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Abstract. We construct bivariate polynomial approximations of the Lerch function,
which for certain specialisations of the variables and parameters turn out to be Hermite-
Padé approximants either of the polylogarithms or of Hurwitz zeta functions. In the former
case, we recover known results, while in the latter the results are new and generalise some
recent works of Beukers and Prévost. Finally, we make a detailed comparison of our work
with Beukers’. Such contructions are useful in the arithmetical study of the values of the
Riemann zeta function at integer points and of the Kubota-Leopold p-adic zeta function.

Résumé. Nous construisons des approximations polynomiales en deux variables de la
fonction de Lerch, qui, pour certaines spécialisations des variables et des paramètres,
s’avèrent être des approximants de Hermite-Padé soit des fonctions polylogarithmes soit
des fonctions zêta d’Hurwitz. Dans le premier cas, nous retrouvons des résultats connus
de la littérature tandis que dans le second cas, les résultats sont nouveaux et généralisent
des travaux récents de Beukers et Prévost. Enfin, nous comparons l’approche de Beukers
et la nôtre. De telles constructions sont utiles dans l’étude arithmétique des valeurs aux
entiers de la fonction zêta de Riemann et de la fonction zêta p-adique de Kubota-Leopold.

1. Introduction

In this article, we consider polynomial approximations for the Lerch function, defined to
be the multivariate series

Φs(x, z) =
∞∑

n=1

zn

(n + x)s
.

Here, s is a positive integer and z, x are complex numbers such that |z| ≤ 1, x is not a
negative integer and (s, z) 6= (1, 1). These conditions ensure the convergence of the above
series, which can be analytically continued in z for any fixed s, x. The Lerch function
admits as special cases the Hurwitz function (1) ζ(s, x) = Φs(x, 1), the polylogarithms
Lis(z) = Φs(0, z) and the Riemann zeta function ζ(s) = Φs(0, 1).

The Hermite-Padé approximants of polylogarithms have been extensively studied, with
numerous applications in the diophantine theory of ζ(s); see for example [4, 5, 9, 10, 11,
15] and the references therein. On the other hand, the Hermite-Padé approximants of
Hurwitz functions seem to have received much less attention: see for example Beukers [7],
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1In the literature (for example [1, p. 15, eq. (1.3.1)]), Hurwitz zeta function is sometimes defined as

Φs(x− 1, 1).
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Prévost [14] (in which he uses Wilson’s orthogonal polynomials [20]) and the author [17]
for example. Our aim is to prove simple formulae for certain diagonal Hermite-Padé type
approximants of the Lerch function which provide a unifying approach to these problems.

We remind the reader of the definition of the n-th diagonal Hermite-Padé problem (whose
solutions are Hermite-Padé approximants) at z = z0 ∈ C ∪ {∞} of a family of formal
powers series (2) Fk(z) =

∑∞
j=0 fj,k(z − z0)

k ∈ C[[z]], k = 1, . . . , K. The problem is to find

K polynomials P1(z), . . . , PK(z) ∈ C[z] of degree at most n such that the order at z = z0

of the power series

R(z) = P1(z)F1(z) + P2(z)F2(z) + · · ·+ PK(z)FK(z)

is at least K(n+1)−1 if z ∈ C and at least (K−1)(n+1) if z = ∞, which istheoretically the
best possible order. Uniqueness (up to a multiplicative constant) is not always ensured.
It is sometimes useful to have an order Ω which is less than K(n + 1) − 1 (or (K −
1)(n+1): we will say that we have obtained diagonal Hermite-Padé type approximants. In
diophantine approximation, these approximants are useful when Ω is an increasing function
of n, typically Ω ≈ cKn for some constant cK > 0; see [4, 15] for an example showing that
the best possible value for Ω does not necessarily yield the best number theoretical results.
In all cases, we use the notation R(z) = O(

(z − z0)
Ω
)
.

The functions Φs(x, z) being convergent Taylor series in z, we can consider Hermite-Padé
type approximants at z = 0 for the family

(
1, Φ1(x, z), Φ2(x, z), . . . , ΦA(x, z)

)
for any fixed

integer A ≥ 1 and any fixed x. Explicit formulae in the diagonal case have been known for
a long time for x = 0 and the general case is little different. Surprisingly, it has so far not
been mentionned in the literature that these formulae contain more: they also provide with
almost no change diagonal Hermite-Padé type approximants at x = +∞ for the family(
1, Φ1(x, z), Φ2(x, z), . . . , ΦA(x, z)

)
for any fixed integer A ≥ 1 and any fixed z. Indeed,

let us consider the following problem: given any integers A ≥ 2, n ≥ 0, r ≥ 0 such that
A(n+1) ≥ r+2, find A+1 polynomials P0(x, z), P1(x, z), . . . , PA(x, z) in Q[z, x], of degree

at most r in x and at most n in z, and P̂0(x, z) ∈ Q(x)[z] of degree at most n in z, such
that




RA,n,r(x, z) = P0(x, z) +
A∑

j=1

Pj(x, z)Φj(x, 1/z) = O(
x−A(n+1)+r+1

)
at x = +∞.

