Quelques aspects classiques et modernes de la théorie des nombres transcendants

Tanguy Rivoal
Institut Fourier, CNRS et Université Grenoble Alpes

École de Théorie des nombres Ethén CIRM, 6-10 octobre 2025

Critères d'irrationalité

Expliciter une suite de rationnels α_n qui converge vers un réel α donné peut être difficile mais cela ne dit rien sur la nature arithmétique de ce nombre.

Pour démontrer l'irrationalité d'un réel α , on a besoin de plus d'informations sur la suite $\alpha_n = p_n/q_n$ avec $p_n, q_n \in \mathbb{Z}$.

Critère d'irrationalité. Soient α un réel et $(p_n)_{n\geq 0}$, $(q_n)_{n\geq 0}$ deux suites d'entiers tq

$$\forall n \geq 0, \quad q_n \alpha - p_n \neq 0$$

et

$$\lim_{n\to+\infty}|q_n\alpha-p_n|=0.$$

Alors $\alpha \notin \mathbb{Q}$.

Critère d'irrationalité généralisé. On se donne $m \ge 1$ réels $\alpha_1, \ldots, \alpha_m$ et m+1 suites d'entiers $(p_{k,n})_{n\ge 0}$ tq

$$0<|\textbf{p}_{0,n}+\textbf{p}_{1,n}\alpha_1+\textbf{p}_{2,n}\alpha_2+\cdots+\textbf{p}_{m,n}\alpha_m|\rightarrow 0$$

quand $n \to +\infty$. Alors un au moins des α_j est irrationnel.

S'il existe $\beta \in \mathbb{R}$ tel que $\alpha_i = \beta^j$, alors $\beta \notin \mathbb{Q}$.

Approximants de Padé

- Étant donnés $F(z) = \sum_{n=0}^{\infty} a_n z^n \in \mathbb{C}[[z]]$ et des entiers $p, q \ge 0$,
- $\exists \ P \ {
 m et} \ Q \in \mathbb{C}[z] \ {
 m de} \ {
 m degr\'es} \ {
 m respectifs} \le p \ {
 m et} \le q, \ {
 m tq} \ P \ {
 m ou} \ Q
 eq 0 \ {
 m et}$

$$Q(z)F(z) - P(z) = c z^{p+q+1} + c' z^{p+q+2} + \cdots = \mathcal{O}(z^{p+q+1}).$$

- ullet Considérons les coefficients de Q comme des inconnues. Le problème revient à résoudre un système linéaire homogène ayant une inconnue de plus que d'équations. P est attaché à Q de manière unique. Il y a donc une solution non-triviale.
- ullet Les polynômes P et Q ne sont pas forcément uniques.

La fraction P/Q est unique (sous forme réduite). C'est l'approximant de Padé $\lceil p/q \rceil$ de F.

- ullet Les approximants de Padé sont de bonnes approximations rationnelles fonctionnelles de F.
- Si $F(z) \in \mathbb{Q}[[z]]$, en prenant $z = r \in \mathbb{Q}$, on peut espérer obtenir des bonnes approximations rationnelles *numériques* du nombre F(r).

Approximants de Padé de l'exponentielle

Théorème 1

 $\forall n \geq 0$, $\exists A_n, B_n \in \mathbb{Z}_n[z]$ tq

$$B_n(z)e^z - A_n(z) = (-1)^n \frac{z^{2n+1}}{n!} \int_0^1 x^n (1-x)^n e^{xz} dx.$$

 A_n/B_n est l'approximant de Padé [n/n] de $\exp(z)$. On évalue des deux façons différentes l'intégrale

$$\int_0^1 P_n(x)e^{xz}dx \quad \text{où } P_n(x) = \frac{1}{n!} \left(x^n(1-x)^n\right)^{(n)} = \sum_{k=0}^n (-1)^{n-k} \binom{n}{k} \binom{n+k}{n} x^k.$$

Corollaire 1

 $\pi \notin \mathbb{Q}$ (Lambert, 1761) et $\forall r \in \mathbb{Q}^*$, $e^r \notin \mathbb{Q}$ (Euler 1737, Fourier, Liouville, Hermite, etc).

Avec $r = a/b \neq 0$, on a $b^n B_n(r) e^r - b^n A_n(r) \in \mathbb{Z} e^r + \mathbb{Z}$ et

$$0 < |b^n B_n(r) e^r - b^n A_n(r)| \ll \frac{(a^2/4b)^n}{n!} \to 0.$$

En posant $z=\pm i\pi$ dans le théorème 1, on obtient $\pi\notin\mathbb{Q}$ au moyen de $\mathrm{e}^{\pm i\pi}=-1$.

Soient $F_1, \ldots, F_m \in \mathbb{C}[[z]]$.

Approximants de Padé de type I (Hermite-Padé). Étant donnés des entiers $p \ge 0$ et $m \ge 2$,

 $\exists \ P_1,\ldots,P_m\in\mathbb{C}[z]$, non tous nuls, tq $\deg(P_j)\leq n$ et

$$\sum_{j=1}^m P_j(z)F_j(z) \in \mathbb{C}[[z]]$$

ait un ordre d'annulation au moins m(n+1)-1 en z=0.

