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Definition of E -functions
We fix an embedding of Q into C.

Definition 1 (Siegel, 1929)
An E -function is a power series F (z) =

∑∞
n=0

an
n! z

n ∈ Q[[z ]]

(i) F (z) is solution of an homogeneous linear differential equation with
coefficients in Q(z).

and there exists C > 0 s.t.

(ii) For any σ ∈ Gal(Q/Q) and any n ≥ 0, |σ(an)| ≤ C n+1.

(iii) For any n ≥ 0, there exists dn ∈ N s.t. 0 < |dn| ≤ C n+1 and
dnam ∈ OQ for all 0 ≤ m ≤ n.

Siegel: Eine Funktion y , deren Potenzreihe diese drei Eigenschaften
hat, möge kurz eine E -Funktion genannt werden. Offenbar ist die
Exponentialfunktion eine E -Funktion.

A function y whose power series has these three properties shall be called
an E -function. The exponential function is obviously an E -function.

Siegel’s original definition was in fact slightly more general, but both
definitions are now believed to be equivalent.



Examples

Polynomials in Q[z ],
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∞∑
n=0
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n!2
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∞∑
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(
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n

)
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(2n)!
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∞∑
n=0

1

n!

(
1 +

1

2
+ · · ·+ 1
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)
zn

Non-polynomial algebraic functions, − log(1− z) =
∑∞

n=1
zn

n and J0(
√
z)

are not E -functions.



Structural properties of E -functions

E -functions are entire functions; they form a ring, stable by d
dz and

∫ z

0
.

Its units are of the form αeβz , where α ∈ Q∗ and β ∈ Q (André 2000).

The generalized hypergeometric function

pFp

[
a1, . . . , ap
b1, . . . , bp

; z

]
:=

∞∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bp)n

zn

n!
,

is an E -function if the aj ’s and bj ’s are in Q. The converse is false: take
p = 1 and a1 =

√
2 + 1, b1 =

√
2. Necessary and sufficient conditions

have been given by Galochkin (1981).

Siegel’s problem: Is any E -function a finite linear combination (over
Q(z)) of finite products of pFp series?

The answer is yes if the E -function satisfies a linear differential equation
of order ≤ 2. But the question is still open for E -functions of order ≥ 3.



Diophantine properties of the exponential function

Siegel defined E -functions to generalize the Diophantine properties of
exp.

Theorem 1 (Hermite-Lindemann)
For any α ∈ Q∗, eα /∈ Q.

More generally,

Theorem 2 (Lindemann-Weierstrass)
Let α1, . . . , αk ∈ Q be Q-linearly independent. Then eα1 , . . . , eαk are
Q-algebraically independent.

Equivalently:

Let α1, . . . , αk ∈ Q be pairwise distinct. Then eα1 , . . . , eαk are Q-linearly
independent.



The Siegel-Shidlovskii Theorem

Y (z) = t(F1(z), . . . ,Fn(z)) a vector of E -functions solution of a
differential system Y ′(z) = M(z)Y (z) where M(z) ∈ Mn(Q(z)).

T (z) ∈ Q[z ] the least common denominator of the entries of M(z).

Theorem 3 (Siegel-Shidlovskii 1929, 1956)
For any α ∈ Q s.t. αT (α) 6= 0,

degtrQ(z)

(
F1(z), . . . ,Fn(z)

)
= degtrQ

(
F1(α), . . . ,Fn(α)

)
.

If α1, . . . , αn are Q-linearly independent, degtrQ(z)(e
α1z , . . . , eαnz) = n.

Problem 1: If degtrQ(z)(F1(z), . . . ,Fn(z)) < n, the theorem does not

imply that F1(α) /∈ Q at any α ∈ Q s.t. αT (α) 6= 0.

Problem 2: It does not say anything about the Diophantine nature of
F1(α) when T (α) = 0 and α 6= 0.



Beyond Siegel and Shidlovskii

Theorem 4 (Beukers 2006)
In the same setting as before, consider α ∈ Q s.t. αT (α) 6= 0. Assume
that P

(
F1(α), . . . ,Fn(α)

)
= 0 for some P ∈ Q[X1, . . . ,Xn] homogeneous.

Then, there exists Q ∈ Q[Z ,X1, . . . ,Xn] homogeneous in the Xj ’s s.t.

Q
(
z ,F1(z), . . . ,Fn(z)

)
= 0 and Q(α,X1, . . . ,Xn) = P(X1, . . . ,Xn).

Theorem 5 (Beukers’ Corollary 1.4)
Assume that F1(z), . . . ,Fn(z) are Q(z)-linearly independent. Then for
any α ∈ Q s.t. αT (α) 6= 0, the number F1(α), . . . ,Fn(α) are Q-linearly
independent.

When T (α) = 0, the relation

0 = lim
z→α

T (z)Y ′(z) = lim
z→α

T (z)M(z)Y (z)

implies that F1(α), . . . ,Fn(α) are Q-linearly dependent.



Exceptional algebraic values of E -functions

Theorem 6 (Adamczewski-R., 2017)
There exists an algorithm to perform the following tasks.