SA,n,r(x, z) = P̂0(x, z) +
A∑

j=1

Pj(x + r, z)Φj(x, 1/z) = O(
z−r−1

)
at z = ∞.

(1)

When we fix x, resp. z, the first, resp. second, equation is a diagonal Hermite-Padé
type problem in z, resp. in x. Before going further, we warn the reader that the func-
tions Φs(x, z) are not holomorphic nor even real analytic at x = ∞. Therefore, the ex-
pression “Hermite-Padé type approximants at x = +∞” in Problem (1) is a priori an
abuse of language. For the moment, it is enough to consider that, in (1), we ask that

2If z0 = ∞, we replace every occurence of z − z0 by 1/z. Hermite-Padé approximants are also known
as Padé approximants of the first type, not to be confused with our use of the word “type” in this text.
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lim
x→+∞

xA(n+1)−r−1RA,n,r(x, z) is finite. In fact, this is not a real abuse of language because

the Lerch function Φs(x, z) admits an asymptotic expansion Φ̂s(x, z) in powers of 1/x and
the polynomials Pj(x, z) in Problem (1) provide a solution to the Hermite-Padé problem

for
(
1, Φ̂1(x, z), Φ̂2(x, z), . . . , Φ̂A(x, z)

)
at x = ∞. This is a well-known generalisation of

Hermite-Padé approximants, see for example the book [12, p. 66]. However, since this
distinction will be useful, we give more details in Section 2.

We can not expect to have a unique solution for Problem (1) (even up to multiplicative
constant). The following result provides a possible solution.

Theorem 1. When r ≥ n, Problem (1) admits the following explicit solution:

RA,n,r(x, z) =
n!A

r!

∞∑

k=1

(k)r

(k + x)A
n+1

z−k (2)

and

SA,n,r(x, z) =
n!A

r!

∞∑

k=1

(k)r

(k + x + r)A
n+1

z−k−r, (3)

which are holomorphic functions in the variables x, z in the domain defined by |z| ≥ 1
(including z = ∞) and x 6∈ {−1,−2,−3, . . .}. We also have

Ps(x, z) =
n∑

j=0

(−1)jA+rzj

(A− s)!

(
d

dj

)A−s ((
n

j

)A(
x + j

r

))
∈ Q[x, z] for s ≥ 1,

P̂0(x, z) =
A∑

s=1

n∑
j=1

j∑

`=1

(−1)jA+r+1zj−`

(` + x)s(A− s)!

(
d

dj

)A−s ((
n

j

)A(
x + j

r

))
∈ Q(x)[z],

P0(x, z) =
n!A

(A− 1)!r!

n∑
j=1

(
d

d`

)A−1(
(−`− x)r(`− j)A

(−`)A
n+1

j−1∑

k=0

zk

` + x− k

)

|`=j

∈ Q[x, z]. (4)

Remarks. a) The explicit expression for the polynomials Ps is obtained by partial fraction
expansion with respect to k of the rational function (k)rn/(k+x)A

n+1. For Ps (s = 1, . . . , A−
1 and P̂0), the symbol (d/dj)A−s is a formal derivative that must be handled carefully: we
refer to the proof for the exact meaning of this statement. On the other hand, the derivative
(d/d`)A−1 in P0 is well-defined.

b) Equations (2) and (3) enable us to control explicitely the error terms in the approx-
imations, which is not the case of the formal O(

z−r−1
)

and O(
x−A(n+1)+r+1

)
we initially

asked for. This could be useful for arithmetical applications of our results although, as
Beukers pointed out to the author, the series for RA,n,r(x, z) does not give its asymptotic
expansion in 1/x and such an expansion is an important tool in [7].

c) The most difficult part of the theorem is proving that P0(x, z) is a polynomial in x,
which is done by transforming of a complicated formula for P0(x, z) into (4) (Incidentally,
the degrees of P0(x, z) in x and z are only r − 1 and n − 1 respectively). On the other

hand, P̂0(x; z) is a polynomial in z but not in x: it would be a polynomial in both variables
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if we replaced the numerator (k)r of the series in (2) and (3) by (k)2r. This would be a
completely different approximation problem: in particular point (ii) of Corollary 1 below
would no longer hold because r would have to be essentially ≤ An/2.

Theorem 1 has a number of consequences: we mention two of these in the following
corollary.

Corollary 1. (i) When r = n and z = 1, the series RA,n,r(x, 1) in (2) is a solution
of the n-th diagonal Hermite-Padé problem at x = +∞ for the A functions

(
1, ζ(2, x),

ζ(3, x),. . . , ζ(A, x)
)
.

(ii) When r = A(n + 1) − 1 and for any fixed x, the series SA,n,r(x, z) in (3) is a
solution of the n-th diagonal Hermite-Padé problem at z = ∞ for the A + 1 functions(
1, Φ1(x, 1/z), Φ3(x, 1/z), . . . , ΦA(x, 1/z)

)
.