Approximants de Padé de type II. Étant donnés des entiers positifs p et q tq $p \ge (m-1)q$,

$$\exists \ P_1,\ldots,P_m, Q \in \mathbb{L}[z], \ Q
eq 0$$
, tq $\deg(P_j) \leq p$, $\deg(Q) \leq m \cdot q$ et

$$Q(z)F_j(z) - P_j(z) \in \mathbb{C}[[z]], \quad 1 \leq j \leq m.$$

ait un ordre au moins p + q + 1 en z = 0.

Critère d'indépendance linéaire de réels

On utilise souvent les approximants de Hermite-Padé (type I) en conjonction avec le critère suivant.

Proposition 1 (Critère de Siegel)

Soient $\alpha_1, \ldots, \alpha_m \in \mathbb{R}$. On suppose qu'il existe m^2 suites d'entiers $(p_{j,k,n})_{n\geq 0}$, $1\leq j,k\leq m$, et $(\lambda_n)_{n\geq 0}$, et des réels u>1,v>1 tq

$$\lim_{n\to+\infty}\lambda_n=+\infty,$$

$$|p_{j,k,n}| \le v^{\lambda_n}, \quad j, k = 1, \dots, m, \quad n \ge 0,$$

$$\left| \sum_{j=1}^m p_{j,k,n} \alpha_j \right| \le u^{\lambda_n}, \quad k = 1, \dots, m, \quad n \ge 0,$$

et

$$\det ((p_{j,k,n})_{1 \le j,k \le m}) \ne 0, \quad n \ge 0.$$

Alors la dimension sur $\mathbb Q$ de la famille $(\alpha_1,\alpha_2,\ldots,\alpha_m)$ est $\geq 1-\ln(u)/\ln(v)$.

Conséquence importante : si $\alpha_j := \beta^j$ et $1 - \ln(u)/\ln(v) \to +\infty$ quand $m \to +\infty$, alors β est transcendant sur \mathbb{Q} .

E-fonctions telles que $\exp(z)$: $\lambda_n \sim \ln(n!) \sim n \ln(n)$.

G-fonctions telles que $\log(1-z)$: $\lambda_n \sim n$.

Approximants de Hermite-Padé de l'exponentielle

Théorème 2 (Hermite)

 $\forall n \geq 0, m \geq 2$ et $k = 1, \ldots, m, \exists Q_{1,k,n}, \ldots, Q_{m,k,n} \in \mathbb{Q}[z]$ tq $\deg(Q_{j,k,n}) \leq n$ pour $j \leq k-1$ et $\deg(Q_{j,k,n}) \leq n-1$ pour $j \geq k$, et

$$\sum_{j=1}^{m} Q_{j,k,n}(z) e^{(j-1)z}$$

$$= \frac{z^{mn+k}}{n!^{m-1}} \int_{\substack{x_1 \geq 0, \dots, x_{m-1} \geq 0 \\ x_1 + \dots + x_m = 1}} \prod_{j=1}^{m} \left(x_j^n e^{(j-1)x_{\ell}z} \right) dx_1 \cdots dx_{m-1}, \quad k = 1, \dots, m$$

et

$$\det \left(Q_{j,k,n}(z)
ight)_{1 < j,k < m} = c \cdot z^{mn}
eq 0, \quad c \in \mathbb{C}^*.$$

Conséquence. Prenons z=1. Il existe des suites d'entiers $(p_{j,k,n})_n$ tels que

$$\left| \sum_{i=1}^{m} p_{j,k,n} e^{j-1} \right| \leq \frac{1}{n!^{(m-1)(1+o(1))}}, \quad |p_{j,k,n}| \leq n!^{1+o(1)}, \quad \det\left((p_{j,k,n})_{1 \leq j,k \leq m}\right) \neq 0.$$

Critère de Siegel : la dimension du \mathbb{Q} -ev engendré par $1, e, \dots, e^{m-1}$ est m.

Théorèmes diophantiens classiques sur les valeurs de l'exponentielle

Autrement dit :

Théorème 3 (Hermite, 1873) $e \notin \overline{\mathbb{Q}}$.

• Avec $z = \alpha \in \overline{\mathbb{Q}}$, on obtient le

Théorème 4 (Hermite-Lindemann, 1882)

 $\forall \alpha \in \overline{\mathbb{Q}}^* \text{, } \mathbf{e}^\alpha \notin \overline{\mathbb{Q}}.$

 $\forall \alpha \in \overline{\mathbb{Q}} \setminus \{0,1\}$, $\log(\alpha) \notin \overline{\mathbb{Q}}$. En particulier, $\pi \notin \overline{\mathbb{Q}}$ (Lindemann).

ullet Avec les approximants de Hermite-Padé des fonctions $e^{lpha_1 z},\dots,e^{lpha_k z}$, on obtient plus généralement le

Théorème 5 (Lindemann-Weierstrass, 1885)

(i) Supposons que $\alpha_1, \ldots, \alpha_k \in \overline{\mathbb{Q}}$ soient \mathbb{Q} - linéairement indépendants. Alors $e^{\alpha_1}, \ldots, e^{\alpha_k}$ sont \mathbb{Q} -algébriquement indépendants.