Given an E -function f (z) as input, it first says whether f (z) is
transcendental or not.

If it is transcendental, it then outputs the finite list of algebraic numbers
α such that f (α) is algebraic, together with the corresponding list of
values f (α).



How is the input given?
• Let f (z) =

∑∞
n=0

an
n! z

n be an E -function. By definition, Lf (z) = 0 for

some L ∈ Q[z , d
dz ] or equivalently Ran = 0 for some R ∈ Q[n,Shift].

The expression “Given an E -function f (z)” means that

(i) One knows explicitly L ∈ Q(z)[ d
dz ] s.t. Lf (z) = 0.

(ii) One knows enough Taylor coefficients of f (z) to be able to compute
from L as many coefficients as needed.

In general, no explicit formulas are known for the solutions of a given
L ∈ Q(z)[ d

dz ].

No algorithm is known to decide if L has an E -function as solution.

(iii) An oracle guarantees that f (z) is an E -function.

• In practice, an E -function is given by an explicit expression for its
Taylor coefficients as a multiple hypergeometric sum.

Both L and R can then be computed in principle using algorithms à la
Zeilberger.



1st step: minimal equation

Input: f and L, of order r0 and degree δ0.

Output: Lmin ∈ Q[z , d
dz ] \ {0} such that Lminf (z) = 0 and minimal for

the order.

• Grigoriev (1991): there exist an explicit δ1 = δ1(L) and an Lmin s.t.
deg(Lmin) ≤ δ1. Obviously, ord(Lmin) ≤ r0.

• Let 1 ≤ r ≤ r0 and 0 ≤ δ ≤ δ1. For any P0(z), . . . ,Pr (z) ∈ Q[z ] not all
zero, of degrees ≤ δ, set

R(z) := P0(z)f (z) + · · ·+ Pr (z)f (r)(z).

Bertrand-Beukers (1985): There exists an explicit integer N = N(L) s.t.

R ≡ 0 ⇐⇒ ordz=0R(z) ≥ N.

• Deciding if R ≡ 0 amounts to finding a non-trivial element in the kernel
of an (r + 1)(δ + 1)× (N + 1) matrix with algebraic entries that depend
on the first N + 1 Taylor coefficients of f .

An Lmin will eventually be found.



2nd step: minimal inhomogeneous equation
Input: f and Lmin written in the form

r∑
j=0

Pj(z)f (j)(z) = 0, Pj(z) ∈ Q(z) and Pr (z) ≡ 1 .

Output: A minimal non-zero inhomogenous equation Linhomf (z) = 0 of
order s, with coefficients in Q(z).

• Necessarily, s ∈ {r , r − 1}.
• If s = r − 1, write Linhom in the form

1 +
r−1∑
j=0

Qj(z)f (j)(z) = 0, Qj(z) ∈ Q(z).

The Qj ’s are solutions of the system
Q0

Q1

Q2

...
Qr−1



′

=


0 0 . . . 0 P0

−1 0 . . . 0 P1

0 −1 . . . 0 P2

...
...

...
...

...
0 0 . . . −1 Pr−1




Q0

Q1

Q2

...
Qr−1

 . (1)



• There exist algorithms to decide whether a given differential system
with coefficients in Q(z) has a non-zero vector of rational solutions (and
then compute them) or not. For instance, Barkatou’s algorithm (1999).

• If (1) has no such rational vector, then s = r and we set Linhom := Lmin.

• If (1) has a non-zero vector of rational solutions Aj ’s, then by
construction of (1),

r−1∑
j=0

Aj(z)f (j)(z) = c (2)

for some c ∈ Q to be determined.

The Aj ’s are explicitely known and we know as many Taylor coefficients
of f as needed: expanding the LHS of (2) in Laurent series at z = 0, the
constant c can be explicitely computed.

The resulting explicit equation (2) is Linhom.



3rd step: capturing the exceptional algebraic values of f

Input: f and Linhom of order s.

• If s = 0, then f is a polynomial and the algorithm stops here.

• If s ≥ 1, then f is transcendental over C(z). Rewrite Linhom as
0

f ′(z)
f ′′(z)

...

f (s)(z)

 =


0 0 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

...
u1(z)
u0(z)

u2(z)
u0(z)

· · · · · · · · · us+1(z)

u0(z)




1

f (z)
f ′(z)
...

f (s−1)(z)


(3)

where the uj ’s are in Q[z ], with u0 6≡ 0.

• The functions 1, f (z), . . . , f (s−1)(z) are Q(z)-linearly independent.

By Corollary 1.4, when α ∈ Q and αu0(α) 6= 0, the numbers
1, f (α), . . . , f (s−1)(α) are Q-linearly independent. In particular,
f (α) /∈ Q.

• In other words, if α ∈ Q and f (α) ∈ Q, then αu0(α) = 0 .



Last steps

Goal: Given α 6= 0 such that u0(α) = 0, decide whether f (α) ∈ Q or not.

• Beukers’ Theorem 1.5: there exists an (s + 1)× (s + 1) invertible
matrix M(z) with entries in Q[z ] such that

1
f (z)
...

f (s−1)(z)

 =M(z)


e0(z)
e1(z)
...

es(z)

 ,

where the ej ’s are E -functions solutions of a differential system with
entries in Q[z , 1/z ]. Their common denominator is zb for some integer b.