Remarks. a) The second assertion (ii) is well-known to experts and we mention it for
completeness: when x = 0, it is part of a theorem of Nikishin [11] (which was generalised
in [16] to arbitrary values of r).

b) The case A = 2 and r = n in (i) was obtained by Prévost [14] and Beukers [7]
independently in different forms and settings (see Section 4.1 for a comparison of Beukers’
solution and ours); Beukers even mentions that his solution is implicit in Stieltjes’ classical
work on continued fractions. On the other hand, the second case, which deals with Hurwitz
functions, seems to be new when A ≥ 3.

c) For any fixed z 6= 1, there is no value of r such that the series RA,n,r(x, z) is a solution of
the n-th diagonal Hermite-Padé problem at x = +∞ for the A+1 functions

(
1, Φ1(x, 1/z),

Φ2(x, 1/z), . . . , ΦA(x, 1/z)
)
. This is due to the presence of the function Φ1(x, z), whose

polynomial coefficient “unexpectedly” vanishes identically when z = 1 (yielding (i)).

We now consider another Hermite-Padé type problem. Given any integer A ≥ 2, n ≥ 0
and r ≥ 0 such that A(n + 1) ≥ 2r + 3, find A− 1 polynomials Q0(x), Q2(x), . . . , QA−1(x)
in Q[x], of degree at most 2r + 1, such that

TA,n,r(x) = Q0(x) +
∑

j=2,...,A−1

j≡A−1[2]

Qj(x)Φj

(
x; (−1)A

)
= O(

x−A(n+1)+2r+2
)

at x = +∞. (5)

When A is even and r = n, Problem (5) is by definition the (2n + 1)-th diagonal Hermite-
Padé problem for

(
1, ζ(3, x), ζ(5, x), . . . , ζ(A − 1, x)

)
. When r = n, the case A = 4 was

solved by Prévost [14] and Beukers [7] in different forms; their solutions also have a different
form from the one proposed here, which has the advantage of being generalisable to larger
values of A and r. See Section 4.2 for a comparison with Beukers’ solution for A = 4, r = n.

Theorem 2. When r ≥ n, Problem (5) admits the following solution:

TA,n,r(x) =
n!A

r!2

∞∑

k=1

(−1)kA
(
k + x +

n

2

) (k)r(k + 2x + n− r + 1)r

(k + x)A
n+1

, (6)
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which converges for all x ∈ C \ {−1,−2,−3, . . .}. We also have that

Qs(x) =
(−1)r

(A− s)!

n∑
j=0

(
d

dj

)A−s ((
n

2
− j

)(
n

j

)A(
x + j

r

)(
x + n− j

r

))
∈ Q[x]

for s ≥ 2 and

Q0(x) =
(−1)rn!A

(A− 1)!r!2

×
n∑

j=1

(
d

d`

)A−1((
n

2
− `

)
(−`− x)r(`− x− n)r(`− j)A

(−`)A
n+1

j−1∑

k=0

1

` + x− k

)

|`=j

∈ Q[x].

Remark. When A is odd, there is no choice of r such that Problem (5) becomes the (2r+1)-

th diagonal Hermite-Padé for
(
1, ζ̃(2, x), ζ̃(4, x), . . . , ζ̃(A−1, x)

)
, where ζ̃(s, x) = Φs(x,−1).

The rest of the article is organised as follows. In Section 2, we compare Hermite-Padé
approximants with the similar approximations obtained by replacing formal series by as-
ymptotic expansions: this result is stated as Proposition 1. We prove Theorem 1, Corol-
lary 1 and Theorem 2 in this order in Section 3. Finally, in Section 4, we compare our
results with the results of Beukers quoted above, which present interesting differences.

2. Asymptotic and formal Hermite-Padé approximants

For fixed s, z, the function Φs(x, z) is not defined as a formal power series in x and, as
indicated in the introduction, it is not holomorphic or real analytic at x = ∞ (and hence
can not be expanded as a convergent power series in 1/x). Therefore, strictly speaking, we
can not seek Hermite-Padé type approximants at x = ∞ for it. Nevertheless, this problem
can be fixed by a classical extension of the notion of Hermite-Padé approximants: see [12,
p. 66] for more details and references.

Indeed, the Lerch function admits an asymptotic expansion Φs(x, z) ∼ ∑∞
k=1 φk(s, z)x−k

in Poincaré’s sense: for all N ≥ 0, we have that

Φs(x, z) =
N∑

k=0

φk(s, z)x−k−s+1 +O(
x−s−N

)
,

uniformly in the half-plane <(x) > 0, where

φk(s, z) =





(
k + s− 2

s− 2

)
Bk

s− 1
if z = 1, s ≥ 2,

(−1)k

(
k + s− 1

s− 1

)
ϑk

( z

1− z

)
if z 6= 1, s ≥ 1.