De manière équivalente :

(ii) Soient $\alpha_1, \ldots, \alpha_\ell \in \overline{\mathbb{Q}}$ supposés deux à deux distincts. Alors $e^{\alpha_1}, \ldots, e^{\alpha_\ell}$ sont $\overline{\mathbb{Q}}$ -linéairement indépendants.

Le lemme de Siegel

- En général, on ne connaît pas explicitement les approximants de Hermite-Padé $\sum_{j=1}^m P_j(z)F_j(z) = \mathcal{O}(z^{m(n+1)-1})$ d'une famille donnée de séries $F_j(z) \in \mathbb{C}[[z]]$.
- Les $P_j \in \mathbb{C}[z]$ de degré n existent toujours : cela revient à trouver une solution non-nulle d'un système linéaire ayant une inconnue de plus (l'ensemble des coefficients des P_j) que d'équations (les conditions d'annulation des m(n+1)-1 premiers coefficients de Taylor).
- On peut néanmoins borner la taille des coefficients des P_j .

Proposition 2 (Lemme de Siegel, 1929)

Soit $(a_{i,j})_{1 \leq i \leq p, 1 \leq j \leq q}$ une matrice à coefficients dans l'anneau des entiers $\mathcal{O}_{\mathbb{K}}$ d'un cdn \mathbb{K} . Supposons que p < q ("strictement plus d'inconnues que d'équations"). Il existe c > 0 ne dépendant que de \mathbb{K} tq le système linéaire

$$\begin{cases} \sum_{j=1}^{q} a_{1,j} x_j = 0 \\ \vdots & \vdots \\ \sum_{j=1}^{q} a_{p,j} x_j = 0 \end{cases}$$

admette un vecteur solution non-nul ${}^t(x_1,\ldots,x_q)\in\mathcal{O}_{\mathbb{K}}^q$ tq

$$\max_{j=1,...,q}|\overline{x_j}| \leq c + \left(cq\max_{i,j}|\overline{a_{i,j}}|\right)^{\frac{p}{q-p}}.$$

Le théorème de Gel'fond-Schneider

Théorème 6 (Gel'fond-Schneider, 1934)

Soient $\alpha, \beta \in \overline{\mathbb{Q}}$ tq $\alpha \neq 0, 1$ et $\beta \notin \mathbb{Q}$. Alors $\alpha^{\beta} \notin \overline{\mathbb{Q}}$. En particulier, e^{π} et $2^{\sqrt{2}}$ sont transcendants (Gel'fond 1929, Kuzmin 1930 respectivement).

Preuve de Gel'fond. Supposons $\alpha, \beta, \gamma := \alpha^{\beta}$ tous dans un cdn $\mathbb K$ de degré h. Notons $\rho_1, \dots, \rho_{q^2}$ les nombres $(\lambda + \mu\beta)\log(\alpha)$ où $\lambda, \mu \in \{1, \dots, q\}$.

Posons m := 2h + 2 et $n := q^2/(2m) \in \mathbb{N}$.

Construction d'une fonction auxiliaire. Posons $R(z)=\sum_{j=1}^{q^2}\omega_je^{\rho_jz}$, $\omega_j\in\mathcal{O}_\mathbb{K}$. On a

$$\frac{1}{\log(\alpha)^k} R^{(k)}(\ell) := \sum_{j=1}^{q^2} (\lambda + \mu \beta)^k (\alpha^{\lambda} \gamma^{\mu})^{\ell} \omega_j \in \overline{\mathbb{Q}}, \quad \forall k \in \mathbb{N}, \forall \ell \in \mathbb{Z}.$$

On demande que $R^{(k)}(\ell)=0$ pour $k=0,\ldots,n-1$ et $\ell=1,\ldots,m$.

Par le lemme de Siegel : $\exists \omega_j \in \mathcal{O}_\mathbb{K}$ non tous nuls tq $\overline{[\omega_j]} \leq c_1^n n^{n/2}$.

 $R \not\equiv 0$ car les $e^{\rho_j z}$ sont $\overline{\mathbb{Q}}$ -linéairement indépendantes.

Soit p tq $R^{(k)}(\ell)=0$ pour tout $k=0,\ldots,p-1$ et $\ell=1,\ldots,m$ mais $R^{(p)}(\ell_0)\neq 0$ pour au moins un $\ell_0\in\{1,\ldots,m\}$. Par construction, p>n.

On pose $\delta:=\frac{1}{\log(\alpha)^p}R^{(p)}(\ell_0)\in\overline{\mathbb{Q}}^*$ et $d\in\mathbb{N}^*$ un dénominateur commun de α,β,γ .

Estimations arithmétiques. On a $d^{p+2mq}\delta\in\mathcal{O}_{\mathbb{K}}^*$ d'où (car $q=\sqrt{2mn}\ll\sqrt{p}$)

$$|N_{\mathbb{K}/\mathbb{Q}}(\delta)| \geq c_2^{-p}.$$

De plus, $|\delta| \leq c_3^p p^p$.

