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Abstract

In [Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité,
Annals of Math. 151 (2000), 705–740], André has introduced E-operators, a class of
differential operators intimately related to E-functions, and constructed local bases
of solutions for these operators. In this paper we investigate the arithmetical nature
of connection constants of E-operators at finite distance, and of Stokes constants
at infinity. We prove that they involve values at algebraic points of E-functions in
the former case, and in the latter one, values of G-functions and of derivatives of the
Gamma function at rational points in a very precise way. As an application, we define
and study a class of numbers having certain algebraic approximations defined in terms
of E-functions. These types of approximations are motivated by the convergents to
the number e, as well as by recent constructions of approximations to Euler’s constant
and values of the Gamma function. Our results and methods are completely different
from those in our paper [On the values of G-functions, Commentarii Math. Helv. 29
(2014), 313–341], where we have studied similar questions for G-functions.

1 Introduction

In a seminal paper [1], André has introduced E-operators, a class of differential opera-
tors intimately related to E-functions, and constructed local bases of solutions for these
operators. In this paper we investigate the arithmetical nature of connection constants
of E-operators, and prove that they involve values at algebraic points of E-functions or
G-functions, and values at rational points of derivatives of the Gamma function. As an
application, we will focus on algebraic approximations to such numbers, in connection with
Aptekarev’s famous construction for Euler’s constant γ.

To begin with, let us recall the following definition.

Definition 1. An E-function E is a power series E(z) =
∑∞

n=0
an
n!
zn such that the coeffi-

cients an are algebraic numbers and there exists C > 0 such that:

(i) the maximum of the moduli of the Galois conjugates of an is ≤ Cn+1 for any n.

(ii) there exists a sequence of non-zero rational integers dn, with |dn| ≤ Cn+1, such that
dnam is an algebraic integer for all m ≤ n.
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(iii) E(z) satisfies a homogeneous linear differential equation with coefficients in Q(z).

A G-function is defined similarly, as
∑∞

n=0 anz
n with the same assumptions (i), (ii),

(iii); throughout the paper we fix a complex embedding of Q.
We refer to [1] for an overview of the main properties of E and G-functions. For the

sake of precision, we mention that the class of E-functions was first defined by Siegel in
a more general way, with bounds of the shape n!ε for any ε > 0 and any n �ε 1, instead
of Cn+1 for all n ∈ N = {0, 1, 2, . . .}. The functions covered by Definition 1 are called
E∗-functions by Shidlovskii [23], and are the ones used in the recent litterature under the
denomination E-functions (see [1, 6, 17]); it is believed that both classes coincide.

Examples of E-functions include eαz with α ∈ Q, hypergeometric series pFp with ratio-
nal parameters, and Bessel functions Jα with α ∈ N. Very precise transcendence (and even
algebraic independence) results are known on values of E-functions, such as the Siegel-
Shidlovskii theorem [23]. Beukers’ refinement of this result enables one to deduce the
following statement (see §3.1), whose analogue is false for G-functions (see [5] for interest-
ing examples):

Theorem 1. An E-function with coefficients in a number field K takes at an algebraic
point α either a transcendental value or a value in K(α).

In this paper we consider the following set E, which is analogous to the ring G of values
at algebraic points of analytic continuations of G-functions studied in [11].

Definition 2. The set E is defined as the set of all values taken by any E-function at any
algebraic point.

We recall that G might be equal to P [1/π], where P is the ring of periods (in the
sense of Kontsevich-Zagier [16]: see §2.2 of [11]). On the other hand, it seems reasonable
to imagine that E is contained in the ring generated by 1/π and exponential periods (see
[12]).

Since E-functions are entire and E(αz) is an E-function for any E-function E(z) and
any α ∈ Q, we may restrict in Definition 2 to values at z = 1. Moreover E-functions form
a ring, so that E is a subring of C. Its group of units contains Q∗ and exp(Q) because
algebraic numbers, exp(z) and exp(−z) are E-functions. Other elements of E include
values at algebraic points of Bessel functions Jα with α ∈ N, and also of any arithmetic
Gevrey series of negative order (see [1], Corollaire 1.3.2). It seems unlikely that E is a field
and we don’t know if we have a full description of its units.

A large part of our results is devoted to the arithmetic description of connection con-
stants or Stokes constants. Any E-function E(z) satisfies a differential equation Ly = 0,
where L is an E-operator (see [1]); it is not necessarily minimal and its only possible
singularities are 0 and ∞, the former beging regular and the latter irregular. André has
proved [1] that a basis of solutions of L at z = 0 is of the form (E1(z), . . . , Eµ(z)) · zM
where M is an upper triangular µ × µ matrix with coefficients in Q and the Ej(z) are
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E-functions. This implies that any local solution F (z) of L at z = 0 is of the form

F (z) =

µ∑
j=1

(∑
s∈Sj

∑
k∈Kj

φj,s,kz
s log(z)k

)
Ej(z) (1.1)

where Sj ⊂ Q, Kj ⊂ N are finite sets and φj,s,k ∈ C. Our purpose is to study the connection
constants of F (z), assuming all coefficients φj,s,k to be algebraic (with a special focus on
the special case where F (z) itself is an E-function).

Any point α ∈ Q \ {0} is a regular point of L and there exists a basis of locally
holomorphic solutions G1(z), . . . , Gµ(z) ∈ Q[[z − α]] such that, around z = α,

F (z) = ω1G1(z) + · · ·+ ωµGµ(z) (1.2)

for some complex numbers ω1, . . . , ωµ, called the connection constants (at finite distance).

Proposition 1. If all coefficients φj,s,k in (1.1) are algebraic then the connection constants
ω1, . . . , ωµ in (1.2) belong to E[logα], and even to E if F (z) is an E-function.

The situation is much more complicated around ∞, which is in general an irregular
singularity of L; this part is therefore much more involved than the corresponding one for
G-functions [11] (since ∞ is a regular singularity of G-operators, the connection constants
of G-functions at any ζ ∈ Q∪ {∞} always belong to G). The local solutions at ∞ involve
divergent series, which give rise to Stokes phenomenon: the expression of an E-function
E(z) on a given basis is valid on certain angular sectors, and the connection constants may
change from one sector to another when crossing certain rays called anti-Stokes directions.
For this reason, we speak of Stokes constants rather than connection constants. More
precisely, let θ ∈ R and assume that θ is not an anti-Stokes direction (which amounts to
excluding finitely many values of θ mod 2π). Then we compute explicitly the asymptotic
expansion

E(z) ≈
∑
ρ∈Σ

eρz
∑
α∈S

∑
i∈T

∞∑
n=0

cρ,α,i,nz
−n−α log(1/z)i (1.3)

as |z| → ∞ in a large sector θ − π
2
− ε ≤ arg(z) ≤ θ + π

2
+ ε for some ε > 0; in

precise terms, E(z) can be obtained from this expansion by Borel-Laplace summation (i.e.,
Ramis’ 1-summation; see §4.1). Here Σ ⊂ Q, S ⊂ Q and T ⊂ N are finite subsets,
and the coefficients cρ,α,i,n are complex numbers (that also depend on θ); all of them are
constructed explicitly in terms of the Laplace transform g(z) of E(z), which is annihilated
by a G-operator. In applying or studying (1.3) we shall always assume that the sets Σ, S
and T have the least possible cardinality (so that α−α′ 6∈ Z for any distinct α, α′ ∈ S) and
that for any α there exist ρ and i with cρ,α,i,0 6= 0. Then the asymptotic expansion (1.3) is
uniquely determined by E(z) and θ (see §4.1).

The existence of an asymptotic expansion of the form (1.3) is a priori ensured by the
theory of linear differential equations with meromorphic coefficients, see [13, page 582,
Theorem VIII.7], but its explicit determination is a difficult task in general. One of our
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main contributions is the value of cρ,α,i,n, which is given in terms of derivatives of 1/Γ at
α ∈ Q and connection constants of g(z) at its finite singularities ρ. André has constructed
[1, Théorème 4.3 (v)] a basis H1(z), . . . , Hµ(z) of formal solutions at infinity of an E-
operator that annihilates E(z); these solutions involve divergent Gevrey series of order 1,
and are of the same form as the right hand side of (1.3), with algebraic coefficients cρ,α,i,n.
The asymptotic expansion (1.3) of E(z) in a large sector bisected by θ can be written on
this basis as

ω1,θH1(z) + . . .+ ωµ,θHµ(z) (1.4)

with Stokes constants ωi,θ. To identify these constants, we first introduce another ring.

Definition 3. We define S as the G-module generated by all the values of derivatives of
the Gamma function at rational points. It is also the G[γ]-module generated by all the
values of Γ at rational points, and it is a ring.

We show in §2 why the two modules coincide, and why S is a ring. The Rohrlich-Lang
conjecture (see [2] or [24]) implies that the values Γ(s), for s ∈ Q with 0 < s ≤ 1, are
Q-linearly independent. We conjecture that these numbers are in fact also G[γ]-linearly
independent, so that S is the free G[γ]-module they generate.

We then have the following result. We recall that the coefficients cρ,α,i,n depend on θ.

Theorem 2. Let E(z) be an E-function, and θ ∈ R be a direction which is not anti-Stokes
for E(z). Then:

(i) The Stokes constants ωi,θ belong to S.

(ii) All coefficients cρ,α,i,n in (1.3) belong to S.

(iii) Let ρ ∈ Σ, α ∈ S, and n ≥ 0; denote by k the largest i ∈ T such that cρ,α,i,n 6= 0. If
k exists then for any i ∈ T the coefficient cρ,α,i,n is a G-linear combination of Γ(α),
Γ′(α), . . . , Γ(k−i)(α). In particular, cρ,α,k,n ∈ Γ(α) ·G. Here Γ(`)(α) is understood as
Γ(`)(1) if α ∈ Z≤0.

(iv) Let F (z) be a local solution at z = 0 of an E-operator, with coefficients φj,s,k ∈ S in
(1.1). Then assertions (i) and (ii) hold with F (z) instead of E(z).

Assertion (iv) applies to many special functions, including Bessel’s functions Jα with
α ∈ Q and Ai(z2/3) where Ai(z) is Airy’s oscillating integral (see [1]).

Assertions (i) and (iv) of Theorem 2 are consistent with André’s remark in [1, p. 722]:
“Nous privilégierons une approche formelle, qui permettrait de travailler sur Q(Γ(k)(a))k∈N,a∈Q
plutôt que sur C si l’on voulait”. (1)

Many examples of E-functions for which values of (derivatives of) Γ appear in Stokes
constants are known (see for instance Section 16.41 of [25] for confluent hypergeometric

1“We adopt a formal approach, which would enable one to work over Q(Γ(k)(a))k∈N,a∈Q rather than C
if one would prefer”.
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equations of order 2, or [10]). The point in Theorem 2 is that, in some sense, no other
number can appear. Moreover, an important feature of assertion (iii) is that Γ(k)(α), for
k ≥ 1, never appears in the coefficient of a leading term of (1.3), but only combined
with higher powers of log(1/z). This motivates the logarithmic factor in (1.8) below,
and explains an observation we had made on Euler’s constant: it always appears through
γ − log(1/z) (see Eq. (4.7) in §4.2). Moreover, in (iii), it follows from the remarks made
in §2 that, alternatively, cρ,α,i,n = Γ(α) ·Pρ,α,i,n(γ) for some polynomial Pρ,α,i,n(X) ∈ G[X]
of degree ≤ k − i.

