 5n2 − 6nx− 2x2 − 14n− 8x− 10)

rn(x, a) = 55n6 + (176x + 319)n5 + (−31a2 + 234x2 + 852x + 744)n4+

(−56a2x + 160x3 − 130a2 + 924x2 + 1580x + 891)n3+

(9a4 − 36a2x2 + 56x4 − 180a2x + 496x3 − 204a2 + 1300x2 + 1394x + 579)n2+

(8a4x− 8a2x3 + 8x5 + 19a4− 84a2x2 + 128x4− 188a2x+ 480x3− 143a2 + 766x2 + 582x+ 196)n−
a6+2a4x2+8a4x−12a2x3+12x5+12a4−46a2x2+66x4−64a2x+144x3−39a2+158x2+92x+28.

From this, we could write down the general continued fraction that converges to Γ(x)2

Γ(x+a)Γ(x−a)

but this is not illuminating. Note that the characteristic equation of this recurrence is
X2 − 11X − 1 = 0, whose solutions are 11−5

√
5

2
and 11+5

√
5

2
. By the Poincaré-Perron

Theorem, the first solution governs the asymptotic behavior of Q̃n(x, a)R(x, a)− P̃n(x, a),

and the second the behavior of P̃n(x, a) and Q̃n(x, a). Of course, this is in accordance with
the rates of convergence in Corollary 2.

5 Concluding remarks

5.1 Some hypergeometry

As a side result of the proof of Theorem 1, we have proved that

n!`−1(1− a)n∏`
j=1(x− bj)n+1

· `+1F`

[
n+ 1− a, x− b1, . . . , x− b`

n+ x− b1 + 1, . . . , n+ x− b` + 1
; 1

]

=
∑̀
j=1

Pn,j(x)B(x− bj, a). (5.1)
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For n = 0, this gives the summation formula

`+1F`

[
1− a, x− b1, . . . , x− b`
x− b1 + 1, . . . , x− b` + 1

; 1

]
=
∑̀
j=1

∏`
j=1(x− bj)∏`

p=1,p 6=j(bj − bp)
·B(x− bj, a).

This formula is not difficult to prove directly. Indeed, by definition,

`+1F`

[
1− a, x− b1, . . . , x− b`
x− b1 + 1, . . . , x− b` + 1

; 1

]
=
∞∑
k=0

(1− a)k
k!

·
∏`

j=1(x− bj)∏`
j=1(x− bj + k)

. (5.2)

Since bi − bj 6∈ Z, the zeros of k 7→
∏`

j=1(x − bj + k) are simple and by decomposition in
partial fractions (in k), we see the series on the right-hand side of (5.2) is equal to∑̀

j=1

∏`
p=1,p 6=j(x− bp)∏`
p=1,p 6=j(bj − bp)

· 2F1

[
1− a, x− bj
x− bj + 1

; 1

]
.

We conclude by Gauss’ summation formula ([14, p. 28, eq. (1.7.6)]) and analytic contin-
uation. The more general Eq. (5.1) can be proved along the same lines. In fact, we could
have started the paper from this hypergeometric series instead of the integral In(x, a,b),
but we have chosen this approach because this kind of integral (of Barnes type) is classical
in Padé approximation theory and Diophantine approximation: see [6, 13, 17] for instance.

5.2 Another approach

The formulas stated in the previous section suggest an alternative approach to the con-
struction of good numerical approximations to the values of B(x − bj, a). Consider the
hypergeometric series

Jn(x, a,b) :=
n!`

Γ(sn + 1− a)

∞∑
k=0

Γ(k + 1− a)

k!
· (k − sn + 1)sn∏`

j=1(k + x− bj)n+1

=
n!`∏`

j=1(sn + x− bj)n+1

· `+1F`

[
sn + 1− a, sn + x− b1, . . . , sn + x− b`

(s + 1)n + x− b1 + 1, . . . , (s + 1)n + x− b` + 1
; 1

]
where s is an integer such that (`−s)n+ ` > 1−Re(a), so that the series is convergent. If
s = `, this assumption is fulfilled if we assume that Re(a) > −1 because ` ≥ 2. The factor
n!`

(sn)!
is an arithmetic normalization, we could have chosen n!`−s as well. At first sight,

Jn(x, a,b) seems to be rather different from the series for In(x, a,b): at the numerator, we
have (k − sn + 1)sn instead of (k − a)n+1. The factor (k − sn + 1)sn means that the first
sn terms of the series are 0 and that it should be “small” (see Section 5.3).

