Rational approximation to values of G-functions

Tanguy Rivoal,
CNRS and Université Grenoble Alpes

joint work with Stéphane Fischler (Orsay)

G-functions

Definition 1

A G-function is a formal power series $G(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $a_{n} \in \overline{\mathbb{Q}}$ and there exists $C>0$ such that:
(i) For any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ and any $n \geq 0,\left|\sigma\left(a_{n}\right)\right| \leq C^{n+1}$.
(ii) there exists a sequence of rational integers $d_{n} \neq 0$, with $\left|d_{n}\right| \leq C^{n+1}$, such that $d_{n} a_{m}$ is an algebraic integer for all $m \leq n$.
(iii) $G(z)$ satisfies a homogeneous linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.

Algebraic functions over $\overline{\mathbb{Q}}(z)$. Polylogarithms $L i_{s}(z):=\sum_{n=1}^{\infty} z^{n} / n^{s}$.
No general theorem about the transcendance of values of G-functions: $\log \left(\overline{\mathbb{Q}}^{\times}\right) \notin \overline{\mathbb{Q}}$ but we don't know if $\mathrm{Li}_{2 s+1}(1) \notin \mathbb{Q}$ for $s \geq 2$. A result formally similar to the Siegel-Shidlovsky Theorem is impossible.
Chudnovky (70's), reproved by André (1996): for any $\alpha \in \overline{\mathbb{Q}}$, $0<|\alpha|<1$, the numbers ${ }_{2} F_{1}\left[\frac{1}{2}, \frac{1}{2} ; 1 ; \alpha\right]$ and ${ }_{2} F_{1}\left[-\frac{1}{2}, \frac{1}{2} ; 1 ; \alpha\right]$ are algebraically independent over $\overline{\mathbb{Q}}$.
We don't know three values of G-functions algebraically independent over $\overline{\mathbb{Q}}$;

Theorem 1 (Chudnovsky 1984)

Let $Y(z)={ }^{t}\left(F_{1}(z), \ldots, F_{N}(z)\right)$ be a vector of G-functions solution of a differential system $Y^{\prime}(z)=A(z) Y(z)$, where $A(z) \in M_{N}(\overline{\mathbb{Q}}(z))$. Assume that $F_{1}(z), \ldots, F_{N}(z)$ are $\overline{\mathbb{Q}}(z)$-algebraically independent.

Then for any d, there exists $C=C(Y, d)>0$ such that, for any $\alpha \in \overline{\mathbb{Q}}^{\times}$ of degree $\leq d$ with

$$
\begin{equation*}
|\alpha|<\exp \left(-C \log (H(\alpha))^{\frac{4 N}{N+1}}\right), \tag{1}
\end{equation*}
$$

there does not exist a polynomial relation between the values $F_{1}(\alpha), \ldots, F_{N}(\alpha)$ over $\mathbb{Q}(\alpha)$ of degree $\leq d$.
$H(\alpha)$ is the maximum of the modulus of the coefficients of the minimal polynomial of α over \mathbb{Q}.
If $\alpha=a / b \in \mathbb{Q}$, Eq. (1) reads $b>C_{1}|a|^{C_{2}}$ where $C_{1}, C_{2}>0$ depend on Y and d.

A lot of work has been devoted to improvements of Theorem 1, or alike, for classical G-functions, or to determine weaker conditions for the irrationality of the values of G-functions at rational points.

Theorem 2

Let F be a G-function in $\mathbb{Q}[[z]]$ such that $F(z) \notin \mathbb{Q}(z)$. Then there exist some positive constants C_{1} and C_{2}, depending only on F, with the following property.

Let $a \neq 0$ and $b \geq 1$ be integers such that

$$
\begin{equation*}
b>C_{1}|a|^{C_{2}} . \tag{2}
\end{equation*}
$$

Then $F(a / b)$ is irrational.
In general, an irrationality measure is also obtained, showing that $F(a / b)$ is not a Liouville number.