The proof of Theorem 2 is based on Laplace transform, the André-Chudnovski-Katz
Theorem on solutions of G-operators, and a specific complex integral (see [1], p. 735).
At some point, we take advantage of the existence of André’s basis (H1, . . . , Hµ) of the
E-operator at infinity, not to increase the length of the paper. However, our approach also
provides a new construction of this basis, from bases of microsolutions of the underlying
G-operator (see [12]).

As an application of Proposition 1 and Theorem 2, we study sequences of algebraic
(or rational) approximations of special interest related to E-functions. In [11] we have
proved that a complex number α belongs to the fraction field Frac G of G if, and only if,
there exist sequences (Pn)n and (Qn)n of algebraic numbers such that limn Pn/Qn = α and∑

n≥0 Pnz
n,
∑

n≥0Qnz
n are G-functions. We have introduced this notion in order to give

a general framework for irrationality proofs of values of G-functions such as zeta values.
Such sequences are called G-approximations of α, when Pn and Qn are rational numbers.
We drop this last assumption in the context of E-functions (see §3.1), and consider the
following definition.

Definition 4. Sequences (Pn)n≥0 and (Qn)n≥0 of algebraic numbers are said to be E-
approximations of α ∈ C if

lim
n→+∞

Pn
Qn

= α

and
∞∑
n=0

Pnz
n = A(z) · E

(
B(z)

)
,

∞∑
n=0

Qnz
n = C(z) · F

(
D(z)

)
where E and F are E-functions, A,B,C,D are algebraic functions in Q[[z]] with B(0) =
D(0) = 0.

This definition is motivated by the fact that many sequences of approximations to
classical numbers are E-approximations, for instance diagonal Padé approximants to ez.
Because of the asymptotic nature of the notion, a more flexible definition would be that
the generating series of (Pn+k)n≥0 and (Qn+k)n≥0 are of the desired form for some given
integer k; however by changing the name of the sequences one may assume that k = 0.
We also prove that the convergents of the respective continued fraction expansions of
e and e−1

e+1
define E-approximations (see §6.1). The classical proof that

∑∞
n=1

1
(an)!bcn

is

irrational (for positive integers a, b, c) is based on sequences of rational approximations
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that are E-approximations, as in the special case of e. We hope that focusing at E-
approximations may be helpful in finding irrationality proofs for new interesting numbers.
Elements in Frac G also have E-approximations, since G-approximations (Pn)n and (Qn)n
of a complex number always provide E-approximations Pn/n! and Qn/n! of the same
number. In §6.1, we construct E-approximations to Γ(α) for any α ∈ Q \ Z≤0, α < 1, by
letting Eα(z) =

∑∞
n=0

zn

n!(n+α)
, Qn(α) = 1, and defining Pn(α) by the series expansion (for

|z| < 1)

1

(1− z)α+1
Eα

(
− z

1− z

)
=
∞∑
n=0

Pn(α)zn ∈ Q[[z]];

then limn Pn(α) = Γ(α). The number Γ(α) appears in this setting as a Stokes constant.
The condition α < 1 is harmless because we readily deduce E-approximations to Γ(α) for
any α ∈ Q, α > 1, by means of the functional equation Γ(s + 1) = sΓ(s). Moreover,
since 1

(1−z)α+1Eα
(
− z

1−z

)
is holonomic, the sequence (Pn(α)) satisfies a linear recurrence, of

order 3 with polynomial coefficients in Z[n, α] of total degree 2 in n and α; see §6.1. This
construction yields a new sequence of rational approximations to Γ(α); it is simpler than
that in [21] but the convergence to Γ(α) is slower.

Definition 4 enables us to consider an interesting class of numbers: those having E-
approximations. Of course this is a countable subset of C. We have seen that it contains all
values of the Gamma function at rational points s, which are conjectured to be irrational
if s 6∈ Z; very few results are known in this direction (see [24]), and using suitable E-
approximations may lead to prove new ones.

However we conjecture that Euler’s constant γ does not have E-approximations: all
approximations we have thought of seem to have generating functions not as in Definition 4.
This is a reasonable conjecture in view of Theorem 3 we are going to state now.

Given two subsets X and Y of C, we set

X · Y =
{
xy
∣∣x ∈ X, y ∈ Y }, X

Y
=
{x
y

∣∣∣x ∈ X, y ∈ Y \ {0}}.
We also set Γ(Q) = {Γ(x)|x ∈ Q \ Z≤0}. If X is a ring then we denote by FracX = X

X

its field of fractions. We define Euler’s Beta function by B(x, y) = Γ(x)Γ(y)
Γ(x+y)

. We recall [11]

that B(x, y) belongs to the group of units G∗ of G for any x, y ∈ Q, so that Γ induces a
group homomorphism Q→ C∗/G∗ (by letting Γ(x) = 1 for x ∈ Z≤0). Therefore Γ(Q) ·G∗
is a subgroup of C∗, and so is Γ(Q) · exp(Q) · Frac G; for future reference we write

Γ(Q) · Γ(Q) ⊂ Γ(Q) ·G and
Γ(Q)

Γ(Q)
⊂ Γ(Q) ·G. (1.5)

Theorem 3. The set of numbers having E-approximations contains

E ∪ Γ(Q)

E ∪ Γ(Q)
∪ Frac G (1.6)
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and it is contained in

E ∪ (Γ(Q) ·G)

E ∪ (Γ(Q) ·G)
∪
(

Γ(Q) · exp(Q) · Frac G
)
. (1.7)

The proof of (1.6) is constructive; the one of (1.7) is based on an explicit determina-
tion of the asymptotically dominating term of a sequence (Pn)n as in Definition 4. This
determination is based on analysis of singularities, the saddle point method, asymptotic
expansions (1.3) of E(z), Proposition 1, and Theorem 2; it is of independent interest (see
Theorem 6 in §5). The dominating term comes from the local behaviour of E(z) at some
z0 ∈ C (providing elements of E, in connection with Proposition 1) or at infinity (providing
elements of Γ(Q) ·G; Theorem 2 is used in this case). This dichotomy leads to the unions
in (1.6) and (1.7); it makes it unlikely for the set of numbers having E-approximations to
be a field, or even a ring. We could have obtained a field by restricting Definition 4 to the
case where B(z) = D(z) = z and A(z), C(z) are not polynomials, since in this case the
behavior of E(z) at ∞ would not come into the play; this field would be simply Frac E.

It seems likely that there exist numbers having E-approximations but no G-approxi-
mations, because conjecturally Frac E ∩ Frac G = Q and Γ(Q) ∩ Frac G = Q. It is also
an open question to prove that the number Γ(n)(s) does not have E-approximations, for
n ≥ 1 and s ∈ Q \ Z≤0. To obtain approximations to these numbers, one can consider the
following generalization of Definition 4: we replace A(z)·E(B(z)) (and also C(z)·F (D(z)))
with a finite sum ∑

i,j,k,`

αi,j,k,` log(1− Ai(z))j ·Bk(z) · E`
(
C(z)

)
(1.8)

where αi,j,k,` ∈ Q, Ai(z), Bk(z), C(z) are algebraic functions in Q[[z]], Ai(0) = C(0) = 0,
and E`(z) are E-functions. For instance, let us consider the E-function E(z) =

∑∞
n=1

zn

n!n

and define Pn by the series expansion (for |z| < 1)

log(1− z)

1− z
− 1

1− z
E
(
− z

1− z

)
=
∞∑
n=0

Pnz
n ∈ Q[[z]]. (1.9)

Then we prove in §6.4 that limn Pn = γ, so that letting Qn = 1 we obtain E-approximations
of Euler’s constant in this extended sense. Since log(1−z)

1−z − 1
1−zE

(
− z

1−z

)
is holonomic, the

sequence (Pn)n satisfies a linear recurrence, of order 3 with polynomial coefficients in Z[n] of
degree 2; see §6.4. Again, this construction is new and much simpler than those in [4, 15, 20]
but the convergence to γ is slower. A construction similar to (1.9), based on an immediate
generalization of the final equation for Γ(n)(1) in [22], shows that the numbers Γ(n)(s) have
E-approximations in the extended sense of (1.8) for any integer n ≥ 0 and any rational
number s ∈ Q \ Z≤0.

The set of numbers having such approximations is still countable, and we prove in §6.4
that it is contained in

(E · log(Q∗)) ∪ S

(E · log(Q∗)) ∪ S
∪
(

exp(Q) · Frac S
)
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where log(Q∗) = exp−1(Q∗).
The generalization (1.8) does not cover all interesting constructions of approximations

to derivatives of Gamma values in the literature. For instance, it does not seem that
Aptekarev’s or the second author’s approximations to γ (in [4] and [20] respectively) can
be described by (1.8). This is also not the case of Hessami-Pilehrood’s approximations to
Γ(n)(1) in [14, 15] but in certain cases their generating functions involve sums of products
of E-functions at various algebraic functions, rather linear forms in E-functions at one
algebraic function as in (1.8). Another possible generalization of (1.8) is to let αi,j,k,` ∈ E;
we describe such an example in §6.4, related to the continued fraction [0; 1, 2, 3, 4, . . .] whose
partial quotients are the consecutive positive integers.

The structure of this paper is as follows. In §2, we discuss the properties of S. In §3
we prove our results at finite distance, namely Theorem 1 and Proposition 1. Then we
discuss in §4.1 the definition and basic properties of asymptotic expansions. This allows
us to prove Theorem 2 in §4, and to determine in §5 the asymptotic behavior of sequences
(Pn) as in Definition 4. Finally, we gather in §6 all results related to E-approximations.

2 Structure of S

In this short section, we discuss the structural properties of the G-module S generated by
the numbers Γ(n)(s), for n ≥ 0, s ∈ Q \ Z≤0. It is not used in the proof of our theorems.

The Digamma function Ψ is defined as the logarithmic derivative of the Gamma func-
tion. We have

Ψ(x) = −γ +
∞∑
k=0

( 1

k + 1
− 1

k + x

)
and Ψ(n)(x) =

∞∑
k=0

(−1)n+1n!

(k + x)n+1
(n ≥ 1).

From the relation Γ′(x) = Ψ(x)Γ(x), we can prove by induction on the integer n ≥ 0 that

Γ(n)(x) = Γ(x) · Pn
(
Ψ(x),Ψ(1)(x), . . . ,Ψ(n−1)(x)

)
where Pn(X1, X2, . . . , Xn) is a polynomial with integer coefficients. Moreover, the term of
maximal degree in X1 is Xn

1 .
It is well-known that Ψ(s) ∈ −γ + G (Gauss’ formula, [3, p. 13, Theorem 1.2.7]) and

that Ψ(n)(s) ∈ G for any n ≥ 1 and any s ∈ Q \ Z≤0. It follows that

Γ(n)(s) = Γ(s) · Pn
(
Ψ(s),Ψ(1)(s), . . . ,Ψ(n−1)(s)

)
= Γ(s) ·Qn,s(γ) (2.1)

where Qn,s(X) is a polynomial with coefficients in G, of degree n and leading coefficient
equal to (−1)n.

Proposition 2. The set S coincides with the G[γ]-module Ŝ generated by the numbers
Γ(s), for s ∈ Q \ Z≤0. It is a ring.
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Proof. Eq. (2.1) shows immediately that S ⊂ Ŝ. For the converse inclusion Ŝ ⊂ S, it is
enough to show that Γ(s)γn ∈ S for any n ≥ 0, s ∈ Q \ Z≤0. This can be proved by
induction on n from (2.1) because we can rewrite it as

Γ(s)γn = (−1)nΓ(n)(s) + Γ(s) · Q̂n,s(γ)

for some polynomial Q̂n,s(X) with coefficients in G and degree ≤ n− 1.

