Linear independence of values of G-functions

Tanguy Rivoal,
CNRS and Université Grenoble Alpes

joint work with Stéphane Fischler, Université Paris-Saclay

Meeting Effective Aspects in Diophantine Approximation, Lyon, 27-31 march 2023

G-functions

Definition 1 (Siegel 1929)
A power series $F(z)=\sum_{n=0}^{\infty} A_{n} z^{n} \in \overline{\mathbb{Q}}[[z]]$ is a G-function if:
(i) $F(z)$ is solution of an homogeneous linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.
(ii) There exists $C>0$ such that, for any $n \geq 0,\left|\sigma\left(A_{n}\right)\right| \leq C^{n+1}$, for any Galoisian conjugate $\sigma\left(A_{n}\right)$ of A_{n}.
(iii) For any $n \geq 0$, there exists $D_{n} \in \mathbb{N} \backslash\{0\}$ such that $\left|D_{n}\right| \leq C^{n+1}$ and $D_{n} A_{m}$ is an algebraic integer for all $m \leq n$.

Does there exist a power series $F(z)=\sum_{n=0}^{\infty} A_{n} z^{n} \in \overline{\mathbb{Q}}[[z]]$ which is not a G-function but
(I) For any $n \geq 0,\left|A_{n}\right| \leq C^{n+1}$.
(II) Items (i) and (iii) above both hold.

Examples of G-functions

$$
\begin{gathered}
\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z}, \quad \sum_{k=0}^{\infty} \frac{\binom{2 k}{k}}{k+1} z^{k}=\frac{2}{1+\sqrt{1-4 z}}, \\
\sum_{k=0}^{\infty}\binom{3 k}{2 k} z^{k}=\frac{2 \cos \left(\frac{1}{3} \arcsin \left(\frac{3}{2} \sqrt{3 z}\right)\right)}{\sqrt{4-27 z}}, \sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}\binom{k+j}{j}\right) z^{k}=\frac{1}{\sqrt{1-6 z+z^{2}}} .
\end{gathered}
$$

Algebraic functions over $\overline{\mathbb{Q}}(z)$ and holomorphic at $z=0$.

$$
\begin{aligned}
& \sum_{k=1}^{\infty} \frac{z^{2 k}}{k^{2}\binom{2 k}{k}}=2 \arcsin \left(\frac{z}{2}\right)^{2}, \quad L i_{s}(z):=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}}, \quad \sum_{n_{1}>\cdots>n_{k} \geq 1} \frac{z^{n_{1}}}{n_{1}^{s_{1}} n_{2}^{s_{2}} \cdots n_{k}^{s_{k}}} \\
& \sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{k+j}{j}^{2}\right) z^{k} .
\end{aligned}
$$

Hypergeometric series with rational parameters:

$$
{ }_{p+1} F_{p}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p+1} ; z \\
b_{1}, b_{2}, \ldots, b_{p}
\end{array}\right]:=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p+1}\right)_{k}}{(1)_{k}\left(b_{1}\right)_{k} \cdots\left(b_{p}\right)_{k}} z^{k},
$$

where $(\alpha)_{0}:=1$ and $(\alpha)_{k}:=\alpha(\alpha+1) \cdots(\alpha+k-1)$ for $k \geq 1$.

E-functions

E-function: $\sum_{n=0}^{\infty} \frac{A_{n}}{n!} z^{n}$ such that $\sum_{n=0}^{\infty} A_{n} z^{n}$ is a G-function.

$$
\begin{gathered}
\exp (z), \quad J_{0}(z):=\sum_{k=0}^{\infty}(-1)^{k} \frac{(z / 2)^{2 k}}{k!^{2}} . \\
\sum_{k=0}^{\infty} \frac{1}{k!}\left(\sum_{j=0}^{k}\binom{k}{j}\binom{k+j}{j}\right) z^{k}=e^{3 z} J_{0}(2 i \sqrt{2} z) .
\end{gathered}
$$

A Siegel-Shidlovskii type theorem is not possible for G-functions.
Transcendental G-functions can take algebraic values on a dense set of algebraic numbers (André, Beukers, Joyce-Zucker, Wolfart):

$$
{ }_{2} F_{1}\left[\frac{1}{12}, \frac{5}{12} ; \frac{1}{2} ; \frac{1323}{1331}\right]=\frac{3}{4} \sqrt[4]{11}
$$

Polynomial relations between values of G-functions are expected to follow Grothendieck's Period Conjecture, by the Bombieri-Dwork Conjecture " G-functions come from geometry".