Estimation analytique. La fonction

$$S(z) := p! \frac{R(z)}{(z-\ell_0)^p} \prod_{\ell=1,\ell\neq\ell_0}^m \left(\frac{\ell_0-\ell}{z-\ell}\right)^p$$

est entière et $S(\ell_0) = R^{(p)}(\ell_0) = \log(\alpha)^p \cdot \delta$. Comme de plus

$$S(\ell_0) = \frac{1}{2i\pi} \int_{|z|=m(1+p/q)} \frac{S(z)}{z-\ell_0} dz,$$

on en déduit que

$$|\delta| \leq c_4^p p^{\frac{(3-m)p}{2}}.$$

Conclusion. On a

$$c_2^{-p} < |N_{\mathbb{K}/\mathbb{Q}}(\delta)| < |\delta| \cdot |\overline{\delta}|^{h-1} < c_4^p c_3^{p(h-1)} p^{(\frac{3-m}{2}+h-1)p} < c_5^{hp} p^{-p/2}$$

car m = 2h + 2. Contradiction pour n, donc p, assez grand.

E-fonctions

Définition 1 (Siegel, 1929)

Une E-fonction est une série entière $f(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n \in \overline{\mathbb{Q}}[[z]]$ tq

- (i) f est solution d'une équation différentielle linéaire à coefficients dans $\overline{\mathbb{Q}}(z)$.
- (ii) $\forall \varepsilon > 0$, on a $|a_n| \leq n!^{\varepsilon}$ pour tout $n > N(\varepsilon)$.
- (iii) Il existe une suite d'entiers $(D_n)_{n\geq 0}$ tq $D_n a_m$ soit un entier algébrique pour tout $m\leq n$, et $1\leq |D_n|\leq n!^{\varepsilon}$ pour tout $n>N(\varepsilon)$.
- On renforce souvent (ii) et (iii) en demandant qu'il existe C>0 tq $\forall n\geq 0$ on ait (ii)': $|\overline{a_n}|\leq C^{n+1}$ et (iii)': $|D_n|\leq C^{n+1}$. On parle alors de *E*-fonction *stricte* ou de E^* -fonction.
- Conjecturalement, toute E-fonction l'est au sens strict. On sait que (i) et (ii) impliquent (ii)'. Le problème restant est (iii)'.
- Les *E*-fonctions (strictes) forment un sous-anneau de $\overline{\mathbb{Q}}[[z]]$, stable par $\frac{d}{dz}$ et \int_0^z . Ce sont des fonctions entières.
- Les unités de cet anneau sont $\alpha e^{\beta z}$, $\alpha \in \overline{\mathbb{Q}}^*$, $\beta \in \overline{\mathbb{Q}}$.

Exemples de *E*-fonctions

• Les polynômes de $\overline{\mathbb{Q}}[z]$, e^z , la fonction de Bessel

$$J_0(z) := \sum_{n=0}^{\infty} (-1)^n \frac{(z/2)^{2n}}{n!^2} = \sum_{n=0}^{\infty} \frac{(-1)^n {2n \choose n}}{4^n} \frac{z^{2n}}{(2n)!},$$

$$\sin(z), \quad \cos(z), \quad \int_0^z \frac{\sin(x)}{x} dx = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n)!(2n+1)^2},$$

$$h(z) := \sum_{n=0}^{\infty} \frac{1}{n!} \left(1 + \frac{1}{2} + \dots + \frac{1}{n}\right) z^n.$$

- h(z) vérifie zh'''(z) + 2(1-z)h''(z) + (z-3)h'(z) + h(z) = 0.
- Les fonctions algébriques sur $\overline{\mathbb{Q}}(z)$ non polynomiales, $\log(1-z)$, $\tan(z)$, $J_0(\sqrt{z})$, $(1-z)^{\sqrt{2}}$ ne sont pas des *E*-fonctions.

Théorème 7 (Siegel-Shidlovskii, 1929-1956)

Soient $Y = {}^t(F_1, \ldots, F_m)$ des E-fonctions et $A \in M_m(\overline{\mathbb{Q}}(z))$ tq Y' = AY. Soit $T \in \overline{\mathbb{Q}}[z] \setminus \{0\}$ un dénominateur de A(z), de degré minimal. Alors, $\forall \alpha \in \overline{\mathbb{Q}}$ tq $\alpha T(\alpha) \neq 0$.

$$\text{deg tr}_{\overline{\mathbb{Q}}(z)}\overline{\mathbb{Q}}(z)\big(F_1(z),\ldots,F_m(z)\big)=\text{deg tr}_{\overline{\mathbb{Q}}}\overline{\mathbb{Q}}\big(F_1(\alpha),\ldots,F_m(\alpha)\big).$$

Lindemann-Weierstrass : Si $\alpha_1,\ldots,\alpha_m\in\overline{\mathbb{Q}}$ sont \mathbb{Q} -linéairement indépendants, $e^{\alpha_1z},\ldots,e^{\alpha_nz}$ sont $\overline{\mathbb{Q}}(z)$ -algébriquement indépendants. De plus,

$$\frac{d}{dz}\begin{pmatrix} e^{\alpha_1z} \\ \vdots \\ e^{\alpha_mz} \end{pmatrix} = \begin{pmatrix} \alpha_1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \alpha_m \end{pmatrix} \begin{pmatrix} e^{\alpha_1z} \\ \vdots \\ e^{\alpha_mz} \end{pmatrix}, \qquad T(z) = 1.$$

Siegel : J_0 et J_0' sont $\overline{\mathbb{Q}}(z)$ -algébriquement indépendantes et

$$\begin{pmatrix} J_0'(z) \\ J_0''(z) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & -\frac{1}{z} \end{pmatrix} \begin{pmatrix} J_0(z) \\ J_0'(z) \end{pmatrix}, T(z) = z.$$

Donc $\forall \alpha \in \overline{\mathbb{Q}}^*$, $J_0(\alpha)$ et $J_0'(\alpha)$ sont algébriquement indépendants.

