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G-functions

Definition 1

A G-function is a formal power series G(z) = Y~ anz" such that
a, € Q and there exists C > 0 such that:

(i) For any o € Gal(Q/Q) o(an)| < C™HL

(i) there exists a sequence of rational integers d, # 0, with
|d,| < C™1, such that dnap, is an algebraic integer for all m < n.

(iii) G(z) satisfies a homogeneous linear differential equation with
coefficients in Q(z).

Algebraic functions over Q(z). Polylogarithms Lis(z) := Y2, z"/n°.
No general theorem about the transcendance of values of G-functions:
log(Q ) ¢ Q but we don't know if Lis;1(1) ¢ Q for s > 2. A result
formally similar to the Siegel-Shidlovsky Theorem is impossible.
Chudnovky (70's), reproved by André (1996): for any a €Q,

0 < |a| < 1, the numbers »F1[3, 3;1;0] and 2F1[—3, 3:1; 0] are
algebraically independent over Q.

We don’t know three values of G-functions algebraically independent
over QQ;



Theorem 1 (Chudnovsky 1984)

Let Y(z) = *(Fi(2), .-, Fn(2)) be a vector of G-functions solution of a
differential system Y'(z) = A(z)Y(z), where A(z) € Mn(Q(z2)). Assume
that F1(z), ..., Fn(2) are Q(z)-algebraically independent.

Then for any d, there exists C = C(Y,d) > 0 such that, for any o € Q”
of degree < d with

4N

|| < exp(—Clog (H(a))™T), (1)

there does not exist a polynomial relation between the values
Fi(a),..., Fn(a) over Q(«) of degree < d.

H(a) is the maximum of the modulus of the coefficients of the minimal
polynomial of a over Q.

If « = a/b € Q, Eq. (1) reads b > C;]a| where Cy, G, > 0 depend on
Y and d.



A lot of work has been devoted to improvements of Theorem 1, or alike,
for classical G-functions, or to determine weaker conditions for the
irrationality of the values of G-functions at rational points.

Theorem 2

Let F be a G-function in Q[[z]] such that F(z) ¢ Q(z). Then there exist
some positive constants C; and C,, depending only on F, with the
following property.

Let a# 0 and b > 1 be integers such that
b> Gal®. (2)
Then F(a/b) is irrational.

In general, an irrationality measure is also obtained, showing that F(a/b)
is not a Liouville number.



Theorem 3 (Zudilin 1995)

Let N > 2 and Y(z) = '(F1(2),..., Fn(2)) be a vector of G-functions
solution of a differential system Y'(z) = A(z)Y(z) + B(z), where
A(z2), B(z) € Mn(C(2)).

If N =2, assume 1, F1(z), F2(z) are C(z)-linearly independent. If N > 3
assume F1(z), ..., Fn(z) are C(z)-algebraically independent.

Lete >0,a€Z,a#0. Let b and q be sufficiently large positive
integers, in terms of the F;'s, a and ¢.

Then Fj(a/b) is an irrational number and for any integer p, we have

5<Z)P‘Zq21+€, J=1,...,N. (3)

The “Roth like" irrationality exponent 2 + ¢ is very strong, because prior
similar results provide an exponent equal to N + €.

This dramatic mprovement comes from a technique due to Chudnovsky:
graded Padé approximants.

However, (3) is not of the strength of Roth's theorem, because b
depends on ¢.



A hybrid measure

Theorem 4 (Fischler-R, 2016)
Let F be a G-function in Q[[z]] with F(z) ¢ Q(z), and t > 0.

There exist some effective constants ¢, ¢, ¢3, ¢4 > 0, depending only on
F (and t as well for c3), such that the following property holds.

Let a# 0 and b, B > 1 be integers such that

b> cila|® and B <b'. (4)
Then for any n € Z and any m > c3 Ioglc(’f;ﬁzl) we have
a n 1
F(3) - ‘ > . 5
’ b B-bml = B-bm-(|la] + 1)am (5)

Earlier results: Beukers (1979), Bugeaud, Bennett for (1 — z)* (with
a € Q\Z, B=1), and myself for log(1 — z).

Method : non-diagonal Padé approximants, first used by Beukers for
(1-2)~



Application 1

The lower bound (5) implies an effective irrationality measure of F(a/b).

: _ log(B) — log(b)
Let A and B > 1 be any integers, t = |Zgg( j and m = [c3 Iog(()iHl)J + 1.

From the proof of the theorem, we get ¢z = %t if B is large enough in
terms of F.

Then, with n= A - b™, Eq. (5) implies that, provided b > c|a|®,

a A K
2y _ O s
’F(b> B‘ — B¢ (6)
for k, ;> 0 depending effectively on a, b and F.

The constant p is worse than Zudilin's, at least when b is large with
respect to a.

But (6) applies to a larger class of G-functions because we only need to
assume that F(z) ¢ Q(z).