Let us now prove that Ŝ is a ring. For any x, y ∈ Q \ Z≤0 such that x + y 6∈ Z≤0,

we have Γ(x)Γ(y) = Γ(x + y)B(x, y) ∈ Ŝ because B(x, y) ∈ G in this case (see [11]). If

x, y ∈ Q \ Z≤0 but x+ y ∈ Z≤0, then by the reflection formula Γ(x)Γ(y) ∈ πQ ⊂ Ŝ.

Remark. The fact that S is a ring can also be proved directly from the definition of S. For
any x, y ∈ Q \ Z≤0 such that x+ y 6∈ Z≤0, we have

Γ(m)(x)Γ(n)(y) =
∂m+n

∂xm∂yn
Γ(x+ y)B(x, y)

=
m∑
i=0

n∑
j=0

(
m

i

)(
n

j

)
Γ(i+j)(x+ y)

∂m+n−i−j

∂xm−i∂yn−j
B(x, y) ∈ S

because ∂m+n−i−j

∂xm−i∂yn−j
B(x, y) ∈ G, arguing as in [11] for the special case m − i = n − j = 0.

If x, y ∈ Q \ Z≤0 and x+ y ∈ Z≤0, we argue as above using the reflection formula.

3 First results on values of E-functions

3.1 Around Siegel-Shidlovskii and Beukers’ theorems

To begin with, let us mention the following result. It is proved in [11] (and due to the
referee of that paper) in the case K = Q(i); actually the same proof, which relies on
Beukers’ version [6] of the Siegel-Shidlovskii theorem, works for any number field K.

Theorem 4. Let E(z) be an E-function with coefficients in some number field K, and
α, β ∈ Q be such that E(α) = β or E(α) = eβ. Then β ∈ K(α).

This result implies Theorem 1 stated in the introduction; without further hypotheses
E(α) may really belong to K(α), because if E(z) is an E-function then so is (z − α)E(z).

Theorem 4 shows that if we restrict the coefficients of E-functions to a given number
field then the set of values we obtain is a proper subset of E. In this respect the situation is
completely different from the one with G-functions, since any element of G can be written
[11] as f(1) for some G-function f with Taylor coefficients in Q(i). This is also the reason
why we did not restrict to rational numbers Pn, Qn in Definition 4.

9



3.2 Connection constants at finite distance

Let us prove Proposition 1 stated in the introduction, which we state again here in a slightly
more general version; the strategy is analogous to the corresponding one with G-functions
[11], and even easier because E-functions are entire.

Proposition 3. Let

F (z) =

µ∑
j=1

(∑
s∈Sj

∑
k∈Kj

φj,s,kz
s log(z)k

)
Ej(z) (3.1)

where Sj ⊂ Q, Kj ⊂ N are finite sets, φj,s,k ∈ Q and E1, . . . , Eµ are E-functions. Let
α ∈ Q \ {0}, and G1(z), . . . , Gµ(z) ∈ Q[[z − α]] be a local basis of solutions of an E-
operator L such that LF = 0. Let ω1, . . . , ωµ ∈ C be such that around z = α,

F (z) = ω1G1(z) + · · ·+ ωµGµ(z). (3.2)

Then ω1, . . . , ωµ ∈ E[logα]; moreover if F (z) is an E-function then ω1, . . . , ωµ ∈ E.

Proof. We denote by WG(z) the wronskian built on the functions G1(z), . . . , Gµ(z):

WG(z) =

∣∣∣∣∣∣∣∣∣
G1(z) · · · Gµ(z)

G
(1)
1 (z) · · · G

(1)
µ (z)

... · · · ...

G
(µ−1)
1 (z) · · · G

(µ−1)
µ (z)

∣∣∣∣∣∣∣∣∣ .
All functions G

(k)
j (z) are holomorphic at z = α with Taylor coefficients in Q, so that

WG(α) ∈ Q. On the other hand, let us write

L =
dµ

dzµ
+ aµ−1(z)

dµ−1

dzµ−1
+ · · ·+ a1(z)

d

dz
+ a0(z),

where aj ∈ Q(z). Then z = 0 is the only singularity at finite distance of L, and it is a
regular singularity with rational exponents (see [1]): we have ziaµ−i(z) ∈ Q[z] for any i.
Since WG(z) is a solution of the differential equation y′(z) + aµ−1(z)y(z) = 0, it is of the
form W (z) = czρeq(z) with c ∈ C, ρ ∈ Q and q(z) ∈ Q[z] (in fact, q has degree ≤ 1 here).
Moreover the Gj’s form a basis of solutions of L, so that c 6= 0 and WG(α) ∈ Q \ {0}.

We now differentiate (3.2) to obtain the relations

F (k)(z) =

µ∑
j=1

ωjG
(k)
j (z), k = 0, . . . , µ− 1

for any z in some open disk D centered at z = α. We interpret these equations (with
z = α) as a linear system with unknowns ωj, and solve it using Cramer’s rule. We obtain

10



in this way that

ωj =
1

WG(α)

∣∣∣∣∣∣∣∣∣
G1(α) · · · Gj−1(α) F (α) Gj+1(α) · · · Gµ(α)

G
(1)
1 (α) · · · G

(1)
j−1(α) F (1)(α) G

(1)
j+1(α) · · · G

(1)
µ (α)

... · · · ...
...

... · · · ...

G
(µ−1)
1 (α) · · · G

(µ−1)
j−1 (α) F (µ−1)(α) G

(µ−1)
j+1 (α) · · · G

(µ−1)
µ (α)

∣∣∣∣∣∣∣∣∣ (3.3)

since WG(α) 6= 0.

Now recall that 1/WG(α) and G
(k)
j (α) belong to Q ⊂ E. If we assume that F (z) is an

E-function, this is also the case of its derivatives, so that F (k)(α) ∈ E for all k ≥ 0 and
(3.3) implies that ωj ∈ E. To prove the general case, we simply observe that if F (z) is
given by (3.1) with algebraic coefficients φj,s,k then all values at z = α of derivatives of
F (z) belong to E[log(α)].

4 Stokes constants of E-functions

In this section we construct explicitly the asymptotic expansion of an E-function: our main
result is Theorem 5, stated in §4.2 and proved in §4.3. Before that we discuss in §4.1 the
asymptotic expansions used in this paper. Finally we show in §4.4 that Theorem 5 implies
Theorem 2.

Throughout this section, we let Γ̂ := 1/Γ for simplicity.

4.1 Asymptotic expansions

The asymptotic expansions used throughout this paper are defined as follows.

Definition 5. Let θ ∈ R, and Σ ⊂ C, S ⊂ Q, T ⊂ N be finite subsets. Given complex
numbers cρ,α,i,n, we write

f(x) ≈
∑
ρ∈Σ

eρx
∑
α∈S

∑
i∈T

∞∑
n=0

cρ,α,i,nx
−n−α(log(1/x))i (4.1)

and say that the right hand side is the asymptotic expansion of f(x) in a large sector
bisected by the direction θ, if there exist ε, R,B,C > 0 and, for any ρ ∈ Σ, a function
fρ(x) holomorphic on

U =
{
x ∈ C, |x| ≥ R, θ − π

2
− ε ≤ arg(x) ≤ θ +

π

2
+ ε
}
,

such that
f(x) =

∑
ρ∈Σ

eρxfρ(x)
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and ∣∣∣fρ(x)−
∑
α∈S

∑
i∈T

N−1∑
n=0

cρ,α,i,nx
−n−α(log(1/x))i

∣∣∣ ≤ CNN !|x|B−N

for any x ∈ U and any N ≥ 1.

This means exactly (see [19, §§2.1 and 2.3]) that for any ρ ∈ Σ,

∑
α∈S

∑
i∈T

N−1∑
n=0

cρ,α,i,nx
−n−α(log(1/x))i (4.2)

is 1-summable in the direction θ and its sum is fρ(x). In particular, using a result of
Watson (see [19, §2.3]), the sum fρ(x) is determined by its expansion (4.2). Therefore the
asymptotic expansion on the right hand side of (4.1) determines the function f(x) (up to
analytic continuation). The converse is also true, as the following lemma shows.

Lemma 1. A given function f(x) can have at most one asymptotic expansion in the sense
of Definition 5.

Of course we assume implicitly in Lemma 1 (and very often in this paper) that Σ, S
and T in (4.1) cannot trivially be made smaller, and that for any α there exist ρ and i
with cρ,α,i,0 6= 0.

Proof. We proceed by induction on the cardinality of Σ. If the result holds for proper
subsets of Σ, we choose θ′ very close to θ such that the complex numbers ρeiθ

′
, ρ ∈ Σ, have

pairwise distinct real parts and we denote by ρ0 the element of Σ for which Re (ρ0e
iθ′) is

maximal. Then the asymptotic expansion (4.2) of fρ0(x) is also an asymptotic expansion
of e−ρ0xf(x) as |x| → ∞ with arg(x) = θ′, in the usual sense (see for instance [9, p.
182]); accordingly it is uniquely determined by f , so that its 1-sum fρ0(x) is also uniquely
determined by f . Applying the induction procedure to f(x) − eρ0xfρ0(x) with Σ \ {ρ0}
concludes the proof of Lemma 1.

4.2 Notation and statement of Theorem 5

We consider a non-polynomial E-function E(x) such that E(0) = 0, and write

E(x) =
∞∑
n=1

an
n!
xn.

Its associated G-function is

G(z) =
∞∑
n=1

anz
n.

We denote by D a G-operator such that FDE = 0, where F : C[z, d
dz

] → C[x, d
dx

] is the
Fourier transform of differential operators, i.e. the morphism of C-algebras defined by

12



F(z) = d
dx

and F( d
dz

) = −x. Recall that such a D exists because E is annihilated by an

E-operator, and any E-operator can be written as FD for some G-operator D.
We let g(z) = 1

z
G(1

z
), so that ( d

dz
)δDg = 0 where δ is the degree of D (i.e. the order

of FD; see [1], p. 716). This function is the Laplace transform of E(x): for Re (z) > C,
where C > 0 is such that |an| � Cn, we have

g(z) =

∫ ∞
0

E(x)e−xzdx.

From the definition of g(z) and the assumption E(0) = 0 we deduce that g(z) = O(1/|z|2)
as z →∞.

We denote by Σ the set of all finite singularities ρ of D =
∑d

j=0 uj(z)( d
dz

)j, i.e. the

zeros of the leading polynomial ud(z). Observe that ( d
dz

)δD has the same singularities as
D. We also let

S = R \ {arg(ρ− ρ′), ρ, ρ′ ∈ Σ, ρ 6= ρ′} (4.3)

where all the values modulo 2π of the argument of ρ−ρ′ are considered, so that S+π = S.
The directions θ ∈ R \ (−S) (i.e., such that (ρ− ρ′)eiθ is real for some ρ 6= ρ′ in Σ) may

be anti-Stokes (or singular, see for instance [18, p. 79]): when crossing such a direction,
the renormalized sum of a formal solution at infinity of D may change. In the statement
and proof of Theorem 5 we fix a direction θ ∈ −S.