Here, Bk is the k-th Bernoulli number and ϑ = zd/dz. Since a function admits at most
one asymptotic expansion in powers of 1/x, it is natural to use the following notion of
“order at infinity”: given a function g defined in a ray S = (eiϑA, eiϑ∞) (for a certain
A ∈ R) and which admits an asymptotic expansion as x → eiϑ∞, we say that g is of order
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at least K at x = eiϑ∞ if for all integer k with 0 ≤ k ≤ K − 1, limx→eiϑ∞
x∈S

xjf(x) = 0. In

this case, we write g(x) = O(
x−K

)
. It may happen that the asymptotic expansion holds

in a much larger domain than a ray, typically in an open angular sector: the definition
extends accordingly. For example, Φs(x, z) has order s− 1 in x at infinity in the half-plane
<(x) > 0.

Let us now consider K complex valued functions F1(x), F2(x), . . . , FK(x) defined on an
interval (A, +∞) (A ∈ R). Let us suppose that all these functions have an asymptotic

expansion to all orders when x = +∞, i.e., Fk(x) =
∑N−1

j=0 fj,kx
−j +O(

x−N
)

as x → +∞
for all integer N ≥ 0. For each k = 1, . . . , K, we denote by F̂k(x) =

∑∞
j=0 fj,kx

−j the

formal power series associated to Fk (this series may be not convergent or may converge
to a function different from Fk(x)). Let us also suppose that for a given integer n ≥ 0, we
can find K polynomials P1(x), . . . , PK(x) ∈ C[x] of degree at most n such that

lim
x→+∞

x(K−1)(n+1)−1

K∑

k=1

Pk(x)Fk(x) = 0. (7)

In this situation, we have the following easy result, which will be used in what follows.
We prove it for completeness.

Proposition 1. The set of polynomials
(
P1(x), P2(x), . . . , PK(x)

)
is a solution of the n-th

diagonal Hermite-Padé problem at x = ∞ for
(
F̂1(x), F̂2(x), . . . , F̂K(x)

)
.

Remarks. a) Obviously, by a change of variable, we obtain similar results when the asymp-
totic is taken along a ray direction x → eiϑ∞ or in the case of an asymptotic expansion in
a neighbourghood of a complex x0, where Fk(x) =

∑N−1
j=0 fj,k(x− x0)

j +O(
(x− x0)

N
)
.

b) This theorem shows that it is consistent with the usual definition of Hermite-Padé
approximants of formal series to consider P ’s to be solutions of the “n-th Hermite-Padé
(type) problem at x = +∞ of F1(x), F2(x), . . . , FK(x)”. To emphasise the difference be-
tween these notions, we could say that we compute the “n-th asymptotic Hermite-Padé
(type) approximants at x = +∞” for these functions. In Theorems 1 and 2, the conver-
gence is even stronger than just x → +∞ since, in those cases, the asymptotic expansion
Φs(x, z) ∼ ∑∞

k=1 φk(s, z)x−k holds uniformly in the half-plane <(x) > 0.

Proof. It is easier to work at x = 0: changing the variable x to 1/x, we suppose given
functions G1(x), . . . , GK(x) (obtained from the F ’s by the formula Gj(x) = Fj(1/x)) which
all admit an asymptotic expansion at x = 0 in an interval [0, A]: we then have Gk(x) =∑N−1

j=0 fj,kx
j + O(

xN
)

for each N ≥ 0. By hypothesis (7), there exist K polynomials

Q1(x), . . . , QK(x) ∈ C[x] of degree at most n (obtained from the P ’s by the formula
Qj(x) = xnPj(1/x)) such that

lim
x→0+

x−K(n+1)+2

K∑

k=1

Qk(x)Gk(x) = 0. (8)
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Set Ĝk(x) =
∑∞

j=0 fj,kx
j ∈ C[[x]] and Qk(x) =

∑n
j=0 qj,kx

j. We have that

K∑

k=1

Qk(x)Gk(x) =
K∑

k=1

( n∑
j=0

qj,kx
j

)( K(n+1)−2∑
j=0

fj,kx
j

)
+O(

xK(n+1)−1
)

and condition (8) ensures that the polynomial

K∑

k=1

( n∑
j=0

qj,kx
j

)( K(n+1)−2∑
j=0

fj,kx
j

)
(9)

is identically 0. But this means exactly that Q1(x), . . . , QK(x) are solutions of the n-th

diagonal Hermite-Padé problem for the formal series Ĝ1(x), . . . , ĜK(x). ¤

3. Proofs of the results

3.1. Proof of Theorem 1. Under the conditions of Problem 1, let us define the function

ŜA,n,r(x, z) =
n!A

r!

∞∑

k=1

(k)r

(k + x + r)A
n+1

z−k−r,

which is clearly holomorphic in z in |z| ≥ 1 (including z = ∞) and meromorphic in x in

C \ {−1− r,−2− r,−3− r, . . .}. Furthermore, we obviously have ŜA,n,r(x, z) = O(z−r−1).
With k = `− r, we have that

ŜA,n,r(x, z) =
n!A

r!