Diophantine results for values of specific G-functions

- $\log (\overline{\mathbb{Q}} \backslash\{0,1\}) \notin \overline{\mathbb{Q}}$.
- Chudnovsky (70's), reproved by André (1996): for any $\alpha \in \overline{\mathbb{Q}}$, $0<|\alpha|<1$, the two numbers

$$
{ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2}, \frac{1}{2} \\
1
\end{array}{ }^{2} \alpha\right], \quad{ }_{2} F_{1}\left[\begin{array}{c}
-\frac{1}{2}, \frac{1}{2} \\
1
\end{array}{ }^{2}\right]
$$

are algebraically independent over $\overline{\mathbb{Q}}$.

- Wolfart (1988) on the values of Gauss' hypergeometric function ${ }_{2} F_{1}$.

In the proofs, other special functions are used. Respectively: exponential function, elliptic/modular functions, periods and Baker-Wüstholz's theory.

We don't know three algebraically independent (over $\overline{\mathbb{Q}}$) values of G-functions at algebraic points.

Two families of Diophantine results for G-functions

- In the first family, the G-function is evaluated at an algebraic point α close to 0 . First general results by Siegel, Nurmagomedov, Galochkin, Bombieri.

Theorem 1 (Chudnovsky 1984)
Let $Y(z)={ }^{t}\left(F_{1}(z), \ldots, F_{S}(z)\right)$ be a vector of G-functions solution of

$$
Y^{\prime}(z)=A(z) Y(z), \quad A(z) \in M_{S}(\overline{\mathbb{Q}}(z)) .
$$

Assume that $F_{1}(z), \ldots, F_{S}(z)$ are $\overline{\mathbb{Q}}(z)$-algebraically independent.
For any d, there exists $C_{Y, d}>0$ such that, for any $\alpha \in \overline{\mathbb{Q}}$ of degree $\leq d$ with

$$
0<|\alpha|<\exp \left(-C_{Y, d} \log (H(\alpha))^{\frac{4 s}{45+1}}\right),
$$

there does not exist a polynomial relation of degree $\leq d$ between the values $1, F_{1}(\alpha), \ldots, F_{S}(\alpha)$ over $\mathbb{Q}(\alpha)$.
$H(\alpha)$ is the maximum of the modulus of the coefficients of the normalized minimal polynomial of α over \mathbb{Q}.

Case $d=1$ and $\alpha=\frac{a}{b} \in \mathbb{Q}^{*}$: if $b>c_{1}|a|^{c_{2}}$ then

$$
\operatorname{dim}_{\mathbb{Q}} \operatorname{Span}_{\mathbb{Q}}\left(1, F_{1}(a / b), \ldots, F_{S}(a / b)\right)=S+1 .
$$

In general, $c_{2} \asymp S^{2}$. If $F_{j}(z)=\mathrm{Li}_{j}(z)$, then $c_{2} \asymp S$ (Nikishin, Hata).

- The second family of results is more recent (≈ 2000).

For any algebraic point α in the disk of convergence of F, we get estimates for the dimension of the vector space spanned by $F(\alpha)$ over a number field, where F ranges through a set of G-functions.

Theorem 2 (Marcovecchio 2006)
Let $\alpha \in \overline{\mathbb{Q}}, 0<|\alpha|<1$. As $S \rightarrow+\infty$,
$\operatorname{dim}_{\mathbb{Q}(\alpha)} \operatorname{Span}_{\mathbb{Q}(\alpha)}\left(1, \operatorname{Li}_{1}(\alpha), \ldots, \operatorname{Li}_{S}(\alpha)\right) \geq \frac{1+o(1)}{[\mathbb{Q}(\alpha): \mathbb{Q}] \log (2 e)} \log (S)$.
R. 2001: same result under the further assumption that $\alpha \in \mathbb{R}$.

All the results in this family are for polylogarithms or Lerch function.