Application 2
The lower bound (5) also implies a measure of the distance of F(a/b) to
rational numbers of a special type.
Given £ > 0 and assuming that t = 0, b > (]a| + 1)>*/¢, we obtain the

Corollary 1 (F-R 2016)

Let F be a G-function in Q[[z]] with F(z) € Q(z), € >0, and a € Z,
a#0. Let b and m be positive integers, sufficiently large in terms of F,
g, a.

Then F(a/b) ¢ Q and for any integer n, we have
a n 1
7(5) 7 >

This is a "“fake” Ridout Theorem for G-values. However, using Zudilin's
Theorem, we only get 2 + ¢.

Open problem: does a similar result hold when F is assumed to be an
E-function? Nothing is known in this direction, not even for exp(z).



Let b, t be integers with b>2and t > 1, and let £ € R\ Q.
Let 0.a1a2a3 ... be the expansion in base b of the fractional part of &.

For any n > 1, let N}(&, t, n) denote the number of times the pattern
Anant1---antt—1 is repeated starting from a,.

If t =1, Np(&,t, n) is the number of consecutive equal digits in the
expansion of &, starting from a,,.

Theorem 5 (F-R 2016)

Let F be a G-function in Q[[z]] with F(z) € Q(z), e >0, and a € Z,
a#0. Let b>2.

Then for any integer s sufficiently large in terms of F, €, and a, we have
for any t > 1:
1
limsup — N, (F(a/b%), t,n) <e/t.
n

n—oo



A similar bound for this upper limit, with 1 4 ¢ instead of ¢, follows from
(and under the assumptions of) Zudilin's Theorem 3.

When £ is an irrational algebraic number, Ridout's theorem yields
lim, 2 (¢, t,n) = 0 for any b and any t.

But this is not effective: given b, t and € > 0, no explicit value of
M = M(b,&, t,€) is known such that Np(&, t,n) < en for any n > M.

If ¢ = F(a/b°) € Q then Theorem 5 provides such an explicit value
provided b® is large enough. For a given &, Theorem 5 applies only if ¢ is
not too small: this is not an effective version of Ridout's theorem for &.

Conjecturally, we have lim, £ Nj,(¢, t, n) = 0 whenever £ is a
transcendental value of a G-function.

The only such £ for which the upper bound limsup,, %Nb(f, 1,n)<1
was known are values of the logarithm.



Idea of the proof of Theorem 4
Let F(z) in Q[[z]]. Given three integers p > q > h > 0, we can find P(z)
and Q(z) in Z[z], of degree < p and < q resp., and such that

R(z) := Q(2)F(z) — P(z) = O(zP™"t1).

Let P = b"P(a/b) € Z and Q = b7Q(a/b) € Z. Then
a u u P a P 1
F(3) =212 2 - el A (D) - 552 3

1) provided R(a/b)/Q is smaller than 3|4 — ﬁL

P
brP—aQ

u
Yo O
2) If the LHS is not 0 and v is any integer,

u P N 1
v  bPIQ| — vbP9IQ

3) If v=b™, we have a “better” lower bound:

u P 1
- > .
v bP=aQ| — pmax(p—a,m) Q

We then take p = g + m, which justifies to use non-diagonal Padé
approximants. This is crucial to improve on Zudilin's measure.




4) We cannot achieve 1) in general without assumptions on F(z). If it is
a G-function, we use Siegel's lemma to construct and control P(z) and
Q(z). We have a good upper bound for R(z) but to deduce an hybrid
measure from (7), we also need to prove that R(a/b) # 0.

5) We cannot work only with F(z). We need a vector of G-functions
(F, Fa, ..., Fy) solution of a differential system. We then construct
simultaneous type |l Padé approximants

R(z) = Q@)F(2) - Piz) = 0""1), j=1,....N

where deg(P;) < p, deg(Q) < g and p > g > Nh.

6) Using the action of the differential system on the R;(z), we construct

some other “small” approximations l?l(z) to which Shidlovsky's lemma
can be applied (in a form given in André's book). We then get

Ri(a/b) # 0.

7) We can try to do the same thing if F(z) is an E-function. Everything
works fine, except that observation 3) is useless.



Proof of Theorem 5
Let £ = F(a/b%), go = b"(b* — 1), and
pn=(b' —1)|b" 2] +a,b +a, 1 b TE 4 A
Then the b-ary expansion of

Pn _ b7 Y| apbtTl4a, bt 4t ane
an T pn-1 bn—l(bt _ 1)

has the same n + tN}(&,t, n) — 1 first digits as the b-ary expansion of £.
Therefore
b—1

Pn
‘5_ a. | = prttNu(E )

dn
Now Theorem 4 with b for b, B = b* — 1 and m = [ 2=1] yields

1

2
pl5=1s(1+e)

-2
an

The comparison of both inequalities concludes the proof.