∞∑

`=r+1

(`− r)r

(` + x)A
n+1

z−` =
n!A

r!

∞∑

`=1

(`− r)r

(` + x)A
n+1

z−`

where the second equality holds because (` − r)r = 0 for all ` ∈ {1, 2, . . . , r}. By partial
fraction expansion, we have

n!A

r!

(`− r)r

(` + x)A
n+1

=
A∑

s=1

n∑
j=0

Cj,s(x)

(` + x + j)s

with

Cj,s(x) =
1

(A− j)!

(
d

d`

)A−j(
n!A

r!

(`− r)r

(` + x)A
n+1

(` + x + j)A

)

|`=−j−x

.

Note that we have used here the property that A(n + 1) ≥ r + 2, which ensures that

there is no polynomial part in the expansion. Hence, we have ŜA,n,r(x, z) = P̂0(x, z) +∑A
s=1 P̂j(x, z)Φs(x, z) with

P̂0(x, z) = −
A∑

s=1

n∑
j=1

Cj,s(x)

j∑

`=1

zj−`

(` + x)s

and, for s ≥ 1, P̂s(x, z) =
∑n

j=0 Cj,s(x)zj.
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Let us now define

R̂A,n,r(x, z) = zrŜA,n,r(x− r, z) =
n!A

r!

∞∑

k=1

(k)r

(k + x)A
n+1

z−k,

which is holomorphic in z for |z| ≥ 1 (including z = ∞) and meromorphic in x in C \
{−1,−2,−3, . . .}. By partial fraction expansion, we have

n!A

r!

(k)r

(k + x)A
n+1

=
A∑

s=1

n∑
j=0

Dj,s(x)

(k + x + j)s

with

Dj,s(x) =
1

(A− j)!

(
d

dk

)A−j(
n!A

r!

(k)r

(k + x)A
n+1

(k + x + j)A

)

|k=−j−x

. (10)

Hence, we have R̂A,n,r(x, z) = P0(x, z) +
∑A

s=1 Pj(x, z)Φs(x, z) with

P0(x, z) = −
n∑

j=1

A∑
s=1

Dj,s(x)

j∑

k=1

zj−k

(k + x)s

and, for s ≥ 1, Ps(x, z) =
∑n

j=0 Dj,s(x)zj. We have Cj,s(x) = Dj,s(x + r) and therefore for

all s ≥ 1, P̂s(x, z) = Ps(x + r, z).
The right hand side of equation (10) shows clearly that, for s ≥ 1, Ps(x, z) and Qs(x, z)

are both polynomials in z of degree (at most) n and polynomials in x of degree (at most)
r. We have the following symbolic expression for Ps:

Ps(x, z) =
1

(A− s)!

n∑
j=0

(−1)jA+r

(
d

dj

)A−s((
n

j

)A(
x + j

r

))
zj.

We also have that P0(x, z) is a polynomial in z of degree at most n− 1 but it is much less
obvious that P0(x, z) is also a polynomial in x. To prove this, we first note that

Dj(x) =
(−1)A−s

(A− s)!

(
d

d`

)A−s(
n!A

r!

(−`− x)r

(−`)A
n+1

(j − `)A

)

|`=j

and

j∑

k=1

zj−k

(k + x)s
=

(−1)s−1

(s− 1)!

(
d

d`

)s−1( j−1∑

k=0

zk

` + x− k

)

|`=j

.
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Hence, by Leibniz formula,

A∑
s=1

Dj,s(x)

j∑

k=1

zj−k

(k + x)s

=
(−1)A−1

(A− 1)!

A∑
s=1

(
A− 1

s− 1

)(
n!A

r!

(−`− x)r

(−`)A
n+1

(j − `)A

)(A−s)

|`=j

( j−1∑

k=0

zk

` + x− k

)(s−1)

|`=j

=
(−1)A−1

(A− 1)!

(
d

d`

)A−1(
(−`− x)r(j − `)A

(−`)A
n+1

j−1∑

k=0

zk

` + x− k

)

|`=j

.

We have not yet used the hypothesis that r ≥ n and this enables us to use the following
trivial but crucial fact: for any j ∈ {1, . . . , n} and any k ∈ {1, . . . , j − 1}, the polynomial
x − k is a factor of the polynomial (−x)r for any r ≥ n. Hence, the rational function in
x, `

F (x, `) =
(−x)r(j − `)A

(−`)A
n+1

j−1∑

k=0

zk

x− k

is actually a polynomial in x of degree at most r− 1 and a rational function of `: the same
is true of the function

∂A−1

∂`A−1
F (x + `, `) =

(
d

d`

)A−1(
(−`− x)r(j − `)A

(−`)A
n+1

j−1∑

k=0

zk

` + x− k

)
.

Finally, the formula

P0(x, z) =
n!A

(A− 1)!r!

n∑
j=1

(
d

d`

)A−1(
(−`− x)r(`− j)A

(−`)A
n+1

j−1∑

k=0

zk

` + x− k

)

|`=j

shows that P0(x, z) is a polynomial in x of degree at most r − 1.

