Rational approximation to values of *G*-functions

Tanguy Rivoal, CNRS and Université Grenoble Alpes

joint work with Stéphane Fischler (Orsay)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

G-functions

Definition 1

A G-function is a formal power series $G(z) = \sum_{n=0}^{\infty} a_n z^n$ such that $a_n \in \overline{\mathbb{Q}}$ and there exists C > 0 such that:

- (i) For any $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ and any $n \geq 0$, $|\sigma(a_n)| \leq C^{n+1}$.
- (ii) there exists a sequence of rational integers $d_n \neq 0$, with $|d_n| \leq C^{n+1}$, such that $d_n a_m$ is an algebraic integer for all $m \leq n$.
- (iii) G(z) satisfies a homogeneous linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.

Algebraic functions over $\overline{\mathbb{Q}}(z)$. Polylogarithms $Li_s(z) := \sum_{n=1}^{\infty} z^n / n^s$.

No general theorem about the transcendance of values of *G*-functions: $log(\overline{\mathbb{Q}}^{\times}) \notin \overline{\mathbb{Q}}$ but we don't know if $Li_{2s+1}(1) \notin \mathbb{Q}$ for $s \geq 2$. A result formally similar to the Siegel-Shidlovsky Theorem is impossible.

Chudnovky (70's), reproved by André (1996): for any $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$, the numbers ${}_{2}F_{1}[\frac{1}{2}, \frac{1}{2}; 1; \alpha]$ and ${}_{2}F_{1}[-\frac{1}{2}, \frac{1}{2}; 1; \alpha]$ are algebraically independent over $\overline{\mathbb{Q}}$.

We don't know **three** values of *G*-functions algebraically independent over $\overline{\mathbb{Q}}$;

Theorem 1 (Chudnovsky 1984)

Let $Y(z) = {}^{t}(F_{1}(z), ..., F_{N}(z))$ be a vector of *G*-functions solution of a differential system Y'(z) = A(z)Y(z), where $A(z) \in M_{N}(\overline{\mathbb{Q}}(z))$. Assume that $F_{1}(z), ..., F_{N}(z)$ are $\overline{\mathbb{Q}}(z)$ -algebraically independent.

Then for any d, there exists C = C(Y, d) > 0 such that, for any $\alpha \in \overline{\mathbb{Q}}^{\times}$ of degree $\leq d$ with

$$|\alpha| < \exp(-C\log\left(H(\alpha)\right)^{\frac{4N}{4N+1}}),\tag{1}$$

there does not exist a polynomial relation between the values $F_1(\alpha), \ldots, F_N(\alpha)$ over $\mathbb{Q}(\alpha)$ of degree $\leq d$.

 $H(\alpha)$ is the maximum of the modulus of the coefficients of the minimal polynomial of α over \mathbb{Q} .

If $\alpha = a/b \in \mathbb{Q}$, Eq. (1) reads $b > C_1|a|^{C_2}$ where $C_1, C_2 > 0$ depend on Y and d.

A lot of work has been devoted to improvements of Theorem 1, or alike, for classical G-functions, or to determine weaker conditions for the irrationality of the values of G-functions at rational points.

Theorem 2

Let F be a G-function in $\mathbb{Q}[[z]]$ such that $F(z) \notin \mathbb{Q}(z)$. Then there exist some positive constants C_1 and C_2 , depending only on F, with the following property.

Let $a \neq 0$ and $b \geq 1$ be integers such that

$$b > C_1 |a|^{C_2}. \tag{2}$$

Then F(a/b) is irrational.

In general, an irrationality measure is also obtained, showing that F(a/b) is not a Liouville number.

Theorem 3 (Zudilin 1995)

Let $N \ge 2$ and $Y(z) = {}^{t}(F_{1}(z), ..., F_{N}(z))$ be a vector of *G*-functions solution of a differential system Y'(z) = A(z)Y(z) + B(z), where $A(z), B(z) \in M_{N}(\mathbb{C}(z))$.

If N = 2, assume 1, $F_1(z)$, $F_2(z)$ are $\mathbb{C}(z)$ -linearly independent. If $N \ge 3$ assume $F_1(z), \ldots, F_N(z)$ are $\mathbb{C}(z)$ -algebraically independent.

Let $\varepsilon > 0$, $a \in \mathbb{Z}$, $a \neq 0$. Let b and q be sufficiently large positive integers, in terms of the F_j 's, a and ε .

Then $F_j(a/b)$ is an irrational number and for any integer p, we have

$$\left|F_{j}\left(\frac{a}{b}\right)-\frac{p}{q}\right|\geq\frac{1}{q^{2+\varepsilon}},\quad j=1,\ldots,N.$$
 (3)

The "Roth like" irrationality exponent $2 + \varepsilon$ is very strong, because prior similar results provide an exponent equal to $N + \varepsilon$.

This dramatic mprovement comes from a technique due to Chudnovsky: graded Padé approximants.