A new general result in the second family

$F(z)=\sum_{k=0}^{\infty} A_{k} z^{k}$ any G-function with radius of convergence R.
For any integers $n \geq 1$ and $s \geq 0$, define the twisted iterated antiderivatives

$$
F_{n}^{[s]}(z):=\sum_{k=0}^{\infty} \frac{A_{k}}{(k+n)^{s}} z^{k+n}
$$

\mathbb{K} any number field containing the A_{k} 's.
For any $S \geq 0$ and any $\alpha \in \mathbb{K}$ such that $0<|\alpha|<R$, set

$$
\Phi_{\alpha, S}:=\operatorname{Span}_{\mathbb{K}}\left(F_{n}^{[s]}(\alpha), n \geq 1,0 \leq s \leq S\right) .
$$

Theorem 3 (Fischler-R. 2020)
Assume F is not a polynomial. There exist $\mu, \ell_{0}, C(F)>0$ effective such that, for any $\alpha \in \mathbb{K}, 0<|\alpha|<R$,

$$
\frac{1+o(1)}{[\mathbb{K}: \mathbb{Q}] C(F)} \log (S) \leq \operatorname{dim}_{\mathbb{K}}\left(\Phi_{\alpha, S}\right) \leq \ell_{0} S+\mu
$$

$\Phi_{\alpha, S}=\operatorname{Span}_{\mathbb{K}}\left(F_{n}^{[s]}(\alpha), 1 \leq n \leq \ell_{0}, 0 \leq s \leq S\right)$.

Examples with $\ell_{0}=1$

Corollary 1

Fix some $a_{1}, \ldots, a_{p+1} \in \mathbb{Q}$ and $b_{1}, \ldots, b_{p} \in \mathbb{Q}$ such that

$$
a_{i} \notin \mathbb{Z} \backslash\{1\} \quad \text { and } \quad b_{j} \notin-\mathbb{N} \quad \text { for any } i, j .
$$

For any $\alpha \in \overline{\mathbb{Q}}$ such that $0<|\alpha|<1$, infinitely many of the hypergeometric values

$$
\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p+1}\right)_{k}}{(1)_{k}\left(b_{1}\right)_{k} \cdots\left(b_{p}\right)_{k}} \frac{\alpha^{k}}{(k+1)^{s}}, \quad s \geq 0,
$$

are linearly independent over $\mathbb{Q}(\alpha)$.
For any integers $1 \leq b \leq a$ and any $\alpha \in \overline{\mathbb{Q}} \cap \mathbb{R}$ such that $0<|\alpha|<\frac{b^{b}(a-b)^{a-b}}{a^{a}}$, infinitely many of the numbers

$$
\sum_{k=1}^{\infty}\binom{a k}{b k} \frac{\alpha^{k}}{k^{s}}, \quad s \geq 0
$$

are irrational.

Beyond the disk of convergence

In 2021, we extended our theorem to the outside of the disk of convergence.
The G-function F can be analytically continued to \mathbb{C} minus cuts $\left[\xi_{j}, \infty\right)$ at the finite singularities ξ_{1}, \ldots, ξ_{p} of F. We choose the directions of the cuts such that the straightlines defined by each cut contains 0 . This enables to continue F and each $F_{n}^{[s]}$ to a domain \mathcal{D}_{F} which is star-shaped at the origin.
Theorem 3 holds for all $\alpha \in \overline{\mathbb{Q}}^{*} \cap \mathcal{D}_{F}$ and α not a singularity of F.
The result on hypergeometric series holds for all $\alpha \in \overline{\mathbb{Q}}^{*}, \alpha \notin[1,+\infty)$.
In particular, the polylogarithms $\mathrm{Li}_{s}(z)$ can be extended to $\mathbb{C} \backslash[1,+\infty)$
by the identity (with the principal determination of $\log (z)$)

$$
\mathrm{Li}_{s}(z)=(-1)^{s+1} \mathrm{Li}_{s}(1 / z)-\frac{(2 i \pi)^{s}}{s!} B_{s}(\log (z) / 2 i \pi)
$$

Theorem 4 (Fischler-R. 2021)
For any $\alpha \in \overline{\mathbb{Q}}^{*}, \alpha \notin[1,+\infty)$,

$$
\operatorname{dim}_{\mathbb{Q}(\alpha)} \operatorname{Span}_{\mathbb{Q}(\alpha)}\left(1, \mathrm{Li}_{1}(\alpha), \ldots, \operatorname{Li}_{S}(\alpha)\right) \gg \log (S)
$$

