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E- and G-functions (Siegel, 1929)

Definition 1 -

A power series F(z) = >~ anz"/n! € Q[[2]] is an E-function if
(i) F(z) is solution of a non-zero linear differential equation with
coefficients in Q(z).

(i) There exists C > 0 such that for any o € Gal(Q/Q) and any
n>0,|o(a,)| < C"HL.

(iif)  There exists a sequence of positive integers d,, with d, < C™1,
such that d,a,, are algebraic integers for all m < n.

Siegel's definition was more general: the two bounds (---) < C"*1 are
replaced by: for all ¢ >0, (---) < n!® for all n > N(e).

E-functions are entire functions. They form a ring stable under % and
Jo- If F(z) is an E-function and o € Q, then F(z) is an E-function.

A power series Y- 1 a,z" € Q[[z]] is a G-function if Y7 22" is an
E-function (in the sense of Definition 1).



Examples
E-functions: polynomials in Q[z],
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G-functions: algebraic functions over Q(z) regular at 0,
log(1—z) = —>"72, z"/n and (multiple) polylogarithms
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The intersection of both classes of series is reduced to Q[z].



Why are E- and G-functions interesting?

Theorem 1 (Lindemann-Weierstrass)

Ifay,...;an € Q are Q-linearly independent, then (e®Z, .., €% are
Q(z)-algebraically independent and) e*, e, ... e* are Q-algebraically
independent.

Consequences:

e For any a € Q\ {0}, exp(a) ¢ Q.

e Forany a € Q\ {0,1}, log(a) ¢ Q for any given determination of the
logarithm.

Recall that exp(z) is an E-function while log(1 — z) is a G-function:
Siegel's aim was to generalize the above statements.



The Siegel-Shidlovskii Theorem

Theorem 2 (Siegel-Shidlovskii, 1929-1956)
Let Y =*t(Fy,...,F,) be a vector of E-functions (in Siegel’s sense) and

A € Myyn(Q(2)) such that Y' = AY.

Let T € Q[z] \ {0} a common denominator of the entries of A, of
minimal degree.

Then, for all o € Q such that aT(a) # 0,

deg tr@(z)@(z)(Fl(z), ..., Fa(2)) = deg tr@@(Fl(a), . Fa(@)).
We obtain (a version of) the Lindemann-Weierstrass Theorem with
Fi(z) = e%*, A= Diag(e;) and a = 1.

Siegel, 1929: The E-functions Jy(z) et Ji(z) are Q(z)-algebraically
independent and
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For all « € @\ {0}, the numbers Jo(a) et Jj(a) are Q-algebraically
independent.



After the Siegel-Shidlovskii Theorem

André obtained in 2000 a new proof of the Siegel-Shidlovskii Theorem (in
the restricted sense). He used the special properties of the differential
equations satisfied by such E-functions.

These properties are inherited from those of the diff equations satisfied
by G-functions, found in the 80’s by André, Bombieri, Chudnovsky,
Galochkin, Katz: The non-zero minimal differential equation satisfied by
a given G-function is fuchsian with rational exponents.

Beukers, 2006: If Y =*(Fy,..., F,) is a vector of E-functions (in the
restricted sense) such that Y’ = AY and the F;'s are linearly independent

over @(z) then for any o € @* not a singularitl of A, the numbers
Fi(a),..., Fo(a) are linearly independent over Q.

Consequence: for any non-polynomial E-function F(z), there are only
finitely many a € Q such that F(a) € Q. This is not a consequence of

the Siegel-Shidlovskii Theorem. An exotic evaluation: J(()4)(j:\/§) =0.

In 2014, André extended Beukers' lifting theorem to the case of
E-functions in Siegel's sense.



Chudnovsky's Theorem

Chudnovsky “completed” Siegel’s program for G-functions.