Theorem 3 (Zudilin 1995)
Let $N \geq 2$ and $Y(z)={ }^{t}\left(F_{1}(z), \ldots, F_{N}(z)\right)$ be a vector of G-functions solution of a differential system $Y^{\prime}(z)=A(z) Y(z)+B(z)$, where $A(z), B(z) \in M_{N}(\mathbb{C}(z))$.
If $N=2$, assume $1, F_{1}(z), F_{2}(z)$ are $\mathbb{C}(z)$-linearly independent. If $N \geq 3$ assume $F_{1}(z), \ldots, F_{N}(z)$ are $\mathbb{C}(z)$-algebraically independent.

Let $\varepsilon>0, a \in \mathbb{Z}, a \neq 0$. Let b and q be sufficiently large positive integers, in terms of the F_{j} 's, a and ε.

Then $F_{j}(a / b)$ is an irrational number and for any integer p, we have

$$
\begin{equation*}
\left|F_{j}\left(\frac{a}{b}\right)-\frac{p}{q}\right| \geq \frac{1}{q^{2+\varepsilon}}, \quad j=1, \ldots, N \tag{3}
\end{equation*}
$$

The "Roth like" irrationality exponent $2+\varepsilon$ is very strong, because prior similar results provide an exponent equal to $N+\varepsilon$.
This dramatic mprovement comes from a technique due to Chudnovsky: graded Padé approximants.
However, (3) is not of the strength of Roth's theorem, because b depends on ε.

A hybrid measure

Theorem 4 (Fischler-R, 2016)
Let F be a G-function in $\mathbb{Q}[[z]]$ with $F(z) \notin \mathbb{Q}(z)$, and $t \geq 0$.
There exist some effective constants $c_{1}, c_{2}, c_{3}, c_{4}>0$, depending only on F (and t as well for c_{3}), such that the following property holds.
Let $a \neq 0$ and $b, B \geq 1$ be integers such that

$$
\begin{equation*}
b>c_{1}|a|^{c_{2}} \quad \text { and } \quad B \leq b^{t} \tag{4}
\end{equation*}
$$

Then for any $n \in \mathbb{Z}$ and any $m \geq c_{3} \frac{\log (b)}{\log (|a|+1)}$ we have

$$
\begin{equation*}
\left|F\left(\frac{a}{b}\right)-\frac{n}{B \cdot b^{m}}\right| \geq \frac{1}{B \cdot b^{m} \cdot(|a|+1)^{c_{4} m}} . \tag{5}
\end{equation*}
$$

Earlier results: Beukers (1979), Bugeaud, Bennett for $(1-z)^{\alpha}$ (with $\alpha \in \mathbb{Q} \backslash \mathbb{Z}, B=1)$, and myself for $\log (1-z)$.
Method : non-diagonal Padé approximants, first used by Beukers for $(1-z)^{\alpha}$.

Application 1

The lower bound (5) implies an effective irrationality measure of $F(a / b)$.
Let A and $B \geq 1$ be any integers, $t=\frac{\log (B)}{\log (b)}$ and $m=\left\lfloor c_{3} \frac{\log (b)}{\log (|a|+1)}\right\rfloor+1$. From the proof of the theorem, we get $c_{3}=\frac{4}{3} t$ if B is large enough in terms of F.

Then, with $n=A \cdot b^{m}$, Eq. (5) implies that, provided $b>c_{1}|a|^{c_{2}}$,

$$
\begin{equation*}
\left|F\left(\frac{a}{b}\right)-\frac{A}{B}\right| \geq \frac{\kappa}{B^{\mu}} \tag{6}
\end{equation*}
$$

for $\kappa, \mu>0$ depending effectively on a, b and F.
The constant μ is worse than Zudilin's, at least when b is large with respect to a.
But (6) applies to a larger class of G-functions because we only need to assume that $F(z) \notin \mathbb{Q}(z)$.