Upper bound for $\operatorname{dim}_{\mathbb{K}}\left(\Phi_{\alpha, S}\right)$ in Theorem 3

Let $\theta:=z \frac{d}{d z}$.
Proposition 1
There exists ℓ_{0}, ℓ, μ that depend only on F such that, for any $s, n \geq 1$, there exist $\kappa_{j, t, s, n} \in \mathbb{K}$ and $K_{j, s, n}(z) \in \mathbb{K}[z]$ of degree $\leq n+s(\ell-1)$, such that

$$
\begin{equation*}
F_{n}^{[s]}(z)=\sum_{t=1}^{s} \sum_{j=1}^{\ell_{0}} \kappa_{j, t, s, n} F_{j}^{[t]}(z)+\sum_{j=0}^{\mu-1} K_{j, s, n}(z)\left(\theta^{j} F\right)(z) \tag{1}
\end{equation*}
$$

With $z=\alpha \in \mathbb{K}$ in (1):

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{Span}_{\mathbb{K}}\left(F_{n}^{[s]}(\alpha), n \geq 1,0 \leq s \leq S\right) \leq \ell_{0} S+\mu .
$$

Lower bound for $\operatorname{dim}_{\mathbb{K}}\left(\Phi_{\alpha, S}\right)$ in Theorem 3

We want to apply a Nesterenko-type linear independence criterion.
For $\xi \in \overline{\mathbb{Q}}$, let $\mid=$ the maximum modulus of the Galois conjugates of ξ.
Theorem 5 (Fischler-R. 2017)
Consider N numbers $\vartheta_{1}, \ldots, \vartheta_{N} \in \mathbb{C}$. Assume there exist $\left(p_{j, n}\right)_{n \geq 0}$, $j=1, \ldots, N$ such that
(i) For all $j, p_{j, n} \in \mathcal{O}_{\mathbb{K}}$ and $\mid \overline{p_{j, n}} \leq \beta^{n(1+o(1))}$ for some $\beta>1$;
(ii) We have

$$
\sum_{j=1}^{N} p_{j, n} \vartheta_{j}=\omega^{n} n^{\kappa}(\log n)^{\lambda}\left(\sum_{t=1}^{T} c_{t} \zeta_{t}^{n}+o(1)\right)
$$

where $\omega \in(0,1), \kappa, \lambda \in \mathbb{C}, T \geq 1, c_{1}, \ldots, c_{T} \in \mathbb{C} \backslash\{0\}, \zeta_{1}, \ldots, \zeta_{T} \in \mathbb{C}$ are pairwise distinct and such that $\left|\zeta_{t}\right|=1$.
Then

$$
\operatorname{dim}_{\mathbb{K}} \operatorname{Span}_{\mathbb{K}}\left(\vartheta_{1}, \ldots, \vartheta_{N}\right) \geq \frac{1}{[\mathbb{K}: \mathbb{Q}]}\left(1-\frac{\log (\omega)}{\log (\beta)}\right) .
$$

Construction of an auxiliary function

Let $r, S \geq 0$ be integers such that $r \leq S$. Later: $r=\left[S / \log (S)^{2}\right]$ and S "large".

For $n \geq 0$ and $|z|>1 / R$, set

$$
T_{S, r, n}(z)=n!^{S-r} \sum_{k=0}^{\infty} \frac{k(k-1) \cdots(k-r n+1)}{(k+1)^{S}(k+2)^{S} \cdots(k+n)^{S}} A_{k} z^{-k}
$$

Lemma 1
There exist $C_{j, s, n}(X), \widetilde{C}_{j, n}(X) \in \mathbb{K}[X]$ of degree $\leq n+1+S(\ell-1)$ such that

$$
T_{S, r, n}(z):=\sum_{j=1}^{\ell_{0}} \sum_{s=1}^{S} C_{j, s, n}(z) F_{j}^{[s]}(1 / z)+\sum_{j=0}^{\mu-1} \widetilde{C}_{j, n}(z) z^{-S(\ell-1)}\left(\theta^{j} F\right)(1 / z),
$$

