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Setting

Q is the field of algebraic numbers, OQ is the ring of algebraic integers.

Let us consider a non-trivial algebraic differential equation (ADE)

Q(x , y(x), . . . , y (k)(x)) = 0, (1)

where Q ∈ Q[X ,Y0, . . . ,Yk ] \ {0}.

Assume that

f (x) :=
∞∑
n=0

fnx
n ∈ Q[[x ]]

is a solution of (1).

Let dn be the denominator of fn, i.e., the least positive integer such that
dnfn ∈ OQ.

What can be said of the Archimedean and non-Archimedean growth of the
sequences fn and dn?



Classical results

• Q embedded into C with the usual Archimedean absolute value | · |.

Maillet (1903): |fn| ≤ n!O(1).

Pólya (1916) over Q, Popken (1935) over Q: dn ≤ n!O(log(n)) in the general
case, and dn ≤ n!O(1) if Q is a linear form in Y0, . . . ,Yk .

Popken (1935) using Maillet for the “Galoisian conjugates” of f : either fn = 0
or |fn| ≥ 1/n!O(log(n)).

• Q with any non-Archimedean absolute value | · |v , v a finite place.

Mahler (1973, 1976): |fn|v ≤ n!O(1), and either fn = 0 or |fn|v ≥ 1/n!O(log(n)).

Sibuya-Sperber (1981): |fn|v ≤ eO(n) (Dwork’s conjecture).

• All the implicit constants in the O depend on the differential equation and f .
They are all effective except possibly in Sibuya-Sperber’s result.

• Mahler’s conjecture (1976): the exponent O(log(n)) in Popken’s lower bound
“can probably be improved to something like” O(log log(n)).

This would follow from the same improvement for the exponent in
Pólya-Popken’s upper bound for dn.



Riccati equations

• x
log(1+x)

=
∑∞

n=0 gnx
n is solution of x(1 + x)y ′ + y 2 − (1 + x)y = 0.

gn+1 = − 1

n + 2

(
(n − 1)gn +

n∑
j=1

gjgn+1−j

)
, n ≥ 0, g0 = 1.

lcm{1, 2, . . . , n + 1}n! gn ∈ Z for all n ≥ 0. Hence, n!(n + 1)! gn ∈ Z.

• x
ex−1

=
∑∞

n=0 bnx
n is solution of xy ′ + y 2 + (x − 1)y = 0. We have

b0 = 0, b1 = −1/2, b2n+1 = 0 for n ≥ 2, and

bn+1 = − 1

n + 2

(
bn +

n∑
j=1

bjbn+1−j

)
, n ≥ 0, b0 = 1.

Clausen–von Staudt Theorem: the denominator of (2n)!b2n is the product of
the primes p such that p − 1 divides 2n.

lcm{1, 2, . . . , 2n + 1}(2n)!b2n ∈ Z for all n ≥ 0. Hence, n!(n + 1)!bn ∈ Z.



Elliptic differential equations

• Weierstraß elliptic function ℘ with modular invariants g2, g3 ∈ Q (such that
g 3
2 ̸= 27g 2

3 ) satisfies

℘′2 = 4℘3 − g2℘− g3 and 12℘2 − 2℘′′ − g2 = 0.

We have ℘(x) = 1/x2 +
∑∞

n=2 pnx
2n−2, where for n ≥ 4,

pn =
3

(2n + 1)(n − 3)

n−2∑
j=2

pjpn−j , p2 =
g2
20

, p3 =
g3
28

.

Apparently, not much is known about the denominator of pn in general beyond
Pólya-Popken’s upper bound.

• Lemniscate case: g2 = 4, g3 = 0.

℘(x) =
1

x2
+

∞∑
n=1

24nEn

4n
· x4n−2

(4n − 2)!
∈ Q[[x ]],

Hurwitz (1898): Let Dn denote the denominator of En. (1) no prime ≡ 3
mod 4 divides Dn. (2) if a prime p ≡ 1 mod 4 divides Dn, then p − 1 divides
4n and p2 does not divide Dn. (3) v2(En) = −1.