Esquisse de preuve du théorème de Siegel-Shidlovskii sur Q

- Soient $F_1,\ldots,F_m\in\mathbb{Q}[[z]]$ des E-fonctions vérifiant les hypothèses du théorème de Siegel-Shidlovskii. On suppose que $T\in\mathbb{Z}[z]$ et que $\alpha\in\mathbb{Q}$ est tq $\alpha\,T(\alpha)\neq 0$.
- Lemme de Siegel : $\forall \varepsilon > 0$ et $\forall n \in \mathbb{N}, \ \exists P_{1,n}, \ldots, P_{m,n} \in \mathbb{Z}[z]$ de degré $\leq n$ tq $H(P_{j,n}) \ll n!^{1+\varepsilon}$ et

$$R_n(z) := \sum_{j=1}^m P_{j,n}(z)F_j(z) = \sum_{k \geq m(n+1)-\varepsilon n-1} \frac{\rho_{k,n}}{k!} z^k, \qquad |\rho_{k,n}| \ll n! k^{\varepsilon n}.$$

• $\forall k \geq 1$, on définit

$$R_{k,n}(z) := \sum_{j=1}^{m} P_{j,k,n}(z) F_j(z)$$

avec $P_{j,k,n} \in \mathbb{Q}[z]$ par $R_{1,n} := R_n$ et $R_{k,n}(z) := T(z)R'_{k-1,n}(z)$.

• Shidlovskii : Supposons F_1, \ldots, F_m $\mathbb{Q}(z)$ -linéairement indépendantes. Alors $\exists t \ll \varepsilon n \text{ tq } \forall k \leq m+t$,

$$|R_{k,n}(\alpha)| \ll \frac{1}{n!^{m-1-3\varepsilon m}}, \qquad |P_{j,k,n}(\alpha)| \ll n!^{1+3\varepsilon m}$$

et la matrice

$$(P_{j,k,n}(\alpha))_{1 < j < m, 1 < k < m+t}$$

est de rang maximal m.

Proposition 3

Fixons $\varepsilon > 0$ et $\alpha \in \mathbb{Q}$ tq $\alpha T(\alpha) \neq 0$. Il existe m^2 suites d'entiers $(q_{j,k,n})_n$ tq

$$\left|\sum_{j=1}^m q_{j,k,n} F_j(\alpha)\right| \ll \frac{1}{n!^{m-1-\varepsilon}}, \quad |q_{j,k,n}| \ll n!^{1+\varepsilon}, \quad \det\left((q_{j,k,n})_{1 \leq j,k \leq m}\right) \neq 0.$$

• Par le critère d'indépendance linéaire de Siegel, on en déduit le

Théorème 8

 $\forall \ \alpha \in \mathbb{Q} \ tq \ \alpha T(\alpha) \neq 0$, les nombres $F_1(\alpha), \ldots, F_m(\alpha)$ sont \mathbb{Q} -linéairement indépendants.

- Si $F_1, \ldots, F_m \in \mathbb{K}[[z]]$, une preuve similaire montre "seulement" que, $\forall \alpha \in \mathbb{K}$ tq $\alpha T(\alpha) \neq 0$, la dimension du \mathbb{K} -ev engendré par $F_1(\alpha), \ldots, F_m(\alpha)$ est au moins $m/[\mathbb{K} : \mathbb{Q}]$.
- Cela suffit à démontrer le théorème de Siegel-Shidlovskii en utilisant le fait que les *E*-fonctions forment un anneau.

G-fonctions

Définition-Proposition 1 (Siegel, 1929)

Une G-fonction est une série entière $f(z) = \sum_{n=0}^{\infty} a_n z^n \in \overline{\mathbb{Q}}[[z]]$ t $q \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$ est une E-fonction stricte.

f vérifie automatiquement une équation différentielle linéaire sur $\overline{\mathbb{Q}}(z)$.

- Les G-fonctions forment un sous-anneau de $\overline{\mathbb{Q}}[[z]]$, stable par $\frac{d}{dz}$ et \int_0^z . Elles sont holomorphes en z=0 mais ne sont pas entières (sauf si polynomiales).
- Si $f(z) \in \mathbb{Z}[[z]]$ est holomorphe en z = 0 et vérifie une équation différentielle linéaire sur $\mathbb{C}(z)$, elle est une G-fonction.
- L'intersection des *E*-fonctions et *G*-fonctions est $\overline{\mathbb{Q}}[z]$.

Conjecture. $\overline{\mathbb{Q}}$ est l'intersection des valeurs de *E*-fonctions et des valeurs des *G*-fonctions aux points algébriques.