Theorem 3 (Chudnovsky 1984)
Let Y(z) = Y(Fi(2),..., Fs(z)) be a vector of G-functions solution of

Y'(z) = A(2)Y(2), A(z) € Ms(Q(z)).
Assume Fy(z), ..., Fs(z) to be Q(z)-algebraically independent.
For any d, there exists Cy 4 > 0 such that, for any a € Q of degree < d
with i

0 <|a| <exp(— Cy,alog(H(a))™), (1)
there does not exist a polynomial relation of degree < d between the

values 1, Fi(«),..., Fs(a) over Q(a).

A condition like (1) is unavoidable: there exist transcendental
G-functions that take algebraic values on a dense set of algebraic points
in the disk of convergence (Wolfart).



Hypergeometric E-functions

Set (X)m :=x(x+1)---(x+m—1).
Siegel: the “hypergeometric” series

al,...,da —p+1 > (al)n"'(a)n n(g—p+1
p |:b1, .. .,bq g n!(bl),, e (bq)n

is an E-function when ¢ > p > 1, a; € Q and b; € Q\ Z< for all j.

L(z) and H(z) are not of ,F,(z97PT1) type but
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Siegel’s question
Question 1 (Siegel, 1949)

Is it possible to write every E-function (in Siegel's sense) as a polynomial
with coefficients in Q of series ,Fq [a1, ..., ap; b1, ..., by; Az97PTY], with
g>p>1a,bjeQand AcQ?

Such a representation may not be unique. For instance
Jo(2) = 1F2 {111;(,'2/2)2} =e ” 1R {1{2;2/2] :

Gorelov, 2004: the answer is yes if the E-function (in Siegel's sense) is

solution of a differential equation of order < 2 with coefficients in Q(z).

In 2019, Fischler and myself gave a strong reason to believe that the
answer was negative in general for E-functions of differential order > 4.

The answer was then shown to be negative by Fresan and Jossen in 2020,
who produced an explicit counter-example.

In the rest of the talk, | will explain our 2019 result. From now on,
E-functions are always understood in the restricted sense.



Rings of special values

G the ring of values taken at algebraic points by analytic continuations of
G-functions. Algebraic numbers, ['(a/b)? (a, b € N) and 7 are units of G.

H the ring generated by @, 1/7 and T'"(r), r € Q\ Z<o, n € N.
Algebraic numbers and I'(r) (r € Q \ Z<o) are units of H.

S the G-module generated by I'"(r), r € Q\ Z<o, n € N. It is a ring.
G and H are subrings of S.

Proposition 1
(i) H is generated by Q, 1/7 and

Lis(eQITrr) = N*7 re Q7 (S, eQiTrr) 7& (1) 1)
log(q) qgeN*
F(r) re@Q \ ZSQ

=-T'(1) (Euler's constant)

(i) S is the G[y]-module generated by I'(r), r € Q \ Z<o.



Theorem 4 (Fischler-R., 2019)
At least one of the following statements is true:
(1 GCH;

(if)  Siegel's question has a negative answer.

(7) is very unlikely. It contradicts a conjecture on exponential periods
that generalizes Grothendieck’s periods conjecture.

If there exist s € N* and a € Q such that Lig(a) € G is not in H, then
the E-function
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is a counter-example, of differential order (at most) s + 3.

| will outline the proof of Theorem 4 when in Siegel's question we further
assume that p = g.

The proof of the general case is based on the case p = g together with
more complicated arguments.



Asymptotic expansions in large sectors

Definition 2
Let 0 € R. We write

f(z) ~ Z ef? Z z¢ Z log(z)’ Z Cpa,in(0)/2"
peC acC ieN n=0

where the sums on p,«, i are finite, and say (in this talk) that the RHS is
the asymptotic expansion of f at oo in a large sector bisected by the
direction 0, when there exist €, R, B, C > 0 and certain functions f,(z)
holomorphic in the sector

U = {ze(C7 |z| > R, 9—7r/2—€§arg(z)§9+7r/2+5},

such that f(z) = 3_  e**f,(z) and

N—1
‘fp(z)—z 2% 10g(2) Y cpain(0)/2"| < CVNNZBN, ze U, N> 1.
n=0

aeC ieN

If such an expansion of f(z) exists in a large sector, it is unique in this
sector.