Consequently (
∏

p : p−1|4n p)En ∈ Z, and (4n + 1)!En ∈ Z.



Non-linear recurrence for (fn)n≥0

In general, we have

fn+1 =
1

M(n)

σ2∑
σ=σ1

k0∑
k=1

∑
j1+···+jk=n−σ

0≤j1,...,jk≤n

Pσ,k(n, j1, j2, . . . , jk)fj1 fj2 · · · fjk , n ≥ N, (2)

where N is some non-negative integer, M(X ) ∈ OQ[X ] vanishes for no n ≥ N,
the coefficients Pσ,k(n, j1, j2, . . . , jk) are in OQ. More precisely, the
Pσ,k(n, j1, j2 . . . , jk) are piecewise polynomials in n, j1, j2, . . . , jk with coefficients
in OQ.

The constants σ1, σ2 are integers, k0 is a positive integer.

The initial values f0, f1, . . . , fN are algebraic numbers with common
denominator D.

The restriction j1, . . . , jk ≤ n can be ignored for non-negative σ, while it has an
effect for negative σ.



Interpretation of the polynomial M: Sibuya-Sperber’s Lemma

Let f (x) =
∑∞

n=0 fnx
n ∈ Q[[x ]] be a solution of Q(x , y , . . . , y (k)) = 0 with

coefficients in Q.

Sibuya-Sperber then consider an ADE Q̃(x , y , . . . , y (ℓ)) = 0 with

Q̃ ∈ Q[X ,Y0, . . . ,Yℓ] \ {0} of which f is still a solution, where ℓ ≥ 0 is minimal

amongst all ADEs satisfied by f , and the degree of Q̃ in Yℓ is also minimal.

ℓ is the transcendence degree of the field generated over Q(x) by f and all its
derivatives.

This in particular ensures the crucial fact that

∂Q̃

∂Yℓ
(x , f , . . . , f (ℓ)) ̸= 0.

They attach to Q̃ and f a linear differential operator L0 ∈ Q[[x ]][ d
dx
] of order ℓ.

Let P0 be the indicial polynomial at the origin of L0.



Lemma 1 (Sibuya-Sperber, 1981)

For any c ≥ 0, there exist integers N ≥ 0,N ′ ≥ N,N ′′ ≥ c such that
u(x) :=

∑∞
n=N′ fnx

n−N ∈ Q[[x ]] satisfies

L(u) = xN′′
F (x , u, u′, . . . , u(ℓ)), (3)

where F ∈ OQ[X ,Y0, . . . ,Yℓ], L ∈ OQ[x ,
d
dx
] is of order ℓ and the order at

x = 0 of leading coefficient of L is bounded independently of c.

The indicial polynomial at the origin of L is P0(X + N).

From (3), Sibuya and Sperber deduce a recurrence for (fn)n≥0 of the form (2)
with σ1 ≥ 0 (because c can be arbitrarily large) and with

M(X ) = P0(X + N + 1).

This gives an interpretation of M in terms of the indicial polynomial P0 of L0

attached to Q̃ and f .

P0 and M may be different for another solution in Q[[x ]] of the ADE
Q(x , y , . . . , y (k)) = 0.



Our main result

Theorem 1 (Krattenthaler-R., 2025)

Let f ∈ Q[[x ] be a solution of a non-trivial algebraic differential equation
Q(x , y , . . . , y (k)) = 0, where Q ∈ Q[X ,Y0, . . . ,Yk ].

Assume the sequence (fn)n≥0 of the Taylor coefficients of f satisfies a
recurrence of the form (2) with M split over Q.

Then there exist δ and ν ∈ N such that the denominator dn of fn divides
δn+1(νn + ν)!2s for all n ≥ 0, where s is the degree of M.

This proves a strong form of Mahler’s conjecture in the split case. It is a
completely effective result, but not always sharp due to its generality.

Corollary 1 (Effective version of Sibuya-Sperber’s theorem in the split
case)

In the setting of Theorem 1, for all finite places v of Q over any given rational
prime number p,

|fn|v ≤ p

(
vp(δ)+

2sν
p−1

)
(n+1)

, n ≥ 0,

with the standard normalization |p|v := 1/p.