Exemples de *G*-fonctions

• Les fonctions algébriques sur $\overline{\mathbb{Q}}(z)$ holomorphes en z=0,

$$\frac{1}{(1-z)^s} = \sum_{n=0}^{\infty} \frac{s(s+1)\cdots(s+n-1)}{n!} z^n \quad (s \in \mathbb{Q}),$$
$$\sum_{n=0}^{\infty} \left(\sum_{k=0}^{n} \binom{n}{k} \binom{n+k}{k}\right) z^n = \frac{1}{\sqrt{1-6z+z^2}}.$$

• G-fonctions transcendantes :

$$\begin{split} \arctan(z) &= \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{2n+1}, \qquad \sum_{n=1}^{\infty} \frac{z^{2n}}{n^2 \binom{2n}{n}} = 2 \arcsin\left(\frac{z}{2}\right)^2, \\ \log(1-z)^s, \qquad \operatorname{Li}_s(z) &:= \sum_{n=1}^{\infty} \frac{z^n}{n^s}, \quad s \in \mathbb{N}. \end{split}$$

Théorèmes de Galochkin et Chudnovsky

- Soient $Y = {}^t(F_1, \ldots, F_m) \in \mathbb{Q}[[z]]^m$ et $A \in M_m(\mathbb{Q}(z))$ tq Y' = AY.
- $\forall k \geq 0$, on définit $A_k \in M_m(\mathbb{Q}(z))$ par $Y^{(k)} = A_k Y$.
- Condition de Galochkin. Soit $T \in \mathbb{Q}[z] \setminus \{0\}$ de degré minimal tq les coefficients de $T^k A_k$ soient dans $\mathbb{Q}[z]$.

On demande que la suite des dénominateurs communs des coefficients des matrices $\frac{1}{k!}T^kA_k$, k=0,...,n, croisse au plus géométriquement en n.

On dit que A est un G-opérateur.

Proposition 4

Supposons que F_1, \ldots, F_m soient des G-fonctions $\mathbb{Q}(z)$ -linéairement indépendantes et que A est un G-opérateur.

Soit $a \neq 0$ un entier. Alors $\exists u, v > 0$ et m^2 suites d'entiers $(q_{j,k,n})_n$, $1 \leq j,k \leq m$, (dépendant tous de a) tq

$$\bigg|\sum_{j=1}^m q_{j,k,n} F_j(1/\mathsf{a})\bigg| \ll u^n, \quad |q_{j,k,n}| \ll v^n, \quad \det\big((q_{j,k,n})_{1 \leq j,k \leq m}\big) \neq 0.$$

Si |a| est assez grand, alors u < 1.

Théorème 9 (Galochkin, 1974)

Supposons les G-fonctions F_1, \ldots, F_m $\mathbb{Q}(z)$ -linéairement indépendantes et que A est un G-opérateur.

Alors $\forall a \in \mathbb{Z} \ tq \ |a| > c(F_1, \dots, F_m) > 0$, les nombres

$$F_1(1/a), F_2(1/a), \ldots, F_m(1/a)$$

sont Q-linéairement indépendants.

Théorème 10 (Chudnovsky, 1984)

Supposons les G-fonctions $F_1, \ldots, F_n \mathbb{Q}(z)$ -linéairement indépendantes.

Alors A est un G-opérateur.

- La condition de Galochkin et ces deux résultats se généralisent au cas où $F_1, \ldots, F_n \in \overline{\mathbb{Q}}[[z]]$.
- Un opérateur différentiel $L = \sum_{j=0}^{\mu} a_j(z) \frac{d^j}{dz^j} \in \overline{\mathbb{Q}}(z) [\frac{d}{dz}]$ est dit être un G-opérateur lorsque son système différentiel compagnon est un G-opérateur.

Structure des G-opérateurs

Théorème 11 (Chudnovsky, version alternative)

Soient f une G-fonction et $L \in \overline{\mathbb{Q}}(z)[\frac{d}{dz}] \setminus \{0\}$ tq Lf(z) = 0 et d'ordre minimal pour f. Alors L est un G-opérateur.

Théorème 12 (André, Chudnovsky, Katz)

Soit $L \in \overline{\mathbb{Q}}(z)[\frac{d}{dz}]$ un G-opérateur d'ordre μ .

L'équation différentielle Ly(z) = 0 admet en $z = \alpha \in \overline{\mathbb{Q}} \cup \{\infty\}$ une \mathbb{C} -base de solutions de la forme

$$\sum_{j=1}^{\mu} \left((z-\alpha)^{e_1} P_{j,1}(\log(z-\alpha)) + \cdots + (z-\alpha)^{e_{\mu}} P_{j,\mu}(\log(z-\alpha)) F_j(z-\alpha) \right).$$

où les $e_j \in \mathbb{Q}$, $P_{j,k}(X) \in \overline{\mathbb{Q}}[X]$ et chaque $F_j(z)$ est une G-fonction. Si $\alpha = \infty$, $z - \alpha$ signifie 1/z.