For any ρ ∈ Σ we denote by ∆ρ = ρ − e−iθR+ the half-line of angle −θ + π mod 2π
starting at ρ. Since −θ ∈ S, no singularity ρ′ 6= ρ of D lies on ∆ρ: these half-lines are
pairwise disjoint. We shall work in the simply connected cut plane obtained from C by
removing the union of these closed half-lines. We agree that for ρ ∈ Σ and z in the cut
plane, arg(z− ρ) will be chosen in the open interval (−θ− π,−θ+ π). This enables one to
define log(z − ρ) and (z − ρ)α for any α ∈ Q.

Now let us fix ρ ∈ Σ. Combining theorems of André, Chudnovski and Katz (see [1, p.
719]), there exist (non necessarily distinct) rational numbers tρ1, . . . , t

ρ
J(ρ), with J(ρ) ≥ 1,

and G-functions gρj,k, for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j), such that a basis of local

solutions of ( d
dz

)δD around ρ (in the above-mentioned cut plane) is given by the functions

fρj,k(z − ρ) = (z − ρ)t
ρ
j

k∑
k′=0

gρj,k−k′(z − ρ)
(log(z − ρ))k

′

k′!
(4.4)

for 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(ρ, j). Since ( d
dz

)δDg = 0 we can expand g in this basis:

g(z) =

J(ρ)∑
j=1

K(ρ,j)∑
k=0

$ρ
j,kf

ρ
j,k(z − ρ) (4.5)

with connection constants $ρ
j,k; Theorem 2 of [11] yields $ρ

j,k ∈ G.
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We denote by {u} ∈ [0, 1) the fractional part of a real number u, and agree that all
derivatives of this or related functions taken at integers will be right-derivatives. We also
denote by ? the Hadamard (coefficientwise) product of formal power series in z, and we let

yα,i(z) =
∞∑
n=0

1

i!

di

dyi

(Γ(1− {y})
Γ(−y − n)

)
|y=α

zn ∈ Q[[z]]

for α ∈ Q and i ∈ N. To compute the coefficients of yα,i(z), we may restrict to values of y
with the same integer part as α, denoted by bαc. Then

Γ(1− {y})
Γ(−y − n)

=
Γ(−y + bαc+ 1)

Γ(−y − n)
=


(−y − n)n+bαc+1 if n ≥ −bαc

1
(−y+bαc+1)−n−bαc−1

if n ≤ −1− bαc
(4.6)

is a rational function of y with rational coefficients, so that yα,i(z) ∈ Q[[z]]; here (x)k =
x(x + 1) . . . (x + k − 1) is Pochhammer’s symbol. Even though this won’t be used in the
present paper, we mention that yα,i(z) is an arithmetic Gevrey series of order 1 (see [1]);
in particular it is divergent for any z 6= 0 (unless it is a polynomial, namely if i = 0 and
α ∈ Z).

Finally, we define

ηρj,k(1/x) =
k∑

m=0

(ytρj ,m ? g
ρ
j,k−m)(1/x) ∈ Q[[1/x]]

for any 1 ≤ j ≤ J(ρ) and 0 ≤ k ≤ K(j, ρ); this is also an arithmetic Gevrey series of
order 1. It is not difficult to see that ηρj,k(1/x) = 0 if fρj,k(z−ρ) is holomorphic at ρ. Indeed
in this case k = 0 and tρj ∈ Z; if tρj ≥ 0 then ytρj ,0 is identically zero, and if tρj ≤ −1 then

ytρj ,0 is a polynomial in z of degree −1− tρj whereas gρj,0 has valuation at least −tρj .

The main result of this section is the following asymptotic expansion, valid in the setting
of Definition 5 for θ ∈ −S. It is at the heart of Theorem 2; recall that we assume here
E(0) = 0, and that we let Γ̂ = 1/Γ.

Theorem 5. We have

E(x) ≈
∑
ρ∈Σ

eρx
J(ρ)∑
j=1

K(j,ρ)∑
k=0

$ρ
j,kx

−tρj−1
k∑
i=0

( k−i∑
`=0

(−1)`

`!
Γ̂(`)(1− {tρj})η

ρ
j,k−`−i(1/x)

)(log(1/x))i

i!
.

We observe that the coefficients are naturally expressed in terms of Γ̂(`). Let us write
Theorem 5 in a slightly different way. For t ∈ Q and s ∈ N, let

λt,s(1/x) =
s∑

ν=0

(−1)s−ν

(s− ν)!
Γ̂(s−ν)(1− {t})(log(1/x))ν

ν!
.
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In particular, λt,0(1/x) = Γ̂(1 − {t}) and λt,1(1/x) = Γ̂(1 − {t}) log(1/x) − Γ̂(1)(1 − {t});
for t ∈ Z we have λt,1(1/x) = log(1/x)− γ.

Then Theorem 5 reads (by letting s = i+ `):

E(x) ≈
∑
ρ∈Σ

eρx
J(ρ)∑
j=1

K(j,ρ)∑
k=0

$ρ
j,kx

−tρj−1
k∑
s=0

λtρj ,s(1/x)ηρj,k−s(1/x). (4.7)

Here we see that the derivatives of 1/Γ do not appear in an arbitrary way, but always
through these sums λt,s(1/x). In particular γ appears through λt,1(1/x) = log(1/x) − γ,
as mentioned in the introduction.

In the asymptotic expansion of Theorem 5, and in (4.7), the singularities ρ ∈ Σ at
which g(z) is holomorphic have a zero contribution because for any (j, k), either $ρ

j,k = 0
or fρj,k(z − ρ) is holomorphic at ρ (and in the latter case, k = 0 and ηρj,0(1/x) = 0, as
mentioned before the statement of Theorem 5). Moreover, as the proof shows (see §4.3),
it is not really necessary to assume that the functions fρj,k(z − ρ) form a basis of local

solutions of ( d
dz

)δD around ρ. Instead, it is enough to consider rational numbers tρj and
G-functions gρj,k such that all singularities of gρj,k(z−ρ) belong to Σ and, upon defining fρj,k
by Eq. (4.4), Eq. (4.5) holds with some complex numbers $ρ

j,k. In this way, to compute
the asymptotic expansion of E(x) it is not necessary to determine D explicitly. The finite
set Σ is used simply to control the singularities of the functions which appear, and prevent
θ from being a possibly singular direction. This remark makes it easier to apply Theorem 5
to specific E-functions, for instance to obtain the expansions (6.2) and (6.5) used in §6.

4.3 Proof of Theorem 5

We fix an oriented line d such that the angle between R+ and d is equal to −θ+ π
2

mod 2π,
and all singularities of D lie on the left of d. Let R > 0 be sufficiently large (in terms of
d and Σ). Then the circle C(0, R) centered at 0 of radius R intersects d at two distinct
points a and b, with arg(b− a) = −θ + π

2
mod 2π, and

E(x) = lim
R→∞

1

2iπ

∫ b

a

g(z)ezxdz (4.8)

where the integral is taken along the line segment ab contained in d.
For any ρ ∈ Σ the circle C(0, R) intersects ∆ρ at one point zρ = ρ−Aρe−iθ, with Aρ > 0,

which corresponds to two points at the border of the cut plane, namely ρ+Aρe
i(−θ±π) with

values −θ ± π of the argument. We consider the following path Γρ,R: a straight line from
ρ+Aρe

i(−θ−π) to ρ (on one bank of the cut plane), then a circle around ρ with essentially
zero radius and arg(z − ρ) going up from −θ − π to −θ + π, and finally a straight line
from ρ to ρ + Aρe

i(−θ+π) on the other bank of the cut plane. We denote by ΓR the closed
loop obtained by concatenation of the line segment ba, the arc azρ1 of the circle C(0, R),
the path Γρ1,R, the arc zρ1zρ2 , the path Γρ2,R, . . . , and the arc zρpb (where ρ1, . . . , ρp are
the distinct elements of Σ, ordered so that zρ1 , zρ2 , . . . , zρp are met successively when
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0

a

b

-θ

ρ

Figure 1: The contour ΓR

going along C(0, R) from a to b in the negative direction); see Figure 1. We refer to [9, pp.
183–192] for a similar computation.

We observe that
1

2iπ

∫
ΓR

g(z)ezxdz = 0

for any x ∈ C, because ΓR is a closed simple curve inside which the integrand has no
singularity.

Now assume that θ − π
2
< arg(x) < θ + π

2
. As R→∞, the integral of g(z)ezx over the

line segment ba tends to −E(x), using Eq. (4.8). Moreover, as z describes Γρ,R (except
maybe in a bounded neighborhood of ρ) we have Re (zx) < 0 and g(z) = O(1/|z2|), so
that letting R→∞ one obtains (as in [9])

E(x) =
∑
ρ∈Σ

1

2iπ

∫
Γρ

g(z)ezxdz, (4.9)

where Γρ is the extension of Γρ,R as R→∞.
Plugging Eq. (4.5) into Eq. (4.9) yields

E(x) =
∑
ρ∈Σ

J(ρ)∑
j=1

K(j,ρ)∑
k=0

$ρ
j,k

1

2iπ

∫
Γρ

fρj,k(z − ρ)ezxdz. (4.10)

To study the integrals on the right hand side we shall prove the following general claim
(see [12, §2.5]). Let ρ ∈ Σ, and ϕ be a G-function such that ϕ(z − ρ) is holomorphic on
the cut plane. For any α ∈ Q and any k ∈ N, let

ϕα,k(z − ρ) = ϕ(z − ρ)(z − ρ)α
(log(z − ρ))k

k!
.
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Then
1

2iπ

∫
Γρ

ϕα,k(z − ρ)ezxdz

admits the following asymptotic expansion in a large sector bisected by θ (with Γ̂ := 1/Γ):

eρxx−α−1

k∑
`=0

(−1)`

`!
Γ̂(`)(1− {α})

k−∑̀
i=0

(
yα,k−`−i ? ϕ

)
(1/x)

(log(1/x))i

i!
.

To prove this claim, we first observe that∫
Γρ

ϕα,k(z − ρ)ezxdz =
1

k!

∂k

∂αk

[ ∫
Γρ

ϕα,0(z − ρ)ezxdz
]

where the k-th derivative is taken at α; this relation enables us to deduce the general case
from the special case k = 0 considered in [9]. We write also

ϕ(z − ρ) =
∞∑
n=0

cn(z − ρ)n.

Following [9, pp. 185-191], given ε > 0 we obtain R,C, κ > 0 such that, for any n ≥ 1 and
any x with |x| ≥ R and θ − π

2
+ ε < arg(x) < θ + π

2
− ε, we have∣∣∣ x−α−n−1

Γ(−α− n)
− 1

2iπ
e−ρx

∫
Γρ

(z − ρ)α+nezxdz
∣∣∣ ≤ Cnn!|x|−α−n−1e−κ|x| sin(ε).

Then following the proof of [9, pp. 191-192] and using the fact that lim sup |cn|1/n < ∞,
for any ε > 0 we obtain R,B,C > 0 such that, for any N ≥ 1 and any x with |x| ≥ R and
θ − π

2
+ ε < arg(x) < θ + π

2
− ε, we have∣∣∣e−ρx 1

2iπ

∫
Γρ

ϕα,k(z − ρ)ezxdz −
N−1∑
n=0

cn
k!