To complete the proof of the theorem, it remains to show that

lim
x→+∞

xA(n+1)−r−2R̂A,n,r(x, z) = 0.

But for <(x) > 0 we have that

∣∣xA(n+1)−r−2R̂A,n,r(x, z)
∣∣ ≤

∞∑

k=1

(k)r|x|A(n+1)−r−2

|k + x|A(n+1)

≤
∞∑

k=1

(k)r|x|A(n+1)−r−2

|x|A(n+1)−r−2|k + x|r+2
=

∞∑

k=1

(k)r

|k + x|r+2
. (11)

Obviously this last series tends to 0 as |x| → ∞ uniformly in the half-plane <(x) > 0.

Since R̂A,n,r(x, z) admits an asymptotic expansion as x → +∞, we therefore have that

R̂A,n,r(x, z) = O(
x−A(n+1)+r+1

)
.
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Hence, the series R̂A,n,r(x, z) and ŜA,n,r(x, z) are a solution to the approximation Prob-
lem 1.

3.2. Proof of Corollary 1. Case (ii) does not need a proof since this is the definition of
Hermite-Padé approximants at z = ∞.

This is almost true for case (i), except that we must explain how the divergent series
ζ(1, x) disappears. This follows from a general fact: under the conditions of Theorem 1,
for all r ≥ n, the polynomial P1(x, z) is identically zero for z = 1. This can be proved as
follows: the series RA,n,r(x, z) in equation (2) is convergent for any z such that |z| ≥ 1
and x 6∈ {−1,−2,−3, . . .}. In particular RA,n,r(x, 1) is convergent and the only potentially
divergent term amongst the Ps(x, 1)Φs(x, 1) is s = 1. Abel’s continuity theorem implies
that limz→1 Ps(x, z)Φs(x, z) exists and is finite. Therefore, for all x ∈ C, P1(x, 1) = 0 and

RA,n,r(x, 1) = P0(x, 1) +
A∑

s=2

Ps(x, 1)ζ(s, x).

3.3. Proof of Theorem 2. The proof is similar to that of Theorem 1. We first define the
series

TA,n,r(x, z) =
n!A

r!2

∞∑

k=1

(
k + x +

n

2

) (k)r(k + 2x + n− r + 1)r

(k + x)A
n+1

z−k

which, under the conditions of the theorem, converges for |z| ≥ 1 and x 6∈ {−1,−2,−3, . . .}.
We also define the rational fraction of k

R(k) =
(
k + x +

n

2

) (k)r(k + 2x + n− r + 1)r

(k + x)A
n+1

,

which satisfies the functional equation R(k) = (−1)A(n+1)+1R(−k − 2x − n). By partial
fraction expansion, we have

R(k) =
A∑

s=1

n∑
j=0

Ej,s(x)

(k + x + j)s

where

Ej,s(x) =
1

(A− j)!

(
d

dk

)A−j(
R(k) (k + x + j)A

)

|k=−j−x

.

By uniqueness of this expansion, the functional equation for R(k) implies that

En−j,s(x) = (−1)s+A(n+1)+1Ej,s(x). (12)

By the same process as in Section 3.1, we deduce

TA,n,r(x, z) = Q0(x, z) +
A∑

s=1

Qs(x, z)Φs(x, z)
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where Qs(x, z) =
∑n

j=0 Ej,s(x)zj for s ≥ 1 and

Q0(x, z) =
(−1)rn!A

(A− 1)!r!2

×
n∑

j=1

(
d

d`

)A−1((
n

2
− `

)
(−`− x)r(`− x− n)r(`− j)A

(−`)A
n+1

j−1∑

k=0

zk

` + x− k

)

|`=j

.

Clearly, for s ≥ 1, the Qs(x, z) are polynomials of degree (at most) n in z and 2r in x,
while Q0(s, z) is of degree (at most) n− 1 in z and 2r − 1 in x.

Equation (12) implies that znQs(x, 1/z) = (−1)A(n+1)+s+1Qs(x, 1/z) and, in particular,
that

Qs

(
x, (−1)A

)
= (−1)A+s+1Qs

(
x, (−1)A

)
. (13)

Therefore, Qs

(
x, (−1)A

)
= 0 if s ≡ A [2] and we have

TA,n,r

(
x, (−1)A

)
= Q0

(
x, (−1)A

)
+

A∑
s=1

s≡A+1[2]

Qs

(
x, (−1)A

)
Φs

(
x; (−1)A

)
. (14)

The term Q1

(
x, (−1)A

)
Φ1

(
x; (−1)A

)
appears only when A is even, in which case the

series Φ1

(
x; (−1)A

)
is divergent: by the same argument as in Section 3.2, this implies that

Q1

(
x, (−1)A

)
= 0 identically. Furthermore, we also have QA(x, (−1)A) = 0 identically for

any A ≥ 3 by the functional equation (13). Therefore, the sum in (14) starts at j = 2 and
stops at j = A−1. Finally, the order at x = +∞ of TA,n,r

(
x, (−1)A

)
is obtained by upper

bounds similar to (11) and Problem (5) is completely solved.