E-opérateurs

- Soit $f(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$ une *E*-fonction stricte, avec $|a_n| \leq C^{n+1}$.
- Transformée de Laplace : pour Re(z) > C,

$$g(z) := \int_0^{+\infty} f(x) e^{-xz} dx = \sum_{n=0}^{\infty} \frac{a_n}{n!} \int_0^{+\infty} x^n e^{-zx} dx = \sum_{n=0}^{\infty} \frac{a_n}{z^{n+1}}.$$

- g(z) est une G-fonction de la variable 1/z.
- Transformée de Fourier-Laplace des opérateurs différentiels :

$$\mathcal{F}: \mathbb{C}\left[z, \frac{d}{dz}\right] \to \mathbb{C}\left[z, \frac{d}{dz}\right]$$
$$z \mapsto -\frac{d}{dz}, \quad \frac{d}{dz} \mapsto z.$$

Soit $L \in \overline{\mathbb{Q}}[z, rac{d}{dz}]$ d'ordre μ tq Lf(z) = 0 : alors

$$\left(\left(\frac{d}{dz}\right)^{\mu}\circ\mathcal{F}(L)\right)g(z)=0.$$

Définition-Proposition 2 (André, 2000)

 $L \in \overline{\mathbb{Q}}[z, \frac{d}{dz}]$ est un E-opérateur si $\mathcal{F}(L) \in \overline{\mathbb{Q}}[z, \frac{d}{dz}]$ est un G-opérateur. Toute E-fonction stricte est annulée par un E-opérateur.

Structure des E-opérateurs

Théorème 13 (André, 2000)

Soit $L \in \overline{\mathbb{Q}}[z, \frac{d}{dz}]$ un E-opérateur d'ordre μ .

La seule singularité finie possible de L est 0.

En z=0, Ly(z)=0 admet une \mathbb{C} -base de solutions locales de la forme

$$\sum_{j=1}^{\mu} \left(z^{e_1} P_{j,1}(\log(z)) + \cdots + z^{e_{\mu}} P_{j,\mu}(\log(z)) \right) E_j(z).$$

où les $e_j \in \mathbb{Q}$, $P_{j,k}(X) \in \overline{\mathbb{Q}}[X]$ et chaque $E_j(z)$ est une E-fonction.

Ce théorème se déduit de celui sur la structure des G-opérateurs. Il a permis à André de donner une nouvelle preuve du théorème de Siegel-Shidlovskii dans le cas strict.

Propriété cruciale. Si une *E*-fonction stricte $f(z) \in \overline{\mathbb{Q}}[[z]]$ s'annule en $z = \alpha \in \overline{\mathbb{Q}}$, alors

$$\frac{f(z)}{z-\alpha}$$

est encore une *E*-fonction. (André 2000 sur \mathbb{Q} , Beukers 2006 sur $\overline{\mathbb{Q}}$.)

Transcendance sans transcendance

Théorème 14 (Théorème de relèvement de Beukers, 2006)

Soient $Y={}^t(F_1,\ldots,F_m)$ des E-fonctions strictes et $A\in M_m(\overline{\mathbb{Q}}(z))$ tq Y'=AY. Soit $T(z)\in \overline{\mathbb{Q}}[z]\setminus\{0\}$ un dénominateur de A(z), de degré minimal. Soit $\alpha\in\overline{\mathbb{Q}}$ tq $\alpha\,T(\alpha)\neq 0$ et $P\in\overline{\mathbb{Q}}[X_1,\ldots,X_m]$ (homogène) en X_1,\ldots,X_m tq

$$P(F_1(\alpha),\ldots,F_m(\alpha))=0.$$

Alors, $\exists \ Q \in \overline{\mathbb{Q}}[Z,X_1,\ldots,X_m]$ (homogène en X_1,\ldots,X_m si P l'est) tq

$$Q(z, F_1(z), \dots, F_m(z)) = 0$$
 et $Q(\alpha, X_1, \dots, X_m) = P(X_1, \dots, X_n)$.

Corollaire 2 (Beukers, 2006)

Supposons que $F_1(z), \ldots, F_m(z)$ soient $\overline{\mathbb{Q}}(z)$ -linéairement indépendantes. Alors $\forall \ \alpha \in \overline{\mathbb{Q}} \ tq \ \alpha T(\alpha) \neq 0$, les nombres

$$F_1(\alpha), \ldots, F_m(\alpha)$$

sont $\overline{\mathbb{Q}}$ -linéairement indépendants.

Valeurs algébriques exceptionnelles de E-fonctions

- Soit F_1 une E-fonction. Injectons F_1 dans $Y={}^t(F_1,\ldots,F_m)$ vérifiant Y'=AY. Soit $\alpha\in\overline{\mathbb{Q}}$ tq $\alpha T(\alpha)\neq 0$.
- 1) Si F_1,\ldots,F_m sont $\overline{\mathbb{Q}}(z)$ -algébriquement indépendantes, alors $F_1(\alpha)\notin\overline{\mathbb{Q}}$.

Si $k := \deg \operatorname{tr}_{\overline{\mathbb{Q}}(z)} \overline{\mathbb{Q}}(z)(F_1(z), \dots, F_m(z)) < m$, alors il existe k nombres $\operatorname{transcendants}$ parmi les m nombres $F_1(\alpha), \dots, F_m(\alpha)$. Est-ce que $F_1(\alpha) \notin \overline{\mathbb{Q}}$?