• The ej ’s are Q(z)-linearly independent. By Corollary 1.4, when α ∈ Q∗,
the numbers

e1(α), e2(α), . . . , es(α)

are Q-linearly independent.



• f (α) ∈ Q if and only if there exists λ = (β, 1, 0, . . . , 0) ∈ Qs+1
s.t.

0 = λ ·


1

f (α)
...

f (s−1)(α)

 = λM(α)


e0(α)
e1(α)

...
es(α)

 .

Hence{
α ∈ Q : f (α) ∈ Q

}
={

α ∈ Q : u0(α) = 0 and ∃(β, 1, 0, . . . , 0) ∈ Qs+1 ∩ left kernelM(α)
}
∪
{
0
}
.
(4)

• Beukers constructs the matrix M(z) by desingularization of (3). The
order of the poles are not necessarily reduced at each step of his
procedure, they can even increase! But they eventually disappear in the
final step.

Properties used: 1) the finite non-zero singularities of a non-zero minimal
operator that annihilates an E -function are apparent (André 2000).

2) If an E -function F and α ∈ Q are s.t. F (α) ∈ Q, then F (z)−F (α)
z−α is an

E -function (Beukers 2006).

• The set on the RHS of (4) can be explicitly computed. The algorithm
stops here.



Example 1
Consider the transcendental E -function

f (z) =
∞∑
n=0

n2
(
2n
n

)
(n + 1)2

(z/2)n+1

n!
.

Lmin : f ′′′(z) +
1− 2z − 2z2

z(1 + z)
f ′′(z)− 1 + 4z + z2

z2(1 + z)
f ′(z) = 0. (5)

Linhom is either (5) or is of order 2.

The differential system

Y ′(z) =

 0 0 0

−1 0 − 1+4z+z2

z2(1+z)

0 −1 1−2z−2z2
z(1+z)

Y (z)

has the non-zero solution

Y (z) =

(
1,

(1− z)(1− z + 2z2)

z(1 + z)
,

(1− z)2

1 + z

)
.



Hence,

Linhom : f (z) +
(1− z)(1− z + 2z2)

z(1 + z)
f ′(z) +

(1− z)2

1 + z
f ′′(z) =

1

2
. (6)

u0(z) = z(z − 1)2.

Here, it is not necessary to compute Beukers’ matrix M(z). Put z = 1 in
(6): we obtain f (1) = 1

2 .

Conclusion: f (α) /∈ Q for any α ∈ Q \ {0, 1}, and f (1) = 1
2 .

f (z) =
1

2
+ (z − 1)

∞∑
n=0

(
2n
n

)
2n−1n!

zn.



Example 2

The roots of u0 are not always exceptional values for f .

Given two distinct integers a, b ≥ 1, set f (z) = zaeaz + zbebz .

Lmin : f ′′(z) +
1− (a + b)(1 + z)2

z(1 + z)
f ′(z) +

ab(1 + z)2

z2
f (z) = 0.

Linhom = Lmin and u0(z) = z2(1 + z).

Hence f (α) /∈ Q for any α ∈ Q \ {0,−1}.

f (−1) = (−1)ae−a + (−1)be−b /∈ Q by the Lindemann-Weierstrass
Theorem.

Hence there is no exceptional α 6= 0 for f .

But f ′(−1) = 0 because f ′(z) = (z + 1)(aza−1eaz + bzb−1ebz).



Other classes of arithmetic special functions, I

• A Mahlerian function is a power series F (z) ∈ Q[[z ]] s.t

d∑
j=0

Pj(z)F (zb
j

) = 0

for some integers b ≥ 2, d ≥ 1 and Pj ’s in Q[z ]. For instance,

∞∑
n=0

z2
n

,

∞∏
n=0

(1 + z3
n

).

• There exist analogues of the Siegel-Shidlovskii and Beukers’ Theorems,
obtained by Nishioka (1990), and Adamczewski-Faverjon and Philippon
(2015) respectively.

• Adamczewski-Faverjon (2016) have also found an algorithm to describe
explicitly the algebraic numbers at which a given Mahlerian function
takes an algebraic value.



Other classes of arithmetic special functions, II

• Siegel (1929). A G -function is a power series
∑∞

n=0 anz
n ∈ Q[[z ]] s.t.∑∞

n=0
an
n! z

n is an E -function.

Siegel: Solche Funktionen mögen G -Funktionen genannt werden; zu
ihnen gehört trivialerweise die geometrische Reihe.

Such functions will be called G -functions; the geometric series is a trivial
example.

• Other less trivial examples: algebraic functions/Q(z), log(1− z),
polylogarithms, hypergeometric series p+1Fp with rational paramaters.

• The Diophantine theory of the values taken by G -functions is much
weaker. There is no general transcendence result.

• The Q-algebraic (in)dependence of values of G -functions at algebraic
points might fall under the scope of Grothendieck “Conjecture des
périodes” because of the Bombieri-Dwork Conjecture “G-functions come
from geometry”.