4. Comparison with some results of Beukers

In this section, we compare our formulas with those obtained by Beukers in certain
special cases. The example in 4.2 is particularly instructive since it shows the relevance of
asymptotic Padé approximants.

4.1. Theorem 1 for A = 2 and r = n. Let us define the formal series

R(x) =
∞∑

k=0

Bkx
−k−1,

which is the asymptotic expansion of ζ(2, x) at x = +∞. Up to change of notation,
Beukers [7] showed that

∞∑

k=1

(k − n)n

(k)n+1

(k − 1)!

(x + 1)k

= pn(x)R(x) + qn(x) = O(x−n−1) (15)

where pn(x) and qn(x) are polynomials in C[x] of degree n. It is important to note that
these equalities are equalities of formal series; this is a solution to the n-th diagonal Padé
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problem for
(
1, R(x)

)
. Our Corollary 1 (case (ii) with A = 2, r = n) produces a solution

to the n-th Padé problem for
(
1, ζ(2, x)

)

R2,n,n(x, 1) = n!
∞∑

k=1

(k)n

(k + x)2
n+1

= P2,n(x)ζ(2, x) + P0,n(x) = O(x−n−1),

where the equalities have an analytical meaning. Since R(x) is the asymptotic expansion
of ζ(2, x), Proposition 1 shows that (R2,n,n(x, 1), P2,n(x), P0,n(x)) is also a solution of the
formal Padé problem for

(
1, R(x)

)
.

Let us call Rn(x) the series on the left hand side of (15). It is not just a formal series: it
converges uniformly on <(x) > −1, where it defines a holomorphic function: since p0(x) = 1
and q0(x) = 0, Rn(x) can be viewed as a solution to the n-th (asymptotic) Padé problem at
x = +∞ for

(
1, R0(x)

)
. It is natural to compare the series Rn(x) and R2,n,n(x, 1) because

R0(x) and ζ(2, x) have the same asymptotic expansion: we will prove that they are actually
equal (3) on <(x) > −1. For this, we first express them as hypergeometric functions:

Rn(x) =
Γ(n + 1)3Γ(x + 1)

Γ(2n + 2)Γ(x + n + 2)
3F2

[
n + 1, n + 1, n + 1
x + n + 2, 2n + 2

; 1

]
,

R2,n,n(x, 1) =
Γ(n + 1)2Γ(x + 1)2

Γ(x + n + 2)2 3F2

[
n + 1, x + 1, x + 1

x + n + 2, x + n + 2
; 1

]
.

We can now apply Thomae’s 3F2 relation [19, p. 114, eq. (4.3.1)] and we obtain that
R2,n,n(x, 1) = Rn(x) on <(x) > −1.

In particular, for n = 0, the equality R2,0,0(x, 1) = R0(x) reads

ζ(2, x) =
∞∑

k=1

k!

k2(x + 1)k

(16)

and we remark that the right hand side is the expansion of ζ(2, x) in a série de facultés:
see Nörlund’s monography [13, Chapitre VI]. Equation (16) can also be proved as follows:

ζ(2, x) =

∫ ∞

0

t

1− e−t
e−t(x+1) dt = −

∫ 1

0

log(1− u)

u
(1− u)x du

=
∞∑

k=1

1

k

∫ 1

0

uk−1(1− u)x du =
∞∑

k=1

k!

k2(x + 1)k

, (17)

where we have used the change of variable t = − log(1− u). All steps are justified by the
absolute convergence on <(x) ≥ δ > −1. Nörlund [13, pp. 213-214] mentions that the
functions which admit an expansion in a série de facultés are exactly those which admit an
asymptotic expansion of the form considered by Borel –i.e., coming from a suitable Laplace
transform, which is the case for ζ(2, x) by the first equality of (17).

3This is by no mean obvious: see the next Section 4.2 for a counter-example in an apparently similar
situation.
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4.2. Theorem 2 for A = 4 and r = n. Let us define the formal series

T (x) = −1

2
R′(x) =

1

2

∞∑

k=0

(k + 1)Bkx
−k−2,

which is the asymptotic expansion of ζ(3, x) at x = +∞. Beukers [7] also showed that

(−1)n+1

2

∞∑

k=1

(k − n)n

(k)n+1

(k − 1)!2

(x + 1)k(−x)k

= un(x)T (x) + vn(x) = O(x−2n−2) (18)

where un(x) and vn(n) are polynomials in C[x] of degree 2n; Again, these equalities are
equalities of formal series. This is a solution to the (2n + 1)-th diagonal Padé problem for(
1, T (x)

)
. In Theorem 2 (case (ii) with A = 4, r = n), we have also produced an analytic

solution to the (2n + 1)-th diagonal Padé problem for
(
1, ζ(3, x)

)
and we now proceed to

compare the two approaches.
Let us call Tn(x) the series on the left hand side of (18): it is convergent and holomorphic

for any x ∈ C\Z. Since T4,n,n(x) is holomorphic at any x ∈ C\{−1,−2,−3, . . .}, both series
can not be equal for all complex non-integral x; for example, numerically, T0(1/2) ≈ 1.4704
while T4,0,0(x)(1/2) = ζ(3, 1/2) = 7ζ(3)−8 ≈ 0.4143. Therefore, it seems paradoxical that
both series produce solutions of the same Padé problem for the formal series T (x).