We define

Qn,j(x, a,b) =
n∑
p=0

(−1)n−pn!`(−x+ bj − p− sn)sn(x− bj)p
p!(n− p)!(1− a)sn(x+ a− bj)p

∏`
q=1,q 6=j(bj − bq − p)n+1

∈ Q(x, a, b1, . . . , b`).
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Theorem 3. We have

Jn(x, a,b) =
∑̀
j=1

Qn,j(x, a,b)B(x− bj, a)

=

∫
[0,1]`

∏`
j=1 u

sn+x−bj
j (1− uj)n

(1− u1 · · ·u`)sn+1−a du1 · · · du`.

From the integral expression, we remark that in fact Jn(x, a,b) = n!
(1−a)n

In(x + sn +

1, a− (s− 1)n,b). Hence, both approaches essentially provide the same informations. We
now present a direct proof of Theorem 3.

Proof. Since s ≤ n, we have the partial fraction expansion (in k)

(k − sn)sn∏`
j=1(k + x− bj)n+1

=
∑̀
j=1

n∑
p=0

(−1)n−p(−x+ bj − p− sn)sn

p!(n− p)!
∏`

q=1,q 6=j(bj − bq − p)n+1

1

k + x− bj + p
.

Hence

Jn(x, a,b) =
1

Γ(sn + 1− a)

n∑
p=0

(−1)n−pn!`(−x + bj − p− sn)sn

p!(n− p)!
∏`
q=1,q 6=j(bj − bq − p)n+1

∞∑
k=0

Γ(k + 1− a)

k!(k + x− bj + p)
.

Now, by Gauss’ summation formula

1

Γ(sn+ 1− a)

∞∑
k=0

Γ(k + 1− a)

k!(k + x− bj + p)
=

Γ(p+ x− bj)Γ(a)

Γ(x− b+ a− p)(1− a)sn

=
(x− bj)p

(x+ a− b)p(1− a)sn
B(x− bj, a),

so that

Jn(x, a,b) =∑̀
j=1

( n∑
p=0

(−1)n−p
n!`(−x + bj − p− sn)sn(x− bj)p

p!(n− p)!(1− a)sn(x + a− bj)p
∏`
q=1,q 6=j(bj − bq − p)n+1

)
B(x− bj , a).

The integral expression is a consequence of the fact that Jn(x, a, b) is hypergeometric.

5.3 Diophantine questions

Hypergeometric series or integrals such that those studied in this paper are very common,
in particular in the study of the arithmetic nature of zeta values. See for instance [1, 7, 8].
In Theorem 2, it is not difficult to prove that∣∣∣∣ ∑̀

j=1

P̃n,j(x, a,b)B(x− bj, a)

∣∣∣∣� 1

r`n+o(n)
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for any r, where the implicit constant does not depend on `. Similarly, in Theorem 3, we
have ∣∣∣∣ ∑̀

j=1

Qn,j(x, a,b)B(x− bj, a)

∣∣∣∣� 1

(es)(`−s)n+o(n)

for any s < `. When we take x, a and the bj’s as rational numbers, the P̃n,j(x, a,b) and
Qn,j(x, a,b) are rational numbers. Unfortunately, it seems that the common denominator

of the P̃n,j(x, a,b)’s, respectively the Qn,j(x, a,b)’s, are too large to apply Nesterenko’s
linear independence criterion successfuly. Even in the simple case x = 1, a = 1

2
, bj = − j

`
,

it seems that we can’t obtain a non-trivial lower bound for the dimension of the vector
space generated over Q by B(1

2
, 1
`
), . . . , B(1

2
, `−1

`
). We do not give any details because even

if we could obtain a non-trivial lower bound for the above dimension, the result would not
be new. Indeed, the results of [16] on the linear independence of Beta values enables one
to get the exact value of this dimension, as predicted by the Rohrlich-Lang conjecture.
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Bordx. 16.1 (2004), 251–291.

T. Rivoal, Institut Fourier, CNRS et Université Grenoble 1, 100 rue des maths, BP 74,
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