Application 2

The lower bound (5) also implies a measure of the distance of $F(a / b)$ to rational numbers of a special type.
Given $\varepsilon>0$ and assuming that $t=0, b>(|a|+1)^{2 c_{4} / \varepsilon}$, we obtain the Corollary 1 (F-R 2016)
Let F be a G-function in $\mathbb{Q}[[z]]$ with $F(z) \notin \mathbb{Q}(z), \varepsilon>0$, and $a \in \mathbb{Z}$, $a \neq 0$. Let b and m be positive integers, sufficiently large in terms of F, ε, a.

Then $F(a / b) \notin \mathbb{Q}$ and for any integer n, we have

$$
\left|F\left(\frac{a}{b}\right)-\frac{n}{b^{m}}\right| \geq \frac{1}{b^{m(1+\varepsilon)}}
$$

This is a "fake" Ridout Theorem for G-values. However, using Zudilin's Theorem, we only get $2+\varepsilon$.

Open problem: does a similar result hold when F is assumed to be an E-function? Nothing is known in this direction, not even for $\exp (z)$.

Let b, t be integers with $b \geq 2$ and $t \geq 1$, and let $\xi \in \mathbb{R} \backslash \mathbb{Q}$.
Let $0 . a_{1} a_{2} a_{3} \ldots$ be the expansion in base b of the fractional part of ξ.
For any $n \geq 1$, let $\mathcal{N}_{b}(\xi, t, n)$ denote the number of times the pattern $a_{n} a_{n+1} \ldots a_{n+t-1}$ is repeated starting from a_{n}.
If $t=1, \mathcal{N}_{b}(\xi, t, n)$ is the number of consecutive equal digits in the expansion of ξ, starting from a_{n}.

Theorem 5 (F-R 2016)
Let F be a G-function in $\mathbb{Q}[[z]]$ with $F(z) \notin \mathbb{Q}(z), \varepsilon>0$, and $a \in \mathbb{Z}$, $a \neq 0$. Let $b \geq 2$.

Then for any integer s sufficiently large in terms of F, ε, and a, we have for any $t \geq 1$:

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \mathcal{N}_{b}\left(F\left(a / b^{s}\right), t, n\right) \leq \varepsilon / t
$$

A similar bound for this upper limit, with $1+\varepsilon$ instead of ε, follows from (and under the assumptions of) Zudilin's Theorem 3.

When ξ is an irrational algebraic number, Ridout's theorem yields $\lim _{n} \frac{1}{n} \mathcal{N}_{b}(\xi, t, n)=0$ for any b and any t.
But this is not effective: given b, t and $\varepsilon>0$, no explicit value of $M=M(b, \xi, t, \varepsilon)$ is known such that $\mathcal{N}_{b}(\xi, t, n) \leq \varepsilon n$ for any $n \geq M$.
If $\xi=F\left(a / b^{5}\right) \in \overline{\mathbb{Q}}$ then Theorem 5 provides such an explicit value provided b^{s} is large enough. For a given ξ, Theorem 5 applies only if ε is not too small: this is not an effective version of Ridout's theorem for ξ.
Conjecturally, we have $\lim _{n} \frac{1}{n} \mathcal{N}_{b}(\xi, t, n)=0$ whenever ξ is a transcendental value of a G-function.
The only such ξ for which the upper bound $\lim \sup _{n} \frac{1}{n} \mathcal{N}_{b}(\xi, 1, n)<1$ was known are values of the logarithm.