Ideas of the proof of Theorem 1
• Our strategy: Experiment with simple examples, Guess patterns, Prove them,
Repeat this process with less simple examples, etc, untill full generality is
achieved.

Let f (x) = 1 +
∑∞

n=1 fnx
n be a solution of the Riccati equation

xf ′(x)− xf (x)2 + af (x)− a = 0, where a ≥ 1 is a fixed integer.

fn+1 =
1

n + a+ 1

n∑
j=0

fj fn−j , n ≥ 0, f0 := 1.

Numerical observations: n! (n + a)! fn ∈ Z for all n ≥ 0.

Our first thought: this must be easy to prove with φn := n! (n + a)! fn:

φn+1 =
n∑

j=0

n + 1

(j + 1)(j + 2) · · · (j + a)

(
n

j

)(
n + a

j

)
φjφn−j , n ≥ 0, φ0 := a!,

The binomial coefficients are an important gain but this comes with a new
“big” denominator (j + 1)(j + 2) · · · (j + a).

By a p-adic analysis of n+1
(j+1)(j+2)···(j+a)

(
n
j

)(
n+a
j

)
: there exists δ ∈ N such that

δn+1n! (n + a)! fn ∈ Z.



• Consider a non-linear recurrence with M split over Q:

fn+1 =
1

C
∏s

i=1(ain + bi )

×
σ2∑

σ=σ1

k0∑
k=1

∑
j1+···+jk=n−σ

0≤j1,...,jk≤n

Pσ,k(n, j1, j2, . . . , jk)fj1 fj2 · · · fjk , for n ≥ N, (4)

where N ≥ 0, Pσ,k(n, j1, j2, . . . , jk) ∈ OQ, C ∈ Z∗, σ1, σ2 ∈ Z, s, k0 ∈ N, bi ∈ Z,
ai ∈ N s.t. gcd(ai , bi ) = 1 and ain+ bi ̸= 0 for all i ∈ {1, . . . , s} and all n ≥ N.

The initial values f0, f1, . . . , fN are algebraic numbers with common
denominator D.

First step: we found an effective procedure to determine another recurrence for
(fn)n≥0 where σ1 ≥ 0, with possibly N replaced by some Ñ > N. This is an
alternative to the Sibuya-Sperber procedure.

Second step: we proved a completely explicit and more precise version of
Theorem 1 when σ1 ≥ 0.



Theorem 2
Let us consider a recurrence of the form (4) with σ1 ≥ 0. Then, for all n ≥ N,
the denominator dn of fn divides

C nD(k0−1)n+1E n
s∏

i=1

(ain)! (ain + bi − ai )!,

where

E =
s∏

i=1

((
max{bi − ai , 0}

)
!k0−1

∏
p<2 max1≤j≤s (bj−aj )

p⌈logp max{bi−ai ,1}⌉
)
.

After a change of sequence

φn :=
( s∏

i=1

(ain)! (ain + bi − ai )!
)
fn,

the proof consists in a very complicated analysis of the p-adic valuation of
s∏

i=1

(ain + ai )! (ain + bi − 1)!
k∏

t=1
jt>N

(ai jt)! (ai jt + bi − ai )!

. (5)

The possible primes in the denominator of (5) divide E , with valuation at
most n.



Examples again

• x
log(1+x)

=
∑∞

n=0 gnx
n and x

ex−1
=
∑∞

n=0 bnx
n.

Theorem 2: 24n(n − 1)!(n + 1)! {gn, bn} ∈ Z for all n ≥ 1.

• Weierstraß ℘ with g2, g3 ∈ Q, g 3
2 ̸= 27g 2

3 , and ℘(x) = 1/x2 +
∑∞

n=2 pnx
2n−2.

Theorem 2: Dn+12520n(n − 1)!n!(2n)!(2n + 5)!pn+2 ∈ OQ for all n ≥ 1, where
D ≥ 1 is the least common denominator of g2/20 and g3/28.

