Linear independence of values of G-functions

Tanguy Rivoal,

CNRS and Université Grenoble Alpes
joint work with Stéphane Fischler, Université Paris-Saclay

Transient Transcendence in Transylvania, Braşov,

$$
\text { 13-17 may } 2019
$$

G-functions

Definition 1 (Siegel 1929)
$F(z)=\sum_{k=0}^{\infty} A_{k} z^{k} \in \mathbb{Q}[[z]]$ is a G-function if:
(i) it is solution of a non zero homogeneous linear differential equation with coefficients in $\mathbb{Q}(z)$
and there exist $C, D>0$ such that:
(ii) for any $k \geq 0,\left|A_{k}\right| \leq C^{k+1}$.
(iii) for any $k \geq 0$, there exists $D_{k} \in \mathbb{N} \backslash\{0\}$ such that $\left|D_{k}\right| \leq D^{k+1}$ and $D_{k} A_{m} \in \mathbb{Z}$ for all $m \leq k$.
$\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z}$,
Transcendental G-functions: $-\log (1-z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k}$ and $\mathrm{Li}_{s}(z)=\sum_{k=1}^{\infty} \frac{z^{k}}{k^{s}} \quad(s \geq 1$ integer $)$.
G-functions form a subring of $\overline{\mathbb{Q}}[[z]]$, stable by $\frac{d}{d z}$ et \int_{0}^{z}.

$$
\begin{gathered}
\sum_{k=0}^{\infty}\binom{3 k}{2 k} z^{k}= \\
\frac{2 \cos \left(\frac{1}{3} \arcsin \left(\frac{3}{2} \sqrt{3 z}\right)\right)}{\sqrt{4-27 z}}, \quad \sum_{k=0}^{\infty}\binom{4 k}{2 k} z^{k}=\frac{\sqrt{1+\sqrt{1-16 z}}}{\sqrt{2-32 z}} \\
\left.\sum_{k=0}^{\infty}\binom{a k}{b k} z^{k},\binom{k+j}{j}\right) z^{k}=\frac{1}{\sqrt{1-6 z+z^{2}}} \\
\sum_{k=1}^{\infty} \frac{z^{2 k}}{k^{2}\binom{2 k}{k}}=2 \arcsin \left(\frac{z}{2}\right)^{2} \\
\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k}\binom{k}{j}^{2}\binom{k+j}{j}^{2}\right) z^{k}, \quad \frac{1}{\pi} \int_{0}^{1} \sqrt{\frac{t(1-t)}{1-t z}} d t
\end{gathered}
$$

Hypergeometric series with rational parameters:

$$
{ }_{p+1} F_{p}\left[\begin{array}{c}
a_{1}, a_{2}, \ldots, a_{p+1} \\
b_{1}, b_{2}, \ldots, b_{p}
\end{array}\right]:=\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p+1}\right)_{k}}{(1)_{k}\left(b_{1}\right)_{k} \cdots\left(b_{p}\right)_{k}} z^{k}
$$

where $(\alpha)_{k}:=\alpha(\alpha+1) \cdots(\alpha+k-1)$ for $k \geq 0$.

E-functions

$\sum_{k=0}^{\infty} \frac{A_{k}}{k!} z^{k}$ is an E-function $\Longleftrightarrow \sum_{k=0}^{\infty} A_{k} z^{k}$ is a G-function.

$$
\begin{gathered}
e^{z}=\sum_{n=0}^{\infty} \frac{z^{k}}{k!} \\
\sum_{k=0}^{\infty} \frac{1}{k!}\left(\sum_{j=0}^{k}\binom{k}{j}\binom{k+j}{j}\right) z^{k}=e^{3 z} J_{0}(i 2 \sqrt{2} z) .
\end{gathered}
$$

Theorem 1 (Siegel-Shidlovsky 1956)
Let $Y(z)={ }^{t}\left(F_{1}(z), \ldots, F_{S}(z)\right)$ be a vector of E-functions such that

$$
Y^{\prime}(z)=A(z) Y(z), \quad A(z) \in M_{S}(\overline{\mathbb{Q}}(z)) .
$$

Let $T(z) \in \overline{\mathbb{Q}}[z] \backslash\{0\}$ such that $T(z) A(z) \in M_{S}(\overline{\mathbb{Q}}[z])$.
For any $\alpha \in \overline{\mathbb{Q}}$ such that $\alpha T(\alpha) \neq 0$,

$$
\operatorname{degtr}_{\overline{\mathbb{Q}}}\left(F_{1}(\alpha), \ldots, F_{S}(\alpha)\right)=\operatorname{degtr}_{\overline{\mathbb{Q}}(z)}\left(F_{1}(z), \ldots, F_{S}(z)\right)
$$

A Siegel-Shidlovsky type theorem is not possible for G-functions.

Diophantine results for values of specific G-functions

For any $\alpha \in \overline{\mathbb{Q}} \backslash\{0,1\}, \log (\alpha) \notin \overline{\mathbb{Q}}$. In particular, $\pi \notin \overline{\mathbb{Q}}$.
Chudnovsky (70's), reproved by André (1996): for any $\alpha \in \overline{\mathbb{Q}}$, $0<|\alpha|<1$, the two numbers

$$
{ }_{2} F_{1}\left[\begin{array}{c}
\frac{1}{2}, \frac{1}{2} \\
1
\end{array} ; \alpha\right], \quad{ }_{2} F_{1}\left[\begin{array}{c}
-\frac{1}{2}, \frac{1}{2} \\
1
\end{array}\right]
$$

are algebraically independent over $\overline{\mathbb{Q}}$.
Wolfart's results (1988) on the values taken by Gauss' hypergeometric function ${ }_{2} F_{1}$ (with rational parameters) at algebraic points.

