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G -functions
Definition 1
A G-function is a formal power series G (z) =

∑∞
n=0 anz

n such that
an ∈ Q and there exists C > 0 such that:

(i) For any σ ∈ Gal(Q/Q) and any n ≥ 0, |σ(an)| ≤ C n+1.

(ii) there exists a sequence of rational integers dn 6= 0, with
|dn| ≤ C n+1, such that dnam is an algebraic integer for all m ≤ n.

(iii) G (z) satisfies a homogeneous linear differential equation with
coefficients in Q(z).

Algebraic functions over Q(z). Polylogarithms Lis(z) :=
∑∞

n=1 z
n/ns .

No general theorem about the transcendance of values of G -functions:

log(Q×) /∈ Q but we don’t know if Li2s+1(1) /∈ Q for s ≥ 2. A result
formally similar to the Siegel-Shidlovsky Theorem is impossible.

Chudnovky (70’s), reproved by André (1996): for any α ∈ Q,
0 < |α| < 1, the numbers 2F1[ 12 ,

1
2 ; 1;α] and 2F1[− 1

2 ,
1
2 ; 1;α] are

algebraically independent over Q.

We don’t know three values of G -functions algebraically independent
over Q;



Theorem 1 (Chudnovsky 1984)
Let Y (z) = t(F1(z), . . . ,FN(z)) be a vector of G-functions solution of a
differential system Y ′(z) = A(z)Y (z), where A(z) ∈ MN(Q(z)). Assume
that F1(z), . . . , FN(z) are Q(z)-algebraically independent.

Then for any d, there exists C = C (Y , d) > 0 such that, for any α ∈ Q×

of degree ≤ d with

|α| < exp(−C log (H(α))
4N

4N+1 ), (1)

there does not exist a polynomial relation between the values
F1(α), . . . ,FN(α) over Q(α) of degree ≤ d.

H(α) is the maximum of the modulus of the coefficients of the minimal
polynomial of α over Q.

If α = a/b ∈ Q, Eq. (1) reads b > C1|a|C2 where C1,C2 > 0 depend on
Y and d.



A lot of work has been devoted to improvements of Theorem 1, or alike,
for classical G -functions, or to determine weaker conditions for the
irrationality of the values of G -functions at rational points.

Theorem 2
Let F be a G-function in Q[[z ]] such that F (z) 6∈ Q(z). Then there exist
some positive constants C1 and C2, depending only on F , with the
following property.

Let a 6= 0 and b ≥ 1 be integers such that

b > C1|a|C2 . (2)

Then F (a/b) is irrational.

In general, an irrationality measure is also obtained, showing that F (a/b)
is not a Liouville number.



Theorem 3 (Zudilin 1995)
Let N ≥ 2 and Y (z) = t(F1(z), . . . ,FN(z)) be a vector of G-functions
solution of a differential system Y ′(z) = A(z)Y (z) + B(z), where
A(z),B(z) ∈ MN(C(z)).

If N = 2, assume 1,F1(z),F2(z) are C(z)-linearly independent. If N ≥ 3
assume F1(z), . . . ,FN(z) are C(z)-algebraically independent.

Let ε > 0, a ∈ Z, a 6= 0. Let b and q be sufficiently large positive
integers, in terms of the Fj ’s, a and ε.

Then Fj(a/b) is an irrational number and for any integer p, we have∣∣∣∣Fj

( a
b

)
− p

q

∣∣∣∣ ≥ 1

q2+ε
, j = 1, . . . ,N. (3)

The “Roth like” irrationality exponent 2 + ε is very strong, because prior
similar results provide an exponent equal to N + ε.

This dramatic mprovement comes from a technique due to Chudnovsky:
graded Padé approximants.

However, (3) is not of the strength of Roth’s theorem, because b
depends on ε.



A hybrid measure

Theorem 4 (Fischler-R, 2016)
Let F be a G-function in Q[[z ]] with F (z) 6∈ Q(z), and t ≥ 0.

There exist some effective constants c1, c2, c3, c4 > 0, depending only on
F (and t as well for c3), such that the following property holds.

Let a 6= 0 and b,B ≥ 1 be integers such that

b > c1|a|c2 and B ≤ bt . (4)

Then for any n ∈ Z and any m ≥ c3
log(b)

log(|a|+1) we have∣∣∣F( a
b

)
− n

B · bm
∣∣∣ ≥ 1

B · bm · (|a|+ 1)c4m
. (5)

Earlier results: Beukers (1979), Bugeaud, Bennett for (1− z)α (with
α ∈ Q \ Z, B = 1), and myself for log(1− z).

Method : non-diagonal Padé approximants, first used by Beukers for
(1− z)α.



Application 1

The lower bound (5) implies an effective irrationality measure of F (a/b).

Let A and B ≥ 1 be any integers, t = log(B)
log(b) and m = bc3 log(b)

log(|a|+1)c+ 1.

From the proof of the theorem, we get c3 = 4
3 t if B is large enough in

terms of F .

Then, with n = A · bm, Eq. (5) implies that, provided b > c1|a|c2 ,∣∣∣∣F( ab)− A

B

∣∣∣∣ ≥ κ

Bµ
(6)

for κ, µ > 0 depending effectively on a, b and F .

The constant µ is worse than Zudilin’s, at least when b is large with
respect to a.

But (6) applies to a larger class of G -functions because we only need to
assume that F (z) /∈ Q(z).



Application 2

The lower bound (5) also implies a measure of the distance of F (a/b) to
rational numbers of a special type.