∂k

∂αk

[ x−α−n−1

Γ(−α− n)

]∣∣∣ ≤ CNN !|x|B−N . (4.11)

Now observe that S is a union of open intervals, so that θ can be made slightly larger or
slightly smaller while remaining in the same open interval. In this process, the cut plane
changes but the left handside of (4.11) remains the same (by the residue theorem, since
ϕ(z− ρ) is holomorphic on the cut plane). The asymptotic expansion (4.11) remains valid
as |x| → ∞ in the new sector θ − π

2
+ ε < arg(x) < θ + π

2
− ε, so that finally it is valid in

a large sector θ − π
2
− ε ≤ arg(x) ≤ θ + π

2
+ ε for some ε > 0.

Now Leibniz’ formula yields the following equality between functions of α:( x−α−n−1

Γ(−α− n)

)(k)

=
k∑
`=0

k−∑̀
i=0

k!

`!i!(k − `− i)!
(
Γ̂(1− {α})

)(`)
(Γ(1− {α})

Γ(−α− n)

)(k−`−i)

× (log(1/x))ix−α−n−1

=
k∑
`=0

k!

`!

(
Γ̂(1− {α}

)(`)
k−∑̀
i=0

(
yα,k−`−i ? z

n
)

(1/x)x−α−1 (log(1/x))i

i!
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so that

∞∑
n=0

cn
k!

( x−α−n−1

Γ(−α− n)

)(k)

=
k∑
`=0

1

`!

(
Γ̂(1− {α})

)(`)
k−∑̀
i=0

(
yα,k−`−i ? ϕ

)
(1/x)x−α−1 (log(1/x))i

i!
.

Using (4.11) this concludes the proof of the claim.

Now we apply the claim to the G-functions gρj,k, since all singularities of gρj,k(z − ρ) are

singularities of ( d
dz

)δD and therefore belong to Σ. Combining this result with Eqns. (4.4)
and (4.10) yields:

E(x) =
∑
ρ,j,k,k′

$ρ
j,k

1

2iπ

∫
Γρ

gρj,k−k′(z − ρ)(z − ρ)t
ρ
j
(log(z − ρ))k

′

k′!
ezxdz

≈
∑
ρ,j,k,k′

$ρ
j,ke

ρxx−t
ρ
j−1

k′∑
`=0

(−1)`

`!
Γ̂(`)(1− {tρj})

k′−∑̀
i=0

(
ytρj ,k′−`−i ? g

ρ
j,k−k′

)
(1/x)

(log(1/x))i

i!

=
∑
ρ,j,k

$ρ
j,ke

ρxx−t
ρ
j−1

k∑
`=0

(−1)`

`!
Γ̂(`)(1− {tρj})

k−∑̀
i=0

ηj,k−`−i(1/x)
(log(1/x))i

i!
.

This concludes the proof of Theorem 5.

4.4 Proof of Theorem 2

To begin with, let us prove assertions (ii) and (iii). Changing θ slightly if necessary, we
may assume θ ∈ −S. Adding the constant term E(0) ∈ Q ⊂ G to (1.3) if necessary, we
may assume that E(0) = 0. Then Theorem 5 applies; moreover, in the setting of §4.2 we
may assume that the rational numbers tρj have different integer parts as soon as they are
distinct. Then letting S denote the set of all tρj + 1, for ρ ∈ Σ and 1 ≤ j ≤ J(ρ), and
denoting by T the set of non-negative integers less than or equal to maxj,ρK(j, ρ), the
asymptotic expansion of Theorem 5 is exactly (1.3) with coefficients

cρ,α,i,n =
∑

1≤j≤J(ρ)
with α=tρj+1

K(j,ρ)∑
k=i

$ρ
j,k

k−i∑
`=0

(−1)`

`!
Γ̂(`)(1− {α})

k−`−i∑
m=0

1

m!

dm

dym

(Γ(1− {y})
Γ(−y − n)

)
|y=α−1

gρj,k−`−i−m,n

where gρj,k−`−i−m(z − ρ) =
∑∞

n=0 g
ρ
j,k−`−i−m,n(z − ρ)n.

Assertion (ii) of Theorem 2 is cρ,α,i,n ∈ S; let us prove this now. The coefficients

gρj,k−`−i−m,n are algebraic because gρj,k−`−i−m is a G-function, and dm

dym

(
Γ(1−{y})
Γ(−y−n)

)
|y=α−1

is

a rational number. Since $ρ
j,k ∈ G and Q ⊂ G, the coefficient cρ,α,i,n is a G-linear
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combination of derivatives of Γ̂ = 1/Γ taken at the rational point 1−{α}. By the reflection

formula, Γ̂(z) = sin(πz)
π

Γ(1− z): applying Leibniz’ formula we see that Γ̂(k)(z) is a G-linear
combination of derivatives of Γ at 1− z up to order k, provided z ∈ Q \ Z (using the fact
[11] that G contains π, 1/π, and the algebraic numbers sin(πz) and cos(πz)). When z = 1,
we use (at x = 0) the identity

Γ(x+ 1) = exp
(
− γx+

∞∑
k=2

(−1)kζ(k)

k
xk
)

(see [3, p. 3, Theorem 1.1.2]) and the properties of Bell polynomials (see for instance [8,
Chap. III, §3]). Since ζ(k) ∈ G for any k ≥ 2 (because polylogarithms are G-functions),

it follows that both Γ(k)(1) and Γ̂(k)(1) are polynomials of degree k in Euler’s constant γ,
with coefficients in G; moreover the leading coefficients of these polynomials are rational
numbers. This implies that Γ̂(k)(1) is a G-linear combination of derivatives of Γ at 1 up to
order k, and concludes the proof that all coefficients cρ,α,i,n in the expansion (1.3) provided
by Theorem 5 belong to S.

To prove (iii), we fix ρ and α and denote by K the maximal value of K(j, ρ) among
integers j such that α = tρj + 1. Then

cρ,α,i,n =
K−i∑
`=0

(−1)`

`!
Γ̂(`)(1− {α})g′`+i,n

where

g′λ,n =
∑
j

K(j,ρ)∑
k=λ

$ρ
j,k

k−λ∑
m=0

1

m!

dm

dym

(Γ(1− {y})
Γ(−y − n)

)
|y=α−1

gρj,k−λ−m,n ∈ G;

here 0 ≤ λ ≤ K and the first sum is on j ∈ {1, . . . , J(ρ)} such that α = tρj + 1 and
K(j, ρ) ≥ λ. If n is fixed and g′λ,n 6= 0 for some λ, then denoting by λ0 the largest such

integer λ we have cρ,α,λ0,n ∈ Γ̂(1−{α}) ·G\{0} = Γ(α) ·G\{0} and assertion (iii) follows
since λ0 is the integer denoted by k in (iii).

To prove (i) and (iv), we first observe that if F (z) is given by (1.1) with coefficients
φj,s,k ∈ S, the asymptotic expansions of Fj(z) we have just obtained can be multiplied by
φj,s,kz

s log(z)k and summed up, thereby proving (ii) for F (z) since S is a ring. To deduce
(i) from (ii) for any solution F (z) of an E-operator L, we recall that any formal solution
f of L at ∞ can be written as (1.3) with complex coefficients cρ,α,i,n(f), and denote by
Φ(f) the family of all these coefficients. The linear map Φ is injective, so that there exists
a finite subset X of the set of indices (ρ, α, i, n) such that Ψ : f 7→ (cρ,α,i,n(f))(ρ,α,i,n)∈X is
a bijective linear map. Denoting by Fθ the asymptotic expansion of F (z) in a large sector
bisected by θ, we have

Ψ(Fθ) = ω1,θΨ(H1) + . . .+ ωµ,θΨ(Hµ)
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with the notation of (1.4). Now Ψ(H1), . . . , Ψ(Hµ) are linearly independent elements of

QX
and ω1,θ, . . . , ωµ,θ can be obtained by Cramer’s rule (this is the same kind of argument

as in Section 3.2), so that they are linear combinations of the components of Ψ(Fθ) with
coefficients in Q ⊂ G: using (ii) this concludes the proof of (i).

5 Asymptotics of the coefficients of A(z) · E
(
B(z)

)
In this section we deduce from Theorem 2 the following result, of independent interest,
which is the main step in the proof of Theorem 3 (see §6.3). Its proof decomposes in many
cases, some of which involve the saddle point method. In these cases, we do not write
down all the details of the derivation which is classical and because this involves lengthy
technicalities. Instead, we refer the reader to [26, 27] for detailed asymptotic computations,
which we slightly generalize here to get only the leading terms, and to [13, Chapter VIII]
for a general overview of this method. The existence of such asymptotics is ensured a
priori by the Birkhoff-Trjitzinsky theory because all functions A(z) · E

(
B(z)

)
considered

in this section are holonomic.

Theorem 6. Let E(z) be an E-function, and A(z), B(z) ∈ Q[[z]] be algebraic functions;
assume that P (z) = A(z) · E

(
B(z)

)
=
∑∞

n=0 Pnz
n is not a polynomial. Then either

Pn =
(2π)(1−d)/(2d)

n!1/d
qnn−u−1(log n)v

(∑
θ

Γ(−uθ)gθeinθ + o(1)
)

(5.1)

or
Pn = qne

∑d−1
`=1 κ`n

`/d

n−u−1(log n)v
( ∑
θ1,...,θd

ωθ1,...,θde
∑d
`=1 iθ`n

`/d

+ o(1)
)

(5.2)

where q ∈ Q, u ∈ Q, uθ ∈ Q \ N, d, v ∈ N, d ≥ 1, q > 0, gθ ∈ G \ {0}, κ1, . . . , κd−1 ∈ R,
θ, θ1, . . . , θd ∈ [−π, π), the sums on θ and θ1, . . . , θd are finite and non-empty, and

ωθ1,...,θd = ξ
Γ(−u)

with ξ ∈ (E ∪ (Γ(Q) ·G)) \ {0}
if v = κ1 = . . . = κd−1 = θ1 = . . . = θd−1 = 0,

ωθ1,...,θd ∈ Γ(Q) · exp(Q) ·G \ {0} otherwise.

(5.3)

As in the introduction, in (5.3) we let Γ(−u) = 1 if u ∈ N. In the special case where

P (z) = (1− z)α exp
( k∑
i=1

bi
(1− z)αi

)
with α, α1, . . . , αk ∈ Q, b1, . . . , bk ∈ Q, α1 > 0 and b1 6= 0, Theorem 6 is consistent with
Wright’s asymptotic formulas [27] for Pn.

We shall now prove Theorem 6; we distinguish between two cases (see §5.1 and 5.2),
which lead to Eqns. (5.1) and (5.2) respectively. This distinction, based on the growth of
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Pn, is different from the one mentioned in the introduction (namely whether E(z) plays
a role as z → z0 ∈ C or as z → ∞, providing elements of E or Γ(Q) · G respectively).
We start with the following consequence of Theorem 2, which is useful to study E(z) as
z →∞, in both §5.1 and §5.2.3.

Lemma 2. For any E-function E(z) there exist K ≥ 1, u1, . . . , uK ∈ Q, v1, . . . , vK ∈ N,
and pairwise distinct α1, . . . , αK ∈ Q such that

E(z) =
K∑
k=1

ωke
αkzzuk log(z)vk(1 + o(1)) (5.4)

as |z| → ∞, uniformly with respect to arg(z), where ωk ∈ Γ(−uk) ·G\{0} with Γ(−uk) = 1
if uk ∈ N.

If K = 1, the proof below shows that v1 = 0 and u1 ∈ Z: log(z) does not appear in
Eq. (5.4). Otherwise for any k ∈ {1, . . . , K} there exist k′ 6= k and θ ∈ R such that eαkz is
much smaller than eαk′z as |z| → ∞ with arg(z) = θ; we choose a determination of log(z)
with a cut at arg(z) = θ mod 2π, and use it in the term corresponding to k in Eq. (5.4).
In this way, the cut of log(z) in Eq. (5.4) never occurs in a leading term.

