Linear independence of values of *G*-functions

Tanguy Rivoal, CNRS and Université Grenoble Alpes

joint work with Stéphane Fischler, Université
Paris-Saclay

Transient Transcendence in Transylvania, Brașov, 13-17 may 2019

G-functions

Definition 1 (Siegel 1929)

$$F(z) = \sum_{k=0}^{\infty} A_k z^k \in \mathbb{Q}[[z]]$$
 is a G-function if:

- (i) it is solution of a non zero homogeneous linear differential equation with coefficients in $\mathbb{Q}(z)$
 - and there exist C, D > 0 such that:
- (ii) for any $k \ge 0$, $|A_k| \le C^{k+1}$.
- (iii) for any $k \geq 0$, there exists $D_k \in \mathbb{N} \setminus \{0\}$ such that $|D_k| \leq D^{k+1}$ and $D_k A_m \in \mathbb{Z}$ for all $m \leq k$.

$$\sum_{k=0}^{\infty} z^k = \frac{1}{1-z},$$

Transcendental *G*-functions: $-\log(1-z) = \sum_{k=1}^{\infty} \frac{z^k}{k}$ and $\text{Li}_s(z) = \sum_{k=1}^{\infty} \frac{z^k}{k^s}$ $(s \ge 1 \text{ integer}).$

G-functions form a subring of $\overline{\mathbb{Q}}[[z]]$, stable by $\frac{d}{dz}$ et \int_0^z .

$$\begin{split} \sum_{k=0}^{\infty} \binom{3k}{2k} z^k &= \frac{2\cos\left(\frac{1}{3}\arcsin\left(\frac{3}{2}\sqrt{3z}\right)\right)}{\sqrt{4-27z}}, \qquad \sum_{k=0}^{\infty} \binom{4k}{2k} z^k &= \frac{\sqrt{1+\sqrt{1-16z}}}{\sqrt{2-32z}}, \\ &\qquad \sum_{k=0}^{\infty} \binom{ak}{bk} z^k, \binom{k+j}{j} \right) z^k &= \frac{1}{\sqrt{1-6z+z^2}}. \\ &\qquad \sum_{k=1}^{\infty} \frac{z^{2k}}{k^2 \binom{2k}{k}} &= 2\arcsin\left(\frac{z}{2}\right)^2, \\ &\qquad \sum_{k=1}^{\infty} \left(\sum_{j=0}^{k} \binom{k}{j}^2 \binom{k+j}{j}^2\right) z^k, \qquad \frac{1}{\pi} \int_0^1 \sqrt{\frac{t(1-t)}{1-tz}} dt. \end{split}$$

Hypergeometric series with rational parameters:

$${}_{p+1}F_p\left[\begin{matrix} a_1,a_2,\ldots,a_{p+1}\\b_1,b_2,\ldots,b_p \end{matrix};z\right]:=\sum_{k=0}^{\infty}\frac{(a_1)_k(a_2)_k\cdots(a_{p+1})_k}{(1)_k(b_1)_k\cdots(b_p)_k}z^k,$$

where $(\alpha)_k := \alpha(\alpha+1)\cdots(\alpha+k-1)$ for $k \ge 0$.

F-functions

 $\sum_{k=0}^{\infty} \frac{A_k}{k!} z^k$ is an E-function $\iff \sum_{k=0}^{\infty} A_k z^k$ is a G-function.

$$e^z = \sum_{n=0}^{\infty} \frac{z^k}{k!},$$

$$\sum_{k=0}^{\infty} \frac{1}{k!} \left(\sum_{j=0}^{k} {k \choose j} {k+j \choose j} \right) z^k = e^{3z} J_0(i2\sqrt{2}z).$$

Theorem 1 (Siegel-Shidlovsky 1956)

Let $Y(z) = {}^{t}(F_1(z), \dots, F_S(z))$ be a vector of E-functions such that

$$Y'(z) = A(z)Y(z), \quad A(z) \in M_S(\overline{\mathbb{Q}}(z)).$$

Let $T(z) \in \mathbb{Q}[z] \setminus \{0\}$ such that $T(z)A(z) \in M_S(\mathbb{Q}[z])$.

For any $\alpha \in \overline{\mathbb{O}}$ such that $\alpha T(\alpha) \neq 0$.

$$\operatorname{degtr}_{\overline{\mathbb{Q}}}(F_1(\alpha), \dots, F_S(\alpha)) = \operatorname{degtr}_{\overline{\mathbb{Q}}(z)}(F_1(z), \dots, F_S(z)).$$

A Siegel-Shidlovsky type theorem is not possible for G-functions.

Diophantine results for values of specific *G*-functions

For any $\alpha \in \overline{\mathbb{Q}} \setminus \{0,1\}$, $\log(\alpha) \notin \overline{\mathbb{Q}}$. In particular, $\pi \notin \overline{\mathbb{Q}}$.

Chudnovsky (70's), reproved by André (1996): for any $\alpha\in\overline{\mathbb{Q}}$, $0<|\alpha|<1$, the two numbers

$$_{2}F_{1}\begin{bmatrix}\frac{1}{2},\frac{1}{2}\\1\end{bmatrix};\alpha$$
, $_{2}F_{1}\begin{bmatrix}-\frac{1}{2},\frac{1}{2}\\1\end{bmatrix};\alpha$

are algebraically independent over $\overline{\mathbb{Q}}$.

Wolfart's results (1988) on the values taken by Gauss' hypergeometric function ${}_{2}F_{1}$ (with rational parameters) at algebraic points.