However, (3) is not of the strength of Roth's theorem, because b depends on ε .

A hybrid measure

Theorem 4 (Fischler-R, 2016)

Let F be a G-function in $\mathbb{Q}[[z]]$ with $F(z) \notin \mathbb{Q}(z)$, and $t \ge 0$.

There exist some effective constants c_1 , c_2 , c_3 , $c_4 > 0$, depending only on F (and t as well for c_3), such that the following property holds.

Let $a \neq 0$ and $b, B \ge 1$ be integers such that

$$b > c_1 |a|^{c_2}$$
 and $B \le b^t$. (4)

Then for any $n\in\mathbb{Z}$ and any $m\geq c_3\frac{\log(b)}{\log(|a|+1)}$ we have

$$\left| F\left(\frac{a}{b}\right) - \frac{n}{B \cdot b^m} \right| \ge \frac{1}{B \cdot b^m \cdot (|\mathbf{a}| + 1)^{c_4 m}}.$$
(5)

Earlier results: Beukers (1979), Bugeaud, Bennett for $(1 - z)^{\alpha}$ (with $\alpha \in \mathbb{Q} \setminus \mathbb{Z}$, B = 1), and myself for log(1 - z).

Method : non-diagonal Padé approximants, first used by Beukers for $(1-z)^{\alpha}$.

Application 1

The lower bound (5) implies an effective irrationality measure of F(a/b). Let A and $B \ge 1$ be any integers, $t = \frac{\log(B)}{\log(b)}$ and $m = \lfloor c_3 \frac{\log(b)}{\log(|a|+1)} \rfloor + 1$. From the proof of the theorem, we get $c_3 = \frac{4}{3}t$ if B is large enough in terms of F.

Then, with $n = A \cdot b^m$, Eq. (5) implies that, provided $b > c_1 |a|^{c_2}$,

$$\left| F\left(\frac{a}{b}\right) - \frac{A}{B} \right| \ge \frac{\kappa}{B^{\mu}} \tag{6}$$

for $\kappa, \mu > 0$ depending effectively on a, b and F.

The constant μ is worse than Zudilin's, at least when b is large with respect to a.

But (6) applies to a larger class of *G*-functions because we only need to assume that $F(z) \notin \mathbb{Q}(z)$.

Application 2

The lower bound (5) also implies a measure of the distance of F(a/b) to rational numbers of a special type.

Given $\varepsilon > 0$ and assuming that t = 0, $b > (|a| + 1)^{2c_4/\varepsilon}$, we obtain the

Corollary 1 (F-R 2016)

Let F be a G-function in $\mathbb{Q}[[z]]$ with $F(z) \notin \mathbb{Q}(z)$, $\varepsilon > 0$, and $a \in \mathbb{Z}$, $a \neq 0$. Let b and m be positive integers, sufficiently large in terms of F, ε , a.

Then $F(a/b) \notin \mathbb{Q}$ and for any integer n, we have

$$\left| \mathsf{F}\!\left(rac{a}{b}
ight) - rac{n}{b^m}
ight| \geq rac{1}{b^{m(1+arepsilon)}}.$$

This is a "fake" Ridout Theorem for G-values. However, using Zudilin's Theorem, we only get $2 + \varepsilon$.

Open problem: does a similar result hold when F is assumed to be an *E*-function? Nothing is known in this direction, not even for exp(z).

Let b, t be integers with $b \ge 2$ and $t \ge 1$, and let $\xi \in \mathbb{R} \setminus \mathbb{Q}$.

Let $0.a_1a_2a_3...$ be the expansion in base *b* of the fractional part of ξ .

For any $n \ge 1$, let $\mathcal{N}_b(\xi, t, n)$ denote the number of times the pattern $a_n a_{n+1} \dots a_{n+t-1}$ is repeated starting from a_n .

If t = 1, $\mathcal{N}_b(\xi, t, n)$ is the number of consecutive equal digits in the expansion of ξ , starting from a_n .

Theorem 5 (F-R 2016)

Let F be a G-function in $\mathbb{Q}[[z]]$ with $F(z) \notin \mathbb{Q}(z)$, $\varepsilon > 0$, and $a \in \mathbb{Z}$, $a \neq 0$. Let $b \geq 2$.

Then for any integer s sufficiently large in terms of F, ε , and a, we have for any $t \ge 1$:

$$\limsup_{n\to\infty}\frac{1}{n}\mathcal{N}_b(F(a/b^s),t,n)\leq\varepsilon/t.$$

A similar bound for this upper limit, with $1 + \varepsilon$ instead of ε , follows from (and under the assumptions of) Zudilin's Theorem 3.

When ξ is an irrational algebraic number, Ridout's theorem yields $\lim_{n} \frac{1}{n} \mathcal{N}_{b}(\xi, t, n) = 0$ for any *b* and any *t*.