Proof. For any α ∈ C, let Iα denote the set of all directions θ ∈ R/2πZ such that E(z)
has an asymptotic expansion (1.3) in a large sector bisected by θ, with Σ having the least
possible cardinality, α ∈ Σ, and Re (α′eiθ) ≤ Re (αeiθ) for any α′ ∈ Σ. This implies that
in the direction θ, the growth of E(z) is comparable to that of eαz. Then the closure Jα of
Iα is the union of Iα and a set of anti-Stokes directions; it is either empty or of the form
[Rα, Sα] mod 2π with Rα ≤ Sα. We denote by Σ0 the set of all α ∈ C such that Jα 6= ∅;
then Σ0 is a subset of the finite set Σ ⊂ Q constructed in §4.2, so that Σ0 is finite: we
denote by α1, . . . , αK its elements, with K ≥ 1.

If K = 1 then Jα1 = R/2πZ and the asymptotic expansion (1.3) is the same in any
direction: e−α1zE(z) has (at most) a pole at ∞, and Lemma 2 holds with u1 ∈ Z, v1 = 0,
and ω1 ∈ G (using Theorem 2).

Let us assume now that K ≥ 2. Then Sαk −Rαk ≤ π for any k, so that E(z) admits an
asymptotic expansion (1.3) in a large sector that contains all directions θ ∈ Jαk . Among
all terms corresponding to eαkz in this expansion, we denote the leading one by

ωke
αkzzuk(log z)vk (5.5)

with uk ∈ Q, vk ∈ N, and ωk ∈ Γ(−uk) · G \ {0} (using assertion (iii) of Theorem 2),
where Γ(−uk) is understood as 1 if uk is a non-negative integer. These parameters are the
ones in (5.4). To conclude the proof of Lemma 2, we may assume that arg(z) remains in a
small segment I, and consider the asymptotic expansion (1.3) in a large sector containing
I. Keeping only the dominant term corresponding to each α ∈ Σ in this expansion, we
obtain

E(z) =
∑
α∈Σ

ω′αe
αzzu

′
α(log z)v

′
α(1 + o(1)). (5.6)
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To prove that (5.6) is equivalent to (5.4) as |z| → ∞ with arg(z) ∈ I, we may remove from
both equations all terms corresponding to values αk (resp. α ∈ Σ) such that Iαk ∩ I = ∅
(resp. Iα ∩ I = ∅), since they fall into error terms. Now for any α = αk such that
Iα ∩ I 6= ∅, E(z) admits an asymptotic expansion in a large sector containing Iα ∪ I (since
Iα has length at most π, and the length of I can be assumed to be sufficiently small in
terms of E). Comparing the dominating exponential term of this expansion in a direction
θ ∈ Iα∩ I with the ones of (5.5) and (5.6), we obtain ω′α = ωk, u

′
α = uk, and v′α = vk. This

concludes the proof of Lemma 2.

5.1 P (z) is an entire function

If P (z) is an entire function then A(z) and B(z) are polynomials; we denote by δ ≥ 0 and
d ≥ 1 their degrees, and by Aδ and Bd their leading coefficients. We shall estimate the
growth of the Taylor coefficients of P (z) by the saddle point method. For any circle CR of
center 0 and radius R, Lemma 2 yields

Pn =
1

2iπ

∫
CR

A(z) · E(B(z))

zn+1
dz

=
1

2iπ

K∑
k=1

ωkAδB
uk
d d

vk

∫
CR

eαkB(z) · zδ+duk−n−1(log z)vk · (1 + o(1))dz

where the o(1) is with respect to R → +∞ and is uniform in n; here log(z) is a fixed
determination which depends on k (see the remark after Lemma 2). We have to distinguish
between the cases αk = 0 and αk 6= 0. In the former case, the integral

ωk
2iπ

∫
CR

zδ+duk−n−1(log z)vk · (1 + o(1))dz

tends to 0 as R→ +∞ (provided n is sufficiently large) and there is no contribution coming
from this case.

Now E(z) is not a polynomial (otherwise P (z) would be a polynomial too), so that if
αk = 0 for some k then K ≥ 2: there is always at least one integer k such that αk 6= 0.
For any such k, the function

eαkB(z)zδ+duk−n−1(log z)vk

is smooth on CR (except on the cut of log z) and the integral can be estimated as n→∞
by finding the critical points of αkB(z) − n log(z), i.e. the solutions z1,k(n), . . . , zd,k(n)
of zB′(z) = n/αk. As n → ∞, we have zj,k(n) ∼ (dBdαk)

−1/de2iπj/dn1/d → ∞, so that
αkB(zj,k(n)) ∼ n/d.

Moreover, denoting by ∆j,k(n) the second derivative of αkB(z)−n log(z) at z = zj,k(n),
we see that asymptotically

∆j,k(n) = αkB
′′(zj,k(n)) +

n

zj,k(n)2
∼ d(dBdαk)

2/de−4iπj/dn1−2/d.
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Then the saddle point method yields:

Pn =
∑
αk 6=0

ω′k

d−1∑
j=0

1√
2π∆j,k(n)

eαkB(zj,k(n))zj,k(n)δ+duk−n−1(log zj,k(n))vk(1 + o(1))

with ω′k = ωkAδB
uk
d d

vk ∈ Q∗ωk. This relation yields

Pn =
∑
αk 6=0

ω′′k√
2π
n−n/d(edBdαk)

n/dn
δ
d

+uk− 1
2 (log n)vk

( d−1∑
j=0

e2iπjn/d + o(1)
)

with ω′′k ∈ Q∗ωk. Now let α̃ = max(|α1|, . . . , |αK |) and consider the set K of all k such that

|αk| = α̃. For each k ∈ K we write α
1/d
k = α̃1/deiθk ; then Stirling’s formula yields

Pn = (2π)(1−d)/(2d)n!−1/d(dBdα̃)n/d
∑
k∈K

ω′′kn
δ
d

+uk− 1
2

+ 1
2d (log n)vk

d−1∑
j=0

ei(θk+ 2πj
d

)n(1 + o(1)).

Keeping only the dominant terms provides Eq. (5.1).

5.2 P (z) is not an entire function

Let us move now to the case where P (z) is not entire, and prove Eq. (5.2). Let q > 0 and
Θ ⊂ [0, 2π] be such that the singularities of P (z) of minimal modulus are the q−1e−iθd with
θd ∈ Θ; then Θ is finite and non-empty. As usual the contributions of these singularities
add up to determine the asymptotic behavior of Pn; this corresponds to the sum over θd in
Eq. (5.2). For simplicity we shall restrict in the proof to the case of a unique singularity
ρ = q−1e−iθd of minimal modulus q−1. We consider first two special cases, and then the
most difficult one.

5.2.1 B(z) has a finite limit at ρ

Let us assume that B(z) admits a finite limit as z → ρ, denoted by B(ρ); ρ can be a
singularity of B or not. In both cases, as z → ρ we have

B(z) = B(ρ) + B(z − ρ)t(1 + o(1))

with t ∈ Q, t ≥ 0, and B ∈ Q∗ (unless B is a constant; in this case the proof is even
easier). Now all Taylor coefficients of E(z) at B(ρ) belong to E, so that

E(B(z)) ∼ η(z − ρ)t
′

as z → ρ, with t′ ∈ Q, t′ ≥ 0, and η ∈ E \ {0}. On the other hand, if ρ is a singularity
of the algebraic function A(z) then its Puiseux expansion yields s ∈ Q \ N, A ∈ Q∗ and a

polynomial Ã such that

A(z) = Ã(z − ρ) + A(z − ρ)s(1 + o(1))
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as z → ρ; if ρ is not a singularity of A we have the same expression with s ∈ N and Ã = 0.
In both cases we obtain finally p ∈ Q \ N, P ∈ E \ {0} and a polynomial P̃ such that

P (z) = P̃ (z − ρ) + P(z − ρ)p(1 + o(1)).

Using standard transfer results (see [13, p. 393]) this implies

Pn ∼
(−ρ)−pP

Γ(−p)
ρ−nn−p−1.

Therefore the singularity contributes to (5.2) through a term in which v = κ1 = . . . =
κd−1 = θ1 = . . . = θd−1 = 0 and ρ−1 = qeiθd .

5.2.2 E is a polynomial

In this case, P (z) is an algebraic function (and not a polynomial) so that

Pn ∼
ω

Γ(−s)
· n−s−1ρ−n

with ω ∈ Q∗ ⊂ E \ {0} and s ∈ Q \ N determined by the Puiseux expansion of P (z)
around ρ (using the same transfer result as above). Therefore each singularity ρ = q−1e−iθd

contributes to a term in (5.2) with v = κ1 = . . . = κd−1 = θ1 = . . . = θd−1 = 0.

5.2.3 The main part of the proof

Let us come now to the most difficult part of the proof, namely the contribution of a
singularity ρ at which B(z) does not have a finite limit (in the case where E(z) is not a
polynomial). As above we assume (for simplicity) that ρ is the unique singularity of P (z)
of minimal modulus q−1. As z → ρ, we have

A(z) ∼ A(z − ρ)t/s and B(z) ∼ B(z − ρ)−τ/σ (5.7)

with A,B ∈ Q∗, s, t, σ, τ ∈ Z, s, σ, τ > 0, and gcd(s, t) = gcd(σ, τ) = 1. For any circle CR
of center 0 and radius R < |ρ|, we have (using Lemma 2 as in §5.1)

Pn =
1

2iπ

K∑
k=1

ωk

∫
CR

eαkB(z)

zn+1
· A(z)B(z)uk log(B(z))vk · (1 + o(1))dz (5.8)

where o(1) is with respect to R→ |ρ| and is uniform in n.
If αk = 0 for some k, then the corresponding term in (5.8) has to be treated in a specific

way, since the main contribution may come from the error term o(1). For this reason we
observe that in Lemma 2, the term corresponding to αk = 0 can be replaced with any
truncation of the asymptotic expansion of E(z), namely with

U1∑
u=−U0

V∑
v=0

ωu,vz
u/d(log z)v + o(z−U0/d)

24



where d ≥ 1 and U0 can be chosen arbitrarily large. Now the corresponding term in (5.8)
becomes

1

2iπ

∫
CR

1

zn+1

( U1∑
u=−U0

V∑
v=0

ωu,vA(z)B(z)u/d(logB(z))v + o(A(z)B(z)−U0/d)
)
dz. (5.9)

The point is that the function ωu,vA(z)B(z)u/d(logB(z))v may be holomorphic at z = ρ,
because ωu,v = 0 or because the singularities at ρ of A(z) and B(z)u/d(logB(z))v cancel
out; in this case the corresponding integral over CR is o(q′n) for some q′ < q = |ρ|−1 so
that it falls into error terms. If this happens for any U0, any u and any v, then the term
corresponding to αk = 0 in (5.8) is o(qnn−U) for any U > 0, so that it falls into the error
term of the expression (5.2) we are going to obtain for Pn. Otherwise we may consider
the maximal pair (u, v) (with respect to lexicographic order) for which this function is not
holomorphic; then (5.9) is equal to

ω′u,v
2iπ

∫
CR

(ρ− z)T log(ρ− z)v

zn+1
· (1 + o(1))dz

for some T ∈ Q and ω′u,v ∈ Q∗ωu,v ⊂ Γ(Q) ·G (using assertion (iii) of Theorem 2). We
obtain finally the following formula for (5.9) (see [13, p. 387]):

ω′u,v
Γ(−T )

ρT−nn−T−1 log(n)v(1 + o(1)) if T 6∈ N,

ω′u,vρ
T−nn−T−1 log(n)v−1(1 + o(1)) if T ∈ N (so that v ≥ 1).