There exist transcendental *G*-functions that take algebraic values on an infinite set of algebraic numbers (André, Beukers, Joyce-Zucker, Wolfart).

Polynomial relations between values of G-functions follow from Grothendieck's "Periods Conjecture" provided "G-functions come from geometry".

We don't know yet **three** $\overline{\mathbb{Q}}$ -algebraically independent values of *G*-functions at algebraic points.

Apéry (1978):
$$Li_3(1) = \zeta(3) \notin \mathbb{Q}$$
.

Two families of Diophantine results for general *G*-functions

In the first family, the *G*-function is evaluated at an algebraic point α close to 0: Siegel, Nurmagomedov, Galochkin, Bombieri.

Theorem 2 (Chudnovsky 1984)

Let $Y(z) = {}^{t}(F_1(z), \dots, F_S(z))$ be a vector of G-functions such that

$$Y'(z) = A(z)Y(z), \quad A(z) \in M_S(\overline{\mathbb{Q}}(z)).$$

Assume that $F_1(z), \ldots, F_S(z)$ are $\overline{\mathbb{Q}}(z)$ -algebraically independent.

Then, for any $d \geq 1$, there exists $C_{Y,d} > 0$ such that, for any $\alpha \in \overline{\mathbb{Q}}$ of degree d with

$$0<|\alpha|<\exp\big(-C_{Y,d}\log\big(H(\alpha)\big)^{\frac{45}{45+1}}\big),$$

there does not exist a polynomial relation of degree $\leq d$ between the values $F_1(\alpha), \ldots, F_S(\alpha)$ over $\mathbb{Q}(\alpha)$.

 $H(\alpha)$ is the maximum of the modulus of the coefficients of the normalized minimal polynomial of α over \mathbb{Q} .

$$d=1$$
 and $lpha=rac{a}{b}\in\mathbb{Q}^*$: if $|b|>|c_0a|^{S^2}$ then
$$\dim_{\mathbb{Q}}\operatorname{Span}_{\mathbb{Q}}ig(1,F_1(a/b),\ldots,F_S(a/b)ig)=S+1.$$

$$F_j(z) = \operatorname{Li}_j(z)$$
 and $\alpha = 1/b$: $|b| > e^{S^2}$ (Nikishin, Hata).

The second family of results is more recent (\approx 2000).

For any algebraic point α in the disk of convergence: estimates for the dimension of a vector space spanned by values $F(\alpha)$, where F ranges through a set of G-functions.

Theorem 3 (Marcovecchio 2006)

Let $\alpha \in \overline{\mathbb{Q}}$, $0 < |\alpha| < 1$. Then,

$$\dim_{\mathbb{Q}(\alpha)}\operatorname{Span}_{\mathbb{Q}(\alpha)}(1,\operatorname{Li}_1(\alpha),\ldots,\operatorname{Li}_S(\alpha))\geq \frac{1+o(1)}{[\mathbb{Q}(\alpha):\mathbb{Q}]\log(2e)}\log(S).$$

R. 2001: same result under the further assumption that $\alpha \in \mathbb{R}$.

All the results in this family concerned polylogarithms or Lerch function.

A new general result in the second family

 $F(z)=\sum_{k=0}^{\infty}A_kz^k\in\mathbb{Q}[[z]]$ a *G*-function with radius of convergence 1. $n\geq 1$ and $s\geq 0$ integers:

$$F_n^{[s]}(z) := \sum_{k=0}^{\infty} \frac{A_k}{(k+n)^s} z^{k+n} \in \mathbb{Q}[[z]].$$

 $S \geq 0$ and $\alpha \in \mathbb{Q}$ such that $0 < |\alpha| < 1$:

$$\Phi_{\alpha,S} := \mathsf{Span}_{\mathbb{Q}}ig(\mathit{F}^{[s]}_{n}(lpha), 0 \leq s \leq S, n \geq 1 ig).$$

Theorem 4 (Fischler-R. 2017)

Assume $F \notin \mathbb{Q}[z]$. There exist $\mu, \ell_0, C > 0$ effective such that, for any $\alpha \in \mathbb{Q}$, $0 < |\alpha| < 1$,

$$C \cdot \log(S) \leq \dim_{\mathbb{Q}}(\Phi_{\alpha,S}) \leq \ell_0 \cdot S + \mu.$$

If $F \in \mathbb{Q}[z]$, then $\Phi_{\alpha,S} \subset \mathbb{Q}$.

Corollary 1

$$a_i \notin \mathbb{Z} \setminus \{1\}$$
 and $b_j \notin -\mathbb{N}$ for any i, j .

For any $\alpha\in\mathbb{Q}$ such that $0<|\alpha|<1$: infinitely many of the hypergeometric values

$$\sum_{k=0}^{\infty} \frac{(a_1)_k (a_2)_k \cdots (a_{p+1})_k}{(1)_k (b_1)_k \cdots (b_p)_k} \frac{\alpha^k}{(k+1)^s}, \quad s \in \mathbb{N},$$

are Q-linearly independent.

For any integers $1 \leq b \leq a$ and $\alpha \in \mathbb{Q}$ such that $0 < |\alpha| < \frac{b^b(a-b)^{a-b}}{a^a}$, infinitely many of the numbers

$$\sum_{k=1}^{\infty} {ak \choose bk} \frac{\alpha^k}{k^s}, \quad s \in \mathbb{N},$$

are irrational.