This is a non-trivial generalization of the trivial identity

$$
\sum_{k=1}^{\infty} \frac{z^{-k-n}}{(k+n)^{s}}=L i_{s}(1 / z)-\sum_{k=1}^{n} \frac{z^{-k}}{k^{s}}
$$

There exist $C_{1}(F)$ and $C_{2}(F)>0$ such that:
Lemma 2
For any $z \in \overline{\mathbb{Q}}$,

$$
\limsup _{n \rightarrow+\infty}\left(\max _{j, s} \overparen{C_{j, s, n}(z)}\right)^{1 / n} \leq C_{1}(F)^{S} r^{r} 2^{S+r+1} \max (1, \mid z)
$$

and

$$
\limsup _{n \rightarrow+\infty}\left(\max _{j}\left|\widetilde{C}_{j, n}(z)\right|\right)^{1 / n} \leq C_{1}(F)^{S} r^{r} 2^{S+r+1} \max (1, \mid z) .
$$

Lemma 3
For $z \in \mathbb{K}$ and $q \in \mathbb{N}^{*}$ such that $q z \in \mathcal{O}_{\mathbb{K}}$, there exists $\Delta_{n} \in \mathbb{N}^{*}$ such that

$$
\begin{gathered}
\Delta_{n} C_{j, s, n}(z) \in \mathcal{O}_{\mathbb{K}}, \quad \Delta_{n} \widetilde{C}_{j, n}(z) \in \mathcal{O}_{\mathbb{K}}, \\
\lim _{n \rightarrow+\infty} \Delta_{n}^{1 / n}=q C_{2}(F)^{S} e^{s}
\end{gathered}
$$

Lemma 4

Let $\alpha \in \mathbb{C}$ be such that $0<|\alpha|<R$. Assume that $r=\left[\frac{S}{(\log S)^{2}}\right]$ and that S is large enough.
There exist $a, \kappa, \lambda \in \mathbb{R}, Q \geq 1, c_{1}, \ldots, c_{Q} \in \mathbb{C} \backslash\{0\}$, pairwise distinct ζ_{1}, $\ldots, \zeta_{Q} \in \mathbb{C}$ with $\left|\zeta_{q}\right|=1$ such that

$$
T_{s, r, n}(1 / \alpha)=\omega^{n} n^{\kappa} \log (n)^{\lambda}\left(\sum_{q=1}^{Q} c_{q} \zeta_{q}^{n}+o(1)\right) \text { as } n \rightarrow \infty
$$

and

$$
0<\omega \leq \frac{1}{r^{S-r}} \approx \frac{1}{S^{S}} .
$$

The involved quantities depend on the singularities of F.
We now use the three lemmas in Theorem 5 and get the lower bound in Theorem 3 with

$$
C(F)=\log \left(2 e^{2} C_{1}(F) C_{2}(F)\right)
$$

Analytic continuation of $T_{S, r, n}(1 / z)$

For $|z|<R$:

$$
T_{S, r, n}(1 / z)=\frac{z^{r n}}{n!r} \int_{[0,1]^{s}} F^{(r n)}\left(t_{1} \cdots t_{S} z\right) \prod_{j=1}^{S} t_{j}^{r n}\left(1-t_{j}\right)^{n} d t_{j}
$$

1) We obtain the analytic continuation of $T_{S, r, n}(1 / z)$ for $|z| \geq R$ and z in \mathcal{D}_{F}, the star-shaped domain at 0 to which F is continued.
2) $T_{S, r, n}(1 / z)$ is "small" in \mathcal{D}_{F} :

$$
\limsup _{n \rightarrow+\infty}\left|T_{S, r, n}(1 / z)\right|^{1 / n} \leq \frac{1}{r^{S-r}}
$$

3) For $0<z<R$ and the Taylor coefficients of F are non-negative, we have

$$
\lim _{n \rightarrow+\infty}\left|T_{S, r, n}(1 / z)\right|^{1 / n} \approx \frac{1}{r^{S-r}}
$$

4) For $|z|<R$, we use a different expression for $T_{S, r, n}(1 / z)$ and the saddle point method.
5) For $z \in \mathcal{D}_{F}$, we construct suitable (complicated) Padé type problems and conclude with a Shidlovskii type lemma.