This contribution can either fall into the error term of (5.2), or give a term with κ1 = . . . =
κd−1 = θ1 = . . . = θd−1 = 0.

Let us study now the terms in (5.8) for which αk 6= 0; since E(z) is not a polynomial
there is at least one such term. The function

eαkB(z)

zn+1
· A(z)B(z)uk log(B(z))vk

is smooth on CR (except on the cuts of log(B(z))) and the integral can be estimated as
n → ∞ by finding the critical points of αkB(z) − n log(z), i.e. the solutions of zB′(z) =
n/αk. For large n, any critical point z must be close to ρ (since zB′(z) is bounded away
from ρ for |z| ≤ |ρ|). Now in a neighborhood of z = ρ we have

zB′(z) ∼ −ρτB
σ
· 1

(z − ρ)1+τ/σ

so that we have τ + σ critical points zj,k(n), for j = 0, . . . , σ + τ − 1, with

zj,k(n)− ρ ∼ e2iπjσ/(σ+τ) ·
(
− σn

ρBταk

)−σ/(σ+τ)

.
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Using (5.7) and letting κ = t/s ∈ Q we deduce that

A(zj,k(n)) ∼ Ae2iπjσκ/(σ+τ) ·
(
− σn

ρBταk

)−σκ/(σ+τ)

6= 0.

Moreover we have

αkB(zj,k(n)) ∼ −σ
τ

(zj,k(n)− ρ)αkB
′(zj,k(n)) ∼ −σn

ρτ
(zj,k(n)− ρ) ∼ Dj,kn

τ/(σ+τ)

with

Dj,k =
(
αkBe

2iπj
)σ/(σ+τ)(−σ

ρτ

)τ/(σ+τ)

6= 0. (5.10)

To apply the saddle point method, we need to estimate the second derivative ∆j,k(n) of
αkB(z)− n log(z) at z = zj,k(n). We obtain

∆j,k(n) = αkB
′′(zj,k(n)) +

n

zj,k(n)2
∼ τ(σ + τ)

σ2
(αkB)−σ/(σ+τ)e−2iπj 2σ+τ

σ+τ

(
− σ

ρτ

) 2σ+τ
σ+τ

n
2σ+τ
σ+τ .

Finally,
B(zj,k(n))uk ∼ (Dj,k/αk)

uknτuk/(σ+τ).

This enables us to apply the saddle point method. This yields a non-empty subset Jk of
{0, . . . , σ + τ − 1} such that the term corresponding to αk in (5.8) is equal to∑

j∈Jk

ωk√
2π∆j,k(n)

eαkB(zj,k(n))

zj,k(n)n+1
A(zj,k(n))B(zj,k(n))uk log(B(zj,k(n)))vk(1 + o(1)).

Now for any pair (j, k), αkB(zj,k(n)) is an algebraic function of n so that it can be expanded
as follows as n→∞:

αkB(zj,k(n)) =
d′∑
`=0

κj,k,`n
`/d + o(1) (5.11)

with κj,k,` ∈ Q, 0 < d′ < d and d′/d = τ
σ+τ

, κj,k,d′ = Dj,k 6= 0. Increasing d and d′ if
necessary, we may assume that they are independent from (j, k). We denote by (κd′ , . . . , κ1)
the family (Reκj,k,d′ , . . . ,Reκj,k,1) which is maximal with respect to lexicographic order
(as j and k vary with αk 6= 0 and j ∈ Jk), i.e. for which the real part of (5.11) has
maximal growth as n → ∞. Among the set of pairs (j, k) for which Reκj,k,1 = κ1, . . . ,
Reκj,k,d′ = κd′ , we define K to be the subset of those for which (uk, vk) is maximal (with
respect to lexicographic order), and let (u, v) denote this maximal value. Then the total
contribution to (5.8) of all terms with αk 6= 0 is equal to

n−
τ+2(1+κ)σ

2τ+2σ

√
2π

ρ−nnτu/(σ+τ) log(n)ve
∑d′
`=1 κ`n

`/d
( ∑

(j,k)∈K

ω̂j,ke
κj,k,0e

∑d′
`=1 iImκj,k,`n

`/d

+ o(1)
)

with ω̂j,k ∈ Q∗ωk. Since κd′ + iImκj,k,d′ = Dj,k 6= 0, this concludes the proof of Theorem 6.
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6 Application to E-approximations

In this section we prove the results on E-approximations stated in the introduction. As a
warm-up, we start in §6.1 with numbers related to the exponential function. Then we prove
Theorem 3 in §§6.2 and 6.3. At last, we discuss in §6.4 the generalization involving (1.8).

6.1 E-approximations of exponential values

From the Taylor series exp(z) =
∑∞

n=0
zn

n!
, we can construct E-approximations of eα for any

algebraic number α. Indeed, let An(α) =
∑n

k=0
αn

n!
and Bn(α) = 1. Then,

∑∞
n=0An(α)xn =

exp(αx)
1−x and

∑∞
n=0 Bn(α)xn = 1

1−x , so that An(α)/Bn(α) are E-approximations of eα. This
readily generalizes to any elements of E, see §6.2 below.

This is not the only way to produce E-approximations of the number e; in particu-
lar, we shall now prove that the convergents of its continued fraction expansion are E-
approximations. In fact, this very property led us to the notion of E-approximations.

Proposition 4. The sequence of convergents of the continued fraction expansion of e (resp.
of e−1

e+1
) defines E-approximations.

Proof. We first provide an explicit expression for certain Padé approximants to exp(z).
For any integer n ≥ 0, the diagonal Padé approximant [n/n] is given by Qn(z)ez−Pn(z) =

(−1)n z
2n+1

n!

∫ 1

0
tn(1− t)neztdt = O(z2n+1) as z → 0, with

Qn(z) =
n∑
k=0

(−1)k
(

2n− k
n

)
zk

k!
and Pn(z) = Qn(−z).

The Padé approximant [n − 1/n] is given by Q̃n(z)ez − P̃n(z) = (−1)n z
2n

n!

∫ 1

0
tn+1(1 −

t)neztdt = O(z2n) with

Q̃n(z) =
n∑
k=0

(−1)k
(

2n− k − 1

n− 1

)
zk

k!
and P̃n(z) =

n−1∑
k=0

(
2n− k − 1

n

)
zk

k!
.

Finally, the Padé approximant [n/n− 1] is given by Q̂n(z)ez − P̂n(z) = (−1)n z
2n

n!

∫ 1

0
tn(1−

t)n+1eztdt = O(z2n) with

Q̂n(z) = P̃n(−z) and P̂n(z) = Q̃n(−z).

We refer to [7] for a proof of these classical facts.
By changing the order of summations, we obtain that, for any z ∈ C and any x such

that |x| < 1/4,

∞∑
n=0

Qn(z)xn =
1√

1− 4x
e
z
2

(
√

1−4x−1),

∞∑
n=0

Pn(z)xn =
1√

1− 4x
e
z
2

(1−
√

1−4x), (6.1)
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∞∑
n=0

Q̃n(z)xn =
1 +
√

1− 4x

2
√

1− 4x
e
z
2

(
√

1−4x−1),
∞∑
n=0

P̃n(z)xn =
1−
√

1− 4x

2
√

1− 4x
e
z
2

(1−
√

1−4x),

∞∑
n=0

Q̂n(z)xn =
1−
√

1− 4x

2
√

1− 4x
e
z
2

(
√

1−4x−1),

∞∑
n=0

P̂n(z)xn =
1 +
√

1− 4x

2
√

1− 4x
e
z
2

(1−
√

1−4x).

These identities will be used below.

We can now prove Proposition 4. We consider the numerator un and denominator vn
of the n-th convergent of the continued fraction [0; 2, 6, 10, 14, 18, . . .] of the number e−1

e+1
,

i.e., un/vn = [0; a1, . . . , an] with ak = 4k − 2. It turns out that un = n!(Pn(1) − Qn(1))/2
and vn = n!(Pn(1) + Qn(1))/2. This can be proved by computing the linear recurrence
satisfied by n!Pn(1) and n!Qn(1), using Zeilberger’s algorithm for instance: it is Un+1 =
(4n + 2)Un + Un−1 for both sequences, which is exactly that satisfied by un and vn (by
definition), and the initial values coincide. It follows that

∞∑
n=0

un
n!

=
sinh

(
(1−

√
1− 4x)/2

)
√

1− 4x
and

∞∑
n=0

vn
n!

=
cosh

(
(1−

√
1− 4x)/2

)
√

1− 4x
.

These generating functions satisfy Definition 4, which proves that the sequence of the
convergents (un

vn
)n≥0 of e−1

e+1
defines E-approximations.

Finally, let us consider the case of e. Its continued fraction is [2; 1, 2, 1, 1, 4, 1, 1, 6, . . .],
with a regular pattern after the second 2. As in [7], one may define the convergents of this
continued fraction by pn

qn
= [2; b1, . . . , bn−2] for n ≥ 3, with p0 = q0 = 1, p1 = 1, q1 = 0 and

p2 = 2, q2 = 1. Then for any n ≥ 0 we have (see [7]):

p3n = n!Pn(1), p3n+1 = n!P̃n(1), p3n+2 = n!P̂n(1),

q3n = n!Qn(1), q3n+1 = n!Q̃n(1), q3n+2 = n!Q̂n(1).

It follows that

∞∑
n=0

pn
bn/3c!

xn =
∞∑
n=0

Pn(1)x3n +
∞∑
n=0

P̃n(1)x3n+1 +
∞∑
n=0

P̂n(1)x3n+2

=
2 + x+ x2 + x(x− 1)

√
1− 4x3

2
√

1− 4x3
e

1
2

(1−
√

1−4x3)

and

∞∑
n=0

qn
bn/3c!

xn =
∞∑
n=0

Qn(1)x3n +
∞∑
n=0

Q̃n(1)x3n+1 +
∞∑
n=0

Q̂n(1)x3n+2

=
2 + x+ x2 + x(1− x)

√
1− 4x3

2
√

1− 4x3
e

1
2

(
√

1−4x3−1).

Again, the generating functions of ( pn
bn/3c!)n≥0 and ( qn

bn/3c!)n≥0 satisfy Definition 4, so that

the sequence of the convergents (pn
qn

)n≥0 of e defines E-approximations.
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From (6.1), we also deduce that the Padé approximants [n/n] of exp(z) define E-
approximations of eα for any α ∈ Q, because it is known that limn Pn(z)/Qn(z) = exp(z)
for any z ∈ C. We now give a proof of this fact which is an instance of the general
asymptotic arguments presented in §5. The generating function for Qn(z) can be written

as e−z/2√
1−4x

f(z, x) + g(z, x), where f(z, x) and g(z, x) are entire functions of x, and f(z, 1
4
) =

f(−z, 1
4
) 6= 0. Hence, by a standard transfer principle, the asymptotic behaviors as n →

+∞ of Qn(z) and Pn(z) are deduced from the behavior of their generating functions as
x→ 1

4
: we get

Qn(z) ∼ e−z/2f
(
z,

1

4

)
4n
(
−1/2

n

)
and Pn(z) ∼ ez/2f

(
z,

1

4

)
4n
(
−1/2

n

)
.