Idea of the proof of Theorem 4

Let $F(z)$ in $\mathbb{Q}[[z]]$. Given three integers $\mathbf{p} \geq \mathbf{q} \geq h \geq 0$, we can find $P(z)$ and $Q(z)$ in $\mathbb{Z}[z]$, of degree $\leq p$ and $\leq q$ resp., and such that

$$
R(z):=Q(z) F(z)-P(z)=O\left(z^{p+h+1}\right)
$$

Let $P=b^{p} P(a / b) \in \mathbb{Z}$ and $Q=b^{q} Q(a / b) \in \mathbb{Z}$. Then

$$
\begin{equation*}
\left|F\left(\frac{a}{b}\right)-\frac{u}{v}\right| \geq\left|\frac{u}{v}-\frac{P}{b^{p-q} Q}\right|-\left|F\left(\frac{a}{b}\right)-\frac{P}{b^{p-q} Q}\right| \geq \frac{1}{2}\left|\frac{u}{v}-\frac{P}{b^{p-q} Q}\right| \tag{7}
\end{equation*}
$$

1) provided $R(a / b) / Q$ is smaller than $\frac{1}{2}\left|\frac{u}{v}-\frac{P}{b^{p-q} Q}\right|$.
2) If the LHS is not 0 and v is any integer,

$$
\left|\frac{u}{v}-\frac{P}{b^{p-q} Q}\right| \geq \frac{1}{v b^{p-q} Q}
$$

3) If $v=b^{m}$, we have a "better" lower bound:

$$
\left|\frac{u}{v}-\frac{P}{b^{p-q} Q}\right| \geq \frac{1}{b^{\max (\rho-q, m)} Q} .
$$

We then take $p=q+m$, which justifies to use non-diagonal Padé approximants. This is crucial to improve on Zudilin's measure.
4) We cannot achieve 1) in general without assumptions on $F(z)$. If it is a G-function, we use Siegel's lemma to construct and control $P(z)$ and $Q(z)$. We have a good upper bound for $R(z)$ but to deduce an hybrid measure from (7), we also need to prove that $R(a / b) \neq 0$.
5) We cannot work only with $F(z)$. We need a vector of G-functions $\left(F, F_{2}, \ldots, F_{N}\right)$ solution of a differential system. We then construct simultaneous type II Padé approximants

$$
R_{j}(z):=Q(z) F_{j}(z)-P_{j}(z)=O\left(z^{p+h+1}\right), \quad j=1, \ldots, N
$$

where $\operatorname{deg}\left(P_{j}\right) \leq p, \operatorname{deg}(Q) \leq q$ and $p \geq q \geq N h$.
6) Using the action of the differential system on the $R_{j}(z)$, we construct some other "small" approximations $\widetilde{R}_{j}(z)$ to which Shidlovsky's lemma can be applied (in a form given in André's book). We then get $\widetilde{R}_{j}(a / b) \neq 0$.
7) We can try to do the same thing if $F(z)$ is an E-function. Everything works fine, except that observation 3) is useless.

Proof of Theorem 5

Let $\xi=F\left(a / b^{s}\right), q_{n}=b^{n-1}\left(b^{t}-1\right)$, and

$$
p_{n}=\left(b^{t}-1\right)\left\lfloor b^{n-1} \xi\right\rfloor+a_{n} b^{t-1}+a_{n-1} b^{t-2}+\ldots+a_{n+t-1} .
$$

Then the b-ary expansion of

$$
\frac{p_{n}}{q_{n}}=\frac{\left\lfloor b^{n-1} \xi\right\rfloor}{b^{n-1}}+\frac{a_{n} b^{t-1}+a_{n-1} b^{t-2}+\ldots+a_{n+t-1}}{b^{n-1}\left(b^{t}-1\right)}
$$

has the same $n+t \mathcal{N}_{b}(\xi, t, n)-1$ first digits as the b-ary expansion of ξ.
Therefore

$$
\left|\xi-\frac{p_{n}}{q_{n}}\right| \leq \frac{b-1}{b^{n+t \mathcal{N}_{b}(\xi, t, n)}}
$$

Now Theorem 4 with b^{s} for $b, B=b^{t}-1$ and $m=\left\lfloor\frac{n-1}{s}\right\rfloor$ yields

$$
\left|\xi-\frac{p_{n}}{q_{n}}\right| \geq \frac{1}{b^{\left\lfloor\frac{n-1}{s}\right\rfloor s(1+\varepsilon)}} .
$$

The comparison of both inequalities concludes the proof.