But this is not effective: given b, t and $\varepsilon > 0$, no explicit value of $M = M(b, \xi, t, \varepsilon)$ is known such that $\mathcal{N}_b(\xi, t, n) \le \varepsilon n$ for any $n \ge M$.

If $\xi = F(a/b^s) \in \overline{\mathbb{Q}}$ then Theorem 5 provides such an explicit value provided b^s is large enough. For a given ξ , Theorem 5 applies only if ε is not too small: this is not an effective version of Ridout's theorem for ξ .

Conjecturally, we have $\lim_{n \to \infty} \frac{1}{n} \mathcal{N}_b(\xi, t, n) = 0$ whenever ξ is a transcendental value of a *G*-function.

The only such ξ for which the upper bound $\limsup_n \frac{1}{n} \mathcal{N}_b(\xi, 1, n) < 1$ was known are values of the logarithm.

Idea of the proof of Theorem 4

Let F(z) in $\mathbb{Q}[[z]]$. Given three integers $\mathbf{p} \ge \mathbf{q} \ge h \ge 0$, we can find P(z) and Q(z) in $\mathbb{Z}[z]$, of degree $\le p$ and $\le q$ resp., and such that

$$R(z) := Q(z)F(z) - P(z) = O(z^{p+h+1})$$

Let $P = b^p P(a/b) \in \mathbb{Z}$ and $Q = b^q Q(a/b) \in \mathbb{Z}$. Then $\left| F\left(\frac{a}{b}\right) - \frac{u}{v} \right| \ge \left| \frac{u}{v} - \frac{P}{b^{p-q}Q} \right| - \left| F\left(\frac{a}{b}\right) - \frac{P}{b^{p-q}Q} \right| \ge \frac{1}{2} \left| \frac{u}{v} - \frac{P}{b^{p-q}Q} \right|$ (7) 1) provided R(a/b)/Q is smaller than $\frac{1}{2} \left| \frac{u}{v} - \frac{P}{b^{p-q}Q} \right|$.

2) If the LHS is not 0 and v is any integer,

$$\left|\frac{u}{v}-\frac{P}{b^{p-q}Q}\right|\geq\frac{1}{vb^{p-q}Q}$$

3) If $v = b^m$, we have a "better" lower bound:

$$\left|\frac{u}{v} - \frac{P}{b^{p-q}Q}\right| \geq \frac{1}{b^{\max(p-q,m)}Q}$$

We then take p = q + m, which justifies to use **non-diagonal** Padé approximants. This is crucial to improve on Zudilin's measure.

4) We cannot achieve 1) in general without assumptions on F(z). If it is a *G*-function, we use Siegel's lemma to construct and control P(z) and Q(z). We have a good upper bound for R(z) but to deduce an hybrid measure from (7), we also need to prove that $R(a/b) \neq 0$.

5) We cannot work only with F(z). We need a vector of *G*-functions (F, F_2, \ldots, F_N) solution of a differential system. We then construct simultaneous type II Padé approximants

$$R_j(z) := Q(z)F_j(z) - P_j(z) = O(z^{p+h+1}), \quad j = 1, \dots, N$$

where $\deg(P_j) \leq p$, $\deg(Q) \leq q$ and $p \geq q \geq Nh$.

6) Using the action of the differential system on the $R_j(z)$, we construct some other "small" approximations $\tilde{R}_j(z)$ to which Shidlovsky's lemma can be applied (in a form given in André's book). We then get $\tilde{R}_j(a/b) \neq 0$.

7) We can try to do the same thing if F(z) is an *E*-function. Everything works fine, except that observation 3) is useless.

Proof of Theorem 5

Let
$$\xi = F(a/b^s)$$
, $q_n = b^{n-1}(b^t - 1)$, and
 $p_n = (b^t - 1)\lfloor b^{n-1}\xi \rfloor + a_n b^{t-1} + a_{n-1}b^{t-2} + \ldots + a_{n+t-1}$.

Then the *b*-ary expansion of

$$\frac{p_n}{q_n} = \frac{\lfloor b^{n-1}\xi \rfloor}{b^{n-1}} + \frac{a_n b^{t-1} + a_{n-1} b^{t-2} + \ldots + a_{n+t-1}}{b^{n-1}(b^t - 1)}$$

has the same $n + tN_b(\xi, t, n) - 1$ first digits as the *b*-ary expansion of ξ . Therefore

$$\left|\xi-\frac{p_n}{q_n}\right|\leq \frac{b-1}{b^{n+t\mathcal{N}_b(\xi,t,n)}}.$$

Now Theorem 4 with b^s for b, $B = b^t - 1$ and $m = \lfloor \frac{n-1}{s} \rfloor$ yields

$$\left| \left| \xi - rac{p_n}{q_n} \right| \geq rac{1}{b^{\lfloor rac{n-1}{s}
floor s(1+arepsilon)}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The comparison of both inequalities concludes the proof.