It follows that limn
Pn(z)
Qn(z)

= ez.

6.2 Construction of numbers with E-approximations

In this section, we prove the first part of Theorem 3, namely that any element of

E ∪ Γ(Q)

E ∪ Γ(Q)
∪ Frac G

has E-approximations. As mentioned in the introduction, this is true for any element of
Frac G. To complete the proof, let us construct for any ξ ∈ E ∪ Γ(Q) a sequence (Pn)n as
in Definition 4 with limn→∞ Pn = ξ.

If ξ = F (α) where α ∈ Q and F (z) =
∑

n≥0
an
n!
zn is an E-function, we define Pn ∈ Q

by
∞∑
n=0

Pnz
n =

1

1− z
F (αz).

Then, trivially,

Pn =
n∑
k=0

ak
k!
αk −→ F (α) = ξ.

If ξ = Γ(α) with α ∈ Q \ Z≤0, we consider the E-function

Eα(z) =
∞∑
n=0

zn

n!(n+ α)

and define Pn(α) as announced in the introduction, by the series expansion (for |z| < 1)

1

(1− z)α+1
Eα

(
− z

1− z

)
=
∑
n≥0

Pn(α)zn ∈ Q[[z]].
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Then

Pn(α) =
n∑
k=0

(
n+ α

k + α

)
(−1)k

k!(k + α)

(by direct manipulations) and, provided that α < 1,

lim
n→+∞

Pn(α) = Γ(α) = ξ.

To see this, we start from the asymptotic expansion

Eα(−z) ≈ Γ(α)

zα
− e−z

∞∑
n=0

(−1)n
(1− α)n
zn+1

(6.2)

in a large sector bisected by any θ ∈ (−π
2
, π

2
), which is a special case of Theorem 5 (proved

directly in [22, Proposition 1]). Since exp
(
− z

1−z

)
= O(1) as z → 1, |z| < 1, it follows that

1

(1− z)α+1
Eα

(
− z

1− z

)
=

Γ(α)

1− z
+O

(
1

|1− z|α

)
+O(1)

as z → 1, |z| < 1. The result follows by a standard transfer result since α < 1; this example
is of the type covered by §5.2.3 with α1 = 0.

From the differential equation zy′′(z) + (α+ 1− z)y′(z)−αy(z) = 0 satisfied by Eα(z),
we easily get the differential equation satisfied by 1

(1−z)α+1Eα
(
− z

1−z

)
:(

3z3 − z4 − 3z2 + z
)
y′′(z) +

(
5z2α− 4z3 − 2z3α + 8z2 + 1 + α− 5z − 4zα

)
y′(z)

+
(
− 1− 2z2 − 3z2α + 2z − α + 4zα− α2 + 2zα2 − z2α2

)
y(z) = 0. (6.3)

This immediately translates into a linear recurrence satisfied by the sequence (Pn(α)):

(n+ 3)(n+ 3 + α)Pn+3(α)− (3n2 + 4nα + 14n+ α2 + 9α + 17)Pn+2(α)

+ (3n+ 5 + 2α)(n+ 2 + α)Pn+1(α)− (n+ 2 + α)(n+ 1 + α)Pn(α) = 0 (6.4)

with P0(α) = 1
α

, P1(α) = 1+α+α2

α(α+1)
and P2(α) = 4+5α+6α2+4α3+α4

2α(α+1)(α+2)
.

6.3 Properties of numbers with E-approximations

Let us prove now the second part of Theorem 3, namely that any number ξ ∈ C∗ with
E-approximations belongs to

E ∪ (Γ(Q) ·G)

E ∪ (Γ(Q) ·G)
∪
(

Γ(Q) · exp(Q) · Frac G
)
.

The proof is very similar to that of [11, §6.2] so we skip the details. Let (Pn, Qn) be E-
approximations of ξ ∈ C∗. If (Pn) has the first asymptotic behavior (5.1) of Theorem 6,
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then so does (Qn) with the same parameters d, q, u, v, and the sum is over the same

non-empty finite set of θ. Therefore ξ = gθΓ(−uθ)
g′θΓ(−u′θ)

∈ Γ(Q) · Frac G, using Eq. (1.5).

Now if (Pn) satisfies (5.2) then so does (Qn) with the same parameters q, u, v, κ1, . . . ,
κd−1 (since we may assume that d is the same), and the same set of (θ1, . . . , θd) in the sum.
If v = κ1 = . . . = κd−1 = 0 and a term in the sum corresponds to θ1 = . . . = θd−1 = 0, then
ξ =

ω0,...,0,θd

ω′0,...,0,θd
∈ E∪(Γ(Q)·G)

E∪(Γ(Q)·G)
, else ξ ∈ Γ(Q) · exp(Q) · Frac G (using Eq. (1.5)).

6.4 Extended E-approximations

Let us consider the E-function

E(z) =
∞∑
n=1

zn

n!n
.

We shall prove that the sequence (Pn) defined in the introduction by

log(1− z)

1− z
− 1

1− z
E

(
− z

1− z

)
=
∞∑
n=0

Pnz
n ∈ Q[[z]]

provides, together with Qn = 1, a sequence of E-approximations of Euler’s constant in the
extended sense of (1.8). It is easy to see that

Pn =
n∑
k=1

(−1)k−1

(
n

k

)
1

k!k
−

n∑
k=1

1

k
=

n∑
k=1

(−1)k
(
n

k

)
1

k

(
1− 1

k!

)
,

where the second equality is a consequence of the identity
∑n

k=1
1
k

=
∑n

k=1(−1)k−1
(
n
k

)
1
k
.

We now observe that E(z) has the asymptotic expansion

E(−z) ≈ −γ − log(z)− e−z
∞∑
n=0

(−1)n
n!

zn+1
(6.5)

in a large sector bisected by any θ ∈ (−π, π) (see [22, Prop. 1]; this is also a special case
of Theorem 5). Therefore, as z → 1, |z| < 1,

− 1

1− z
E
(
− z

1− z

)
+

log(1− z)

1− z
=

γ

1− z
+O(1).

As in §6.1 in the case of Γ(α), a transfer principle readily shows that

lim
n→+∞

Pn = γ.

Since E(z) is holonomic, this is also the case of log(1−z)
1−z −

1
1−zE

(
− z

1−z

)
. The latter function

satisfies the differential equation(
3z3− z4− 3z2 + z

)
y′′(z) +

(
1− 5z + 8z2− 4z3

)
y′(z) +

(
− 2z2 + 2z− 1

)
y(z) = 0. (6.6)

31



This immediately translates into a linear recurrence satisfied by the sequence (Pn):

(n+ 3)2Pn+3 − (3n2 + 14n+ 17)Pn+2 + (n+ 2)(3n+ 5)Pn+1 − (n+ 1)(n+ 2)Pn = 0 (6.7)

with P0 = 0, P1 = 0, P2 = 1
4
. The differential equation (6.6) and the recurrence rela-

tion (6.7) are the case α = 0 of (6.3) and (6.4) respectively.

Let us now prove that any number with extended E-approximations belongs to

(E · log(Q∗)) ∪ S

(E · log(Q∗)) ∪ S
∪
(

exp(Q) · Frac S
)
,

as stated in the introduction. Let P (z) =
∑∞

n=0 Pnz
n be given by a finite sum

P (z) =
∑
i,j,k,`

αi,j,k,` log(1− Ai(z))j ·Bk(z) · E`
(
C(z)

)
(6.8)

where αi,j,k,` ∈ Q, Ai(z), Bk(z), C(z) are algebraic functions in Q[[z]], Ai(0) = C(0) = 0,
and E`(z) are E-functions. If there is only one term in the sum, the conclusions of Theorems
3 and 6 hold and their proofs extend immediately, except that E has to be replaced with
E · log(Q∗) in §5.2.1 and 5.2.2, and therefore in (1.7) and (5.3). Otherwise, we apply a
variant of Lemma 2 to each E-function E`(z), obtaining exponential terms eαk,`z: for each
k we write sufficiently many terms in the asymptotic expansion before the error term o(1)
(and not only the dominant one as in §5). Theorem 2 asserts that all these terms are of
the same form, but now the constants ω belong to S. Combining these expressions yields

P (z) =
K∑
k=1

ωke
αkC(z)Uk(z)(log Vk(z))vk(1 + o(1))

as z tends to some point (possibly ∞) at which C is infinite; here Uk, Vk are algebraic
functions, vk ∈ N, and ωk ∈ S. However there is no reason why ωk would belong to Γ(Q)·G
in general, since it may come from non-dominant terms in the expansions of E`(z), due to
compensations. Upon replacing Γ(Q) ·G with S (and E with E · log(Q∗) as above), the
proof of Theorems 3 and 6 extends immediately.

To conclude this section, we discuss another interesting example, which was also men-
tioned in the introduction. It corresponds to the more general notion of extended E-
approximations where the coefficients of the linear form (6.8) are in E and not just in
Q. Let us consider the E-function F (z2), where F (z) =

∑∞
n=0 z

n/n!2. It is solution
of an E-operator L of order 2 with another solution of the form G(z2) + log(z2)F (z2)

where G(z2) = −2
∑∞

n=0

1+ 1
2

+···+ 1
n

n!2
z2n is an E-function (in accordance with André’s the-

ory). Then,

F (1− z) =
∞∑
n=0

(1− z)n

n!2
=
∞∑
k=0

(−1)kAk
k!

zk
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with

Ak = (−1)k
∞∑
n=0

1

n!(n+ k)!
.

It is a remarkable (and known) fact that the sequence (Ak) satisfies the recurrence relation
Ak+1 = kAk +Ak−1, A0 = F (1), A1 = −F ′(1). This can be readily checked. It follows that
Ak = VkF (1) − UkF ′(1) where the sequences of integers Uk, Vk are solutions of the same
recurrence.

Hence, the sequence Uk/Vk is the sequence of convergents to F (1)/F ′(1) whose contin-
ued fraction is [0; 1, 2, 3, 4, . . .]. Moreover, we have

∞∑
n=0

(−1)kUk
k!

zk = aF (1− z) + bG(1− z) + b log(1− z)F (1− z)

∞∑
n=0

(−1)kVk
k!

zk = cF (1− z) + dG(1− z) + d log(1− z)F (1− z)

for some constants a, b, c, d, because both generating functions are solutions of an operator
of order 2 obtained from L by changing z to

√
1− z. The conditions V0 = 1, U0 = 0, V1 =

0, U1 = 1 and Ak = VkF (1) − UkF
′(1) translate into a linear system in a, b, c, d with

solutions given by

a =
g

gf ′ − f 2 − fg′
∈ E, b = − f

gf ′ − f 2 − fg′
∈ E,

c = − f + g′

gf ′ − f 2 − fg′
∈ E, d =

f ′

gf ′ − f 2 − fg′
∈ E,

where f = F (1), f ′ = F ′(1), g = G(1), g′ = G(1). We observe that gf ′ − f 2 − fg′ ∈ Q∗

because it is twice the value at z = 1 of the wronskian built on the linearly independent solu-
tions F (z2) and G(z2)+log(z2)F (z2). It follows that Uk/Vk are extended E-approximations
to the number F (1)/F ′(1) with “coefficients” in E, but not in Q (because the number f
was proved to be transcendental by Siegel).
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