There exist transcendental G-functions that take algebraic values on an infinite set of algebraic numbers (André, Beukers, Joyce-Zucker, Wolfart).
Polynomial relations between values of G-functions follow from Grothendieck's "Periods Conjecture" provided " G-functions come from geometry".
We don't know yet three $\overline{\mathbb{Q}}$-algebraically independent values of G-functions at algebraic points.
Apéry (1978): $\mathrm{Li}_{3}(1)=\zeta(3) \notin \mathbb{Q}$.

Two families of Diophantine results for general G-functions

In the first family, the G-function is evaluated at an algebraic point α close to 0: Siegel, Nurmagomedov, Galochkin, Bombieri.

Theorem 2 (Chudnovsky 1984)
Let $Y(z)={ }^{t}\left(F_{1}(z), \ldots, F_{S}(z)\right)$ be a vector of G-functions such that

$$
Y^{\prime}(z)=A(z) Y(z), \quad A(z) \in M_{S}(\overline{\mathbb{Q}}(z))
$$

Assume that $F_{1}(z), \ldots, F_{S}(z)$ are $\overline{\mathbb{Q}}(z)$-algebraically independent.
Then, for any $d \geq 1$, there exists $C_{Y, d}>0$ such that, for any $\alpha \in \overline{\mathbb{Q}}$ of degree d with

$$
0<|\alpha|<\exp \left(-C_{Y, d} \log (H(\alpha))^{\frac{4 s}{4+1}}\right),
$$

there does not exist a polynomial relation of degree $\leq d$ between the values $F_{1}(\alpha), \ldots, F_{S}(\alpha)$ over $\mathbb{Q}(\alpha)$.
$H(\alpha)$ is the maximum of the modulus of the coefficients of the normalized minimal polynomial of α over \mathbb{Q}.
$d=1$ and $\alpha=\frac{a}{b} \in \mathbb{Q}^{*}:$ if $|b|>\left|c_{0} a\right|^{S^{2}}$ then

$$
\operatorname{dim}_{\mathbb{Q}} \operatorname{Span}_{\mathbb{Q}}\left(1, F_{1}(a / b), \ldots, F_{S}(a / b)\right)=S+1
$$

$F_{j}(z)=\mathrm{Li}_{j}(z)$ and $\alpha=1 / b:|b|>e^{s^{2}} \quad$ (Nikishin, Hata).
The second family of results is more recent (≈ 2000).
For any algebraic point α in the disk of convergence: estimates for the dimension of a vector space spanned by values $F(\alpha)$, where F ranges through a set of G-functions.

Theorem 3 (Marcovecchio 2006)
Let $\alpha \in \overline{\mathbb{Q}}, 0<|\alpha|<1$. Then,

$$
\operatorname{dim}_{\mathbb{Q}(\alpha)} \operatorname{Span}_{\mathbb{Q}(\alpha)}\left(1, \mathrm{Li}_{1}(\alpha), \ldots, \operatorname{Li}_{s}(\alpha)\right) \geq \frac{1+o(1)}{[\mathbb{Q}(\alpha): \mathbb{Q}] \log (2 e)} \log (S)
$$

R. 2001: same result under the further assumption that $\alpha \in \mathbb{R}$.

All the results in this family concerned polylogarithms or Lerch function.

A new general result in the second family

$F(z)=\sum_{k=0}^{\infty} A_{k} z^{k} \in \mathbb{Q}[[z]]$ a G-function with radius of convergence 1 . $n \geq 1$ and $s \geq 0$ integers:

$$
F_{n}^{[s]}(z):=\sum_{k=0}^{\infty} \frac{A_{k}}{(k+n)^{s}} z^{k+n} \in \mathbb{Q}[[z]] .
$$

$S \geq 0$ and $\alpha \in \mathbb{Q}$ such that $0<|\alpha|<1$:

$$
\Phi_{\alpha, S}:=\operatorname{Span}_{\mathbb{Q}}\left(F_{n}^{[s]}(\alpha), 0 \leq s \leq S, n \geq 1\right) .
$$

Theorem 4 (Fischler-R. 2017)
Assume $F \notin \mathbb{Q}[z]$. There exist $\mu, \ell_{0}, C>0$ effective such that, for any $\alpha \in \mathbb{Q}, 0<|\alpha|<1$,

$$
C \cdot \log (S) \leq \operatorname{dim}_{\mathbb{Q}}\left(\Phi_{\alpha, S}\right) \leq \ell_{0} \cdot S+\mu
$$

If $F \in \mathbb{Q}[z]$, then $\Phi_{\alpha, S} \subset \mathbb{Q}$.

Corollary 1

$$
a_{i} \notin \mathbb{Z} \backslash\{1\} \quad \text { and } \quad b_{j} \notin-\mathbb{N} \quad \text { for any } i, j .
$$

For any $\alpha \in \mathbb{Q}$ such that $0<|\alpha|<1$: infinitely many of the hypergeometric values

$$
\sum_{k=0}^{\infty} \frac{\left(a_{1}\right)_{k}\left(a_{2}\right)_{k} \cdots\left(a_{p+1}\right)_{k}}{(1)_{k}\left(b_{1}\right)_{k} \cdots\left(b_{p}\right)_{k}} \frac{\alpha^{k}}{(k+1)^{s}}, \quad s \in \mathbb{N},
$$

are \mathbb{Q}-linearly independent.
For any integers $1 \leq b \leq a$ and $\alpha \in \mathbb{Q}$ such that $0<|\alpha|<\frac{b^{b}(a-b)^{a-b}}{a^{a}}$, infinitely many of the numbers

$$
\sum_{k=1}^{\infty}\binom{a k}{b k} \frac{\alpha^{k}}{k^{s}}, \quad s \in \mathbb{N}
$$

are irrational.