Given ε > 0 and assuming that t = 0, b > (|a|+ 1)2c4/ε, we obtain the

Corollary 1 (F-R 2016)
Let F be a G-function in Q[[z ]] with F (z) 6∈ Q(z), ε > 0, and a ∈ Z,
a 6= 0. Let b and m be positive integers, sufficiently large in terms of F ,
ε, a.

Then F (a/b) 6∈ Q and for any integer n, we have∣∣∣F( a
b

)
− n

bm

∣∣∣ ≥ 1

bm(1+ε)
.

This is a “fake” Ridout Theorem for G-values. However, using Zudilin’s
Theorem, we only get 2 + ε.

Open problem: does a similar result hold when F is assumed to be an
E -function? Nothing is known in this direction, not even for exp(z).



Let b, t be integers with b ≥ 2 and t ≥ 1, and let ξ ∈ R \Q.

Let 0.a1a2a3 . . . be the expansion in base b of the fractional part of ξ.

For any n ≥ 1, let Nb(ξ, t, n) denote the number of times the pattern
anan+1 . . . an+t−1 is repeated starting from an.

If t = 1, Nb(ξ, t, n) is the number of consecutive equal digits in the
expansion of ξ, starting from an.

Theorem 5 (F-R 2016)
Let F be a G-function in Q[[z ]] with F (z) 6∈ Q(z), ε > 0, and a ∈ Z,
a 6= 0. Let b ≥ 2.

Then for any integer s sufficiently large in terms of F , ε, and a, we have
for any t ≥ 1:

lim sup
n→∞

1

n
Nb

(
F (a/bs), t, n

)
≤ ε/t.



A similar bound for this upper limit, with 1 + ε instead of ε, follows from
(and under the assumptions of) Zudilin’s Theorem 3.

When ξ is an irrational algebraic number, Ridout’s theorem yields
limn

1
n Nb(ξ, t, n) = 0 for any b and any t.

But this is not effective: given b, t and ε > 0, no explicit value of
M = M(b, ξ, t, ε) is known such that Nb(ξ, t, n) ≤ εn for any n ≥ M.

If ξ = F (a/bs) ∈ Q then Theorem 5 provides such an explicit value
provided bs is large enough. For a given ξ, Theorem 5 applies only if ε is
not too small: this is not an effective version of Ridout’s theorem for ξ.

Conjecturally, we have limn
1
n Nb(ξ, t, n) = 0 whenever ξ is a

transcendental value of a G -function.

The only such ξ for which the upper bound lim supn
1
n Nb(ξ, 1, n) < 1

was known are values of the logarithm.



Idea of the proof of Theorem 4
Let F (z) in Q[[z ]]. Given three integers p ≥ q ≥ h ≥ 0, we can find P(z)
and Q(z) in Z[z ], of degree ≤ p and ≤ q resp., and such that

R(z) := Q(z)F (z)− P(z) = O(zp+h+1).

Let P = bpP(a/b) ∈ Z and Q = bqQ(a/b) ∈ Z. Then∣∣∣F( a

b

)
− u

v

∣∣∣ ≥ ∣∣∣∣uv − P

bp−qQ

∣∣∣∣− ∣∣∣∣F( a

b

)
− P

bp−qQ

∣∣∣∣ ≥ 1

2

∣∣∣∣uv − P

bp−qQ

∣∣∣∣ (7)

1) provided R(a/b)/Q is smaller than 1
2 |

u
v −

P
bp−qQ |.

2) If the LHS is not 0 and v is any integer,∣∣∣∣uv − P

bp−qQ

∣∣∣∣ ≥ 1

vbp−qQ

3) If v = bm, we have a “better” lower bound:∣∣∣∣uv − P

bp−qQ

∣∣∣∣ ≥ 1

bmax(p−q,m)Q
.

We then take p = q + m, which justifies to use non-diagonal Padé
approximants. This is crucial to improve on Zudilin’s measure.



4) We cannot achieve 1) in general without assumptions on F (z). If it is
a G -function, we use Siegel’s lemma to construct and control P(z) and
Q(z). We have a good upper bound for R(z) but to deduce an hybrid
measure from (7), we also need to prove that R(a/b) 6= 0.

5) We cannot work only with F (z). We need a vector of G -functions
(F ,F2, . . . ,FN) solution of a differential system. We then construct
simultaneous type II Padé approximants

Rj(z) := Q(z)Fj(z)− Pj(z) = O(zp+h+1), j = 1, . . . ,N

where deg(Pj) ≤ p, deg(Q) ≤ q and p ≥ q ≥ Nh.

6) Using the action of the differential system on the Rj(z), we construct

some other “small” approximations R̃j(z) to which Shidlovsky’s lemma
can be applied (in a form given in André’s book). We then get

R̃j(a/b) 6= 0.

7) We can try to do the same thing if F (z) is an E -function. Everything
works fine, except that observation 3) is useless.



Proof of Theorem 5

Let ξ = F (a/bs), qn = bn−1(bt − 1), and

pn = (bt − 1)bbn−1ξc+ anb
t−1 + an−1b

t−2 + . . .+ an+t−1.

Then the b-ary expansion of

pn
qn

=
bbn−1ξc
bn−1

+
anb

t−1 + an−1b
t−2 + . . .+ an+t−1

bn−1(bt − 1)

has the same n + tNb(ξ, t, n)− 1 first digits as the b-ary expansion of ξ.

Therefore ∣∣∣∣ ξ − pn
qn

∣∣∣∣ ≤ b − 1

bn+tNb(ξ,t,n)
.

Now Theorem 4 with bs for b, B = bt − 1 and m = b n−1s c yields∣∣∣∣ ξ − pn
qn

∣∣∣∣ ≥ 1

bb
n−1
s cs(1+ε)

.

The comparison of both inequalities concludes the proof.