Asymptotic expansions of E-functions

Theorem 5
(1)  (André, 2000) Let f(z) be an E-function. There exists a finite set
A such that, for any 0 € (—m,m) \ A,

Zepzz Zlogz) Zcp’a'"

peQ a€cQ ieN

in a large sector bisected by the direction 6, where (Fischler-R., 2016) the
coefficients
Cpﬁoéy,'yn(e) € S.

(i) (Fischler-R., 2019) Let £ € G. There exists an E-function F(z)
and a finite set S such that for any 6 € (—m,w)\ S, & is one of the
Cp,a,i,n(0) of the expansion of F(z) in a large sector bisected by 0.



Asymptotic expansions of ,F, hypergeometric series

Theorem 6
Let 6 € (—m,m) \ {0}, and f(z) be a hypergeometric series ,Fp(z) with
rational parameters. Then,

f(z) ~ Z epzz Zlogz)z p’a'"

pe{0,1} acQ iEN

in a large sector bisected by the direction  where (Fischler-R., 2019) the
coefficients
Cp7a7,'7,,(9) € H.

It is a consequence of Barnes and Wright's classical results, with
refinements coming from the theory of Meijer's G-function.



Proof of Theorem 4 in the case p = g
Let £ € G.
By Theorem 5(ii), there exist an E-function F(z) and a finite set S such
that for any 8 € (—m,7)\ S, £ is a coefficient of the expansion of F(z) in

a large sector bisected by 6.

Assume that Siegel's question has a positive answer (in the case p = q).

There exist ,F,-hypergeometric series fi,. .., f, with rational parameters,
algebraic numbers Ay,..., \,, and a polynomial P € Q[Xy, ..., X,], such
that

F(z) = P(fl(/\lz)7 e, f,,()\,,z)).

Choose 0 € (—m,m) \ S such that 6 + arg(\;) & wZ for every i. By
Theorem 6, the expansion of each f;(\;z) in a large sector bisected by ¢
has coefficients in H. The same holds for F(z) because H is a Q-algebra.

Such an expansion being unique, the coefficient ¢ belongs to H.



A Siegel like problem for G-functions

The generalized hypergeometric series

o0
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is a G-function when p >0, a; € Q and b; € Q\ Z< for all j.

Question 2
Is it possible to write any G-function as a polynomial with coefficients in
Q of series of the form pi1Fplat, ..., ap+1; b1, ..., bp; A(2)], with

aj, bj € Q and \(z) algebraic over Q(z), regular at 0 and such that
A(0) =07

Theorem 7 (Fischler-R., 2019)

At least one of the following statements is true:

(1 GCH;

(if)  Question 2 has a negative answer under the further assumption

that the algebraic functions \ have a common singularity in Q" U {0} at
which they all tend to co.

If there exist s € N* and a € Q such that Lis(«) € G is not in H, then
Lis(-2£) is a counter-example of differential order s + L.

Z— O




Why is the inclusion G C H unlikely, according to Yves
André

“The inclusion G C H does not contradict Grothendieck'’s period
conjecture but it contradicts its extension to exponential motives. In the
description of H given in Proposition 1, we find

1/m, a period of the Tate motive,
Lis(e%™), periods of a mixed Tate motive over Z[1/r],
log(q), a period of a 1-motive over Q,

[(r), whose suitable powers are periods of Abelian varieties with
complex multiplication by Q(e?™"),

v, a period of an exponential motive, which is a non-classical
extension of the Tate motives.

Let M be the Tannakian category of mixed motives over@ generated by
all these motives. Consider a non CM elliptic curve over Q and E its
motive. The periods of E are in G.

If G C H, the periods of E are in H. By the exponential period
conjecture, E would be in M. This is impossible because the motivic
Galois group of M is pro-solvable, while that of E is GL,.”