• u(x) :=
∑∞

n=0 unx
n solution of Painlevé PII’

y ′′ = δ(2y 3 − 2xy) + γ(6y 2 + x) + βy + α, α, β, γ, δ ∈ Q.

un+1 =
2

n(n + 1)

(
δ

∑
j1+j2+j3=n−1
0≤j1,j2,j3≤n−1

uj1uj2uj3+3γ
∑

j1+j2=n−1
0≤j1,j2≤n−1

uj1uj2−2βun−1−2δun−2

)
, n ≥ 2

with u0, u1 arbitrary in Q, and u2 = −δu3
0 − 3γu2

0 − βu0/2− α/2.

Theorem 2: let C ≥ 1 be the least common denominator of 2δ, 6γ, 2β, and let
D ≥ 1 be the least common denominator of u0, u1, u2. Then

C nD2n+1(n − 1)! n!3 un ∈ OQ, n ≥ 2.



• The dilogarithm Li2(x) :=
∑∞

n=1 x
n/n2 admits as inverse for the composition

ℓ(x) :=
∞∑
n=0

ℓnx
n = x − 1

4
x2 +

1

72
x3 − 1

576
x4 − 31

86400
x5 − 149

1036800
x6 − · · · ,

which satisfies
ℓ′′ℓ− ℓ′′ℓ2 + ℓ′3 + ℓ′2ℓ− ℓ′2 = 0

and

ℓn+1 =
1

(n + 1)2

(
−

∑
i+j=n

i≤n−2,j≤n

(i + 1)(i + 2)ℓi+2ℓj +
∑

i+j+k=n
i≤n−2,j,k≤n

(i + 1)(i + 2)ℓi+2ℓj ℓk

−
∑

i+j+k=n
i,j,k≤n−1

(i + 1)(j + 1)(k + 1)ℓi+1ℓj+1ℓk+1 −
∑

i+j+k=n
i,j≤n−1,k≤n

(i + 1)(j + 1)ℓi+1ℓj+1ℓk

+
∑
i+j=n
i,j≤n−1

(i + 1)(j + 1)ℓi+1ℓj+1

)
, n ≥ 0.

Theorem 1: for all n ≥ 0, δn+1(νn + ν)!4ℓn ∈ Z.



• Various automorphic functions satisfy an ADE S(y)(y ′)2 = {y ; x} of order 3,
where

{y ; x} :=
y ′′′

y ′ − 3

2

(
y ′′

y ′

)2

is the Schwarzian derivative with respect to x , and S is a rational function with
poles of order at most 2.

Mahler (1969): the elliptic modular invariant

F (q) := J(q2) =
1

q2
+744+196884q2+21493760q4+864299970q6 . . . ∈ 1

q2
Z[[q]],

satisfies

F ′′′ =
3q2F ′′2 − 4qF ′F ′′ − F ′2

2q2F ′ − F ′3
( 4

9F 2
+

3

8(F − 123)2
− 23

72F (F − 123)

)
and F cannot satisfy an ADE of order ≤ 2.

The indicial polynomial P0 of L0 ∈ Q[[x ]][ d
dx
] is irreducible over Q:

P0(X ) = X 3 + 8X 2 − 10X + 64.

From Sibuya-Sperber’s Lemma 1, we get a recurrence of type (2) for the
coefficients of F with M(X ) = P0(X +m) for some integer m ≥ 0.

Theorem 1 cannot be applied. It is not known if there exists a recurrence with
M split over Q for the coefficients of F .



Mahler’s conjecture when M is not split over Q

The equation x2y ′′ + (x − 1)y ′ + y − xy 2 = 1 has for solution the power series∑∞
n=0 fnx

n with

fn+1 =
1

n2 + 1

n∑
k=0

fk fn−k , n ≥ 0, f0 := 1.

Numerical experiments for values of n up to 2000: log(dn)/(n log(n)
2) seems to

converge to a constant close to 0.566.

Moreover,
log(d2n)

2n log(2n)
− log(dn)

n log(n)

seems to converge to a constant close to 0.39(≈ log(2) · 0.566).

This suggests that Mahler’s conjecture does not hold in general.