2) On a toujours que $F_1(0) \in \overline{\mathbb{Q}}$. Que se passe-t-il si $T(\alpha) = 0$?

Théorème 15 (Adamczewski-R., 2018)

Il existe un algorithme qui réalise les tâches suivantes.

Étant donnée une E-fonction stricte f en entrée, il détermine si f est transcendante sur $\overline{\mathbb{Q}}(z)$ ou pas. Si elle ne l'est pas, il affiche le polynôme f.

Si elle l'est, il affiche la liste finie $\operatorname{Exc}(f)$ des $\alpha \in \overline{\mathbb{Q}}^*$ tq $f(\alpha) \in \overline{\mathbb{Q}}$, et la liste correspondante des valeurs $f(\alpha)$.

• Par exemple, $\operatorname{Exc}(J_0^{(k)}) = \emptyset$ pour k = 0, 1, 2, 3 mais $\operatorname{Exc}(J_0^{(4)}) = \{\pm \sqrt{3}\}$. On a en effet $J_0^{(4)}(\pm \sqrt{3}) = 0$ (Lorch-Muldoon, 1995) et

$$J_0^{(4)}(z) = \frac{3-z^2}{z^2}J_2(z), \quad \mathsf{Exc}(J_2) = \emptyset$$

(Bostan-R.-Salvy, 2024), en accord avec le théorème de relèvement de Beukers.

Résultats quantitatifs

Théorème 16 (Shidlovskii)

Soit $Y={}^t(F_1,\ldots,F_m)\in\mathbb{Q}[[z]]^m$ des E-fonctions tq Y'=AY avec $A\in M_m(\mathbb{Q}(z))$. Supposons F_1,\ldots,F_m $\mathbb{Q}(z)$ -linéairement indépendantes et $\alpha\in\mathbb{Q}^*$ non singularité de A.

Alors $\forall \varepsilon > 0$, $\exists c > 0$ tq $\forall \lambda_1, \ldots, \lambda_m \in \mathbb{Z}$ non tous nuls, on ait

$$\left| \sum_{j=1}^{m} \lambda_{j} F_{j}(\alpha) \right| > \frac{c}{H^{m-1+\varepsilon}} \quad \text{ où } H := \max_{1 \leq j \leq N} |\lambda_{j}|.$$

Théorème 17 (Fischler-R., 2024)

Soient \mathbb{K} un cdn de degré d sur \mathbb{Q} , $\alpha \in \mathbb{K}$, et $Y = {}^{t}(F_1, \dots, F_m) \in \mathbb{K}[[z]]^m$ des E-fonctions tq Y' = AY avec $A \in M_m(\mathbb{K}(z))$.

Alors $\forall \varepsilon > 0$, $\exists c > 0$ tq $\forall \lambda_1, \ldots, \lambda_N \in \mathcal{O}_{\mathbb{K}}$ non tous nuls,

soit
$$\Lambda := \lambda_1 F_1(\alpha) + \ldots + \lambda_m F_m(\alpha) = 0$$
, soit $|\Lambda| > \frac{c}{H^{dm^d - 1 + \varepsilon}}$,

 $o\grave{u}\ H:=\max_{1\leq j\leq N} |\lambda_j|.$

Si F_1, \ldots, F_N sont $\overline{\mathbb{Q}}(z)$ -linéairement indépendantes et $\alpha \neq 0$ n'est pas une singularité de A, alors le théorème de Beukers implique que $\Lambda \neq 0$.

Résultats quantitatifs, suite

Corollaire 3 (Fischler-R., 2024)

(i) Soient $f \in \mathbb{K}[[z]]$ une E-fonction et $\alpha \in \mathbb{K}$ un cdn de degré d. Supposons que $f(\alpha) \notin \mathbb{Q}$. Alors $\forall \varepsilon > 0$, $\exists c > 0$ tq $\forall (p,q) \in \mathbb{Z} \times \mathbb{N}^*$, on ait

$$\left|f(\alpha)-\frac{p}{q}\right|>\frac{c}{q^{dm^d+\varepsilon}},$$

où m est l'ordre de l'équation diff minimale non-nulle vérifiée par f.

- (ii) En particulier, $f(\alpha)$ n'est jamais un nombre de Liouville.
- ullet $\forall lpha \in \overline{\mathbb{Q}}^*$,

$$\left|e^{\alpha}-rac{p}{q}
ight|>rac{c}{q^{d2^d+arepsilon}}\quad (m=1),\quad \left|J_0(lpha)-rac{p}{q}
ight|>rac{c}{q^{d3^d+arepsilon}}\quad (m=2). \quad \ (1)$$

- e^{α} : Lang-Galochkin $4d^2+1$, Kappe $4d^2-2d$. Eq. (1) est meilleure lorsque $d\in\{2,3\}$.
- $J_0(\alpha)$: Siegel $123d^3+1$ et 3 pour d=1, Lang-Galochkin $16d^3+1$ et Zudilin 2 pour d=1. Eq. (1) est meilleure pour $d\in\{2,3,4,5\}$.