There is no paradox at all for the following simple reason: Tn(x) can also be viewed as
a solution of the (2n + 1)-th diagonal Padé problem for the convergent series T0(x) (note
that u0(x) = 1 and v0(x) = 0) and it happens that in any sector that does not contain
the real axis, T0(x) and ζ(3, x) have the same asymptotic expansion (although they do not
coincide analytically). Hence, Proposition 1 implies that Tn(x) and T4,n,n(x) enable us to
solve the same formal Padé problem for

(
1, T (x)

)
.

It is an interesting problem to identify the difference between Tn(x) and TA,n,n(x). To
do this, we first express them as hypergeometric functions:

Tn(x) =
1

2

Γ(n + 1)4Γ(x− n)

Γ(x + n + 2)Γ(2n + 2)
4F3

[
n + 1, n + 1, n + 1, n + 1

x + n + 2, n− x + 1, 2n + 2
; 1

]
,

T4,n,n(x) =
1

2

Γ(n + 1)3Γ(x + 1)4Γ(2x + n + 3)

Γ(2x + 2)Γ(x + n + 2)4

× 7F6

[
n + 2x + 2, x + 2 + n

2
, n + 1, x + 1, x + 1, x + 1, x + 1

x + 1 + n
2
, 2x + 2, x + n + 2, x + n + 2, x + n + 2, x + n + 2

; 1

]
.

Luckily, we can now apply Bailey’s identity [19, p. 73, eq. (2.4.4.3)], which relates two
Saalschutzian 4F3 (like Tn(x)) and one very-well-poised 7F6 (like T4,n,n(x)), and we obtain
the desired expression:

T4,n,n(x) = Tn(x) +
1

2

Γ(n− x)Γ(x + 1)4

Γ(2x + 2)Γ(x + n + 2)
4F3

[
x + 1, x + 1, x + 1, x + 1

x + n + 2, x− n + 1, 2x + 2
; 1

]
, (19)

valid for x ∈ C \ Z.
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The second term Γ[·]4F3[·] on the right hand side of (19) cancels the poles of Tn(x) at
x = 0, 1, 2, . . . and it decreases exponentially to 0 as |x| → +∞ uniformly in any sector
that does not contain the real axis: its asymptotic expansion in powers of 1/x is thus
necessarily

∑∞
k=0 0 ·x−k. This confirms that Tn(x) and T4,n,n(x) have the same asymptotic

expansion in such a sector.

After some transformations, the case n = 0 of (19) gives the identity, valid for x ∈ C\Z:

ζ(3, x) = −1

2

∞∑

k=1

k!2

(x + 1)k(−x)kk3
− π

2 sin(πx)

1(
2x
x

)
∞∑

k=1

(x + 1)2
k

(k − 1)!(2x + 1)k(k + x)3
. (20)

We remark that (20) is not the expansion of ζ(3, x) in a série de facultés, which is (for
<(x) > −1)

ζ(3, x) =
1

2

∞∑

k=1

[
k∑

j=1

1

j(k − j + 1)

]
k!

(x + 1)k+1

,

by formula [13, p. 221, (77)]. Hence, it is not at all clear to us how to find Hermite-Padé
approximants for ζ(A, x) when A ≥ 4 in the spirit of Beukers’ approach for A = 2 and
A = 3. This adds to the interest of the more flexible method developped in the present
article.

5. Arithmetical applications

Calegari [8] recently addressed the problem of the irrationality of certain values of the p-
adic zeta function of Kubota-Leopold. In particular, he showed that ζp(3) 6∈ Q when p = 2
and p = 3, by mean of the sophisticated machinery of overconvergent p-adic modular
forms. This method can be viewed as the p-adic analogue of the “modular proof” of
Apéry’s theorem [2] proposed by Beukers in [6]. As a matter of fact, the main purpose
of Beukers in [7] was to obtain new proofs of Calegari’s theorems by simpler methods,
i.e., by using Padé approximants in the special cases of the Hurwitz zeta function. In the
archimedean case, polylogarithms seemed inavoidable until recently [5, 10] but see [18] for
a new approach. The present article provides a generalisation of the results of [7] in the
hope that it could lead to results functions analogue to those in [4, 11, 15, 16] for the p-adic
zeta function or related functions.
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Prévost (Université du Littoral) and Frits Beukers (University of Utrecht) whose comments
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Appl. Math. 67 (1996), no. 2, 219–235.
[15] T. Rivoal, La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs,

C. R. Acad. Sci. Paris, Série I Math. 331.4 (2000), 267–270.
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