SIMULTANEOUS GENERATION OF KOECHER AND ALMKVIST-GRANVILLE'S APÉRY-LIKE FORMULAE

T. RIVOAL

ABSTRACT. We prove a very general identity, conjectured by Henri Cohen, involving the generating function of the familly $(\zeta(2r+4s+3))_{r,s\geq 0}$: it unifies two identities, proved by Koecher in 1980 and Almkvist & Granville in 1999, for the generating functions of $(\zeta(2r+3))_{r\geq 0}$ and $(\zeta(4s+3))_{s\geq 0}$ respectively. As a consequence, we obtain that, for any integer $j \geq 0$, there exist at least [j/2] + 1 Apéry-like formulae for $\zeta(2j+3)$.

1. INTRODUCTION

In proving that $\zeta(3) = \sum_{k=1}^{\infty} 1/k^3$ is irrational, Apéry [2] noted that

$$\zeta(3) = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k} k^3}.$$
(1.1)

Although the series on the right hand side converges much faster than the defining series for $\zeta(3)$, formula (1.1) is not essential in Apéry's proof since truncations of this series are not diophantine approximations to $\zeta(3)$. On the other hand, it is very likely that (1.1) was a source of inspiration for Apéry¹ and many authors have looked for similar identities, in the hope that they might give some idea of how to prove the irrationality of $\zeta(2s + 1) =$ $\sum_{k=1}^{\infty} 1/k^{2s+1}$ for any integer $s \geq 2$: see for example [4, 6, 8, 10, 13]. This problem is far from being solved², but many beautiful Apéry-like formulae have been proved. In fact, two apparently unrelated families of such formulae for $\zeta(2s + 3)$ and $\zeta(4s + 3)$ have emerged, both of which are more easily explained with the help of the generating functions

$$\sum_{s=0}^{\infty} \zeta(2s+3) a^{2s} = \sum_{n=1}^{\infty} \frac{1}{n(n^2 - a^2)} \quad \text{and} \quad \sum_{s=0}^{\infty} \zeta(4s+3) b^{4s} = \sum_{n=1}^{\infty} \frac{n}{n^4 - b^4}$$

(The series on the left hand sides converge only for |a| < 1 and |b| < 1, whereas the right hand sides converge on much larger domains.) Koecher [8] (and independently

²⁰⁰⁰ Mathematics Subject Classification. Primary 11M06; Secondary 05A15, 11J72.

Key words and phrases. Riemann zeta function, Apéry-like series, generating functions.

¹See [5, 12] for a detailed explanation of Apéry's original method.

²We now know that infinitely many of the values $\zeta(2s+1)$ ($s \ge 1$) are \mathbb{Q} -linearly independent [3, 11] and that at least one amongst $\zeta(5), \zeta(7), \zeta(9), \zeta(11)$ is irrational [14].

Leshchiner [10] in an expanded form) proved that

$$\sum_{n=1}^{\infty} \frac{1}{n(n^2 - a^2)} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k} k^3} \frac{5k^2 - a^2}{k^2 - a^2} \prod_{n=1}^{k-1} \left(1 - \frac{a^2}{n^2}\right), \tag{1.2}$$

for any complex number a such that |a| < 1, and, more recently, Almkvist & Granville [1] proved another identity, first conjectured by Borwein & Bradley [4]:

$$\sum_{n=1}^{\infty} \frac{n}{n^4 - b^4} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k}} \frac{5k}{k^4 - b^4} \prod_{n=1}^{k-1} \left(\frac{n^4 + 4b^4}{n^4 - b^4}\right),\tag{1.3}$$

for any complex number b such that |b| < 1. For a = b = 0, these identities reduce to (1.1), but otherwise produce different identities for the values of the zeta function at odd integers. For example, Borwein & Bradley note that (1.2) implies

$$\zeta(7) = 2\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k}k^7} - 2\sum_{k>j\ge 1} \frac{(-1)^{k+1}}{\binom{2k}{k}k^5j^2} + \frac{5}{2}\sum_{k>j>i\ge 1} \frac{(-1)^{k+1}}{\binom{2k}{k}k^3j^2i^2}$$

while (1.3) implies

$$\zeta(7) = \frac{5}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k} k^7} + \frac{25}{2} \sum_{k>j \ge 1} \frac{(-1)^{k+1}}{\binom{2k}{k} k^3 j^4}$$

The purpose of this article is to prove the following very general generating function identity, which was conjectured by H. Cohen on the basis of computations in Pari.

Theorem 1. Let a and b be complex numbers such that $|a|^2 + |b|^4 < 1$. Then

$$\sum_{n=1}^{\infty} \frac{n}{n^4 - a^2 n^2 - b^4} = \frac{1}{2} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k} k} \frac{5k^2 - a^2}{k^4 - a^2 k^2 - b^4} \prod_{n=1}^{k-1} \left(\frac{(n^2 - a^2)^2 + 4b^4}{n^4 - a^2 n^2 - b^4} \right).$$
(1.4)

We remark that Identity (1.4) unifies (1.2) (case b = 0) and (1.3) (case a = 0); consequently, it should yield new Apéry-like formulae. This is indeed true since

$$\sum_{n=1}^{\infty} \frac{n}{n^4 - a^2 n^2 - b^4} = \sum_{r=0}^{\infty} \sum_{s=0}^{\infty} \binom{r+s}{r} \zeta(2r+4s+3) a^{2r} b^{4s}$$

and since the number of representations of an integer $j \ge 0$ as j = r + 2s with integers $r, s \ge 0$ is [j/2] + 1. Hence, (1.4) produces [j/2] + 1 different identities for $\zeta(2j + 3)$ for any integer $j \ge 0$, obtained by differentiating the right hand side of (1.4) r, resp. s, times with respect to a^2 , resp. b^4 , with j = r + 2s, and then by letting a = b = 0.

For $0 \le j \le 2$, one of r, s is 0 and we only obtain identities resulting from (1.2) or (1.3). This is also the case for j = 3, (r, s) = (3, 0) and the first apparently new identity is for

$$\begin{split} j &= 3, \, (r,s) = (1,1): \\ \zeta(9) &= \frac{9}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k} k^9} + 5 \sum_{k>j \ge 1} \frac{(-1)^{k+1}}{\binom{2k}{k} k^5 j^4} + 5 \sum_{k>j \ge 1} \frac{(-1)^{k+1}}{\binom{2k}{k} k^3 j^6} \\ &- \frac{5}{4} \sum_{k>j \ge 1} \frac{(-1)^{k+1}}{\binom{2k}{k} k^7 j^2} - \frac{25}{4} \sum_{k>j > i \ge 1} \frac{(-1)^{k+1}}{\binom{2k}{k} k^3 j^4 i^2} - \frac{25}{4} \sum_{k>j > i \ge 1} \frac{(-1)^{k+1}}{\binom{2k}{k} k^3 j^2 i^4}. \end{split}$$

To prove Theorem 1, we will use Borwein & Bradley's method in which the proof of (1.4) was reduced in several steps to the proof of a finite combinatorial identity (the last step in [4] is due to Wenchang Chu), which was finally proved by Almkvist & Granville. In our case, we will show that Theorem 1 follows from the identity

$$\sum_{k=1}^{n} \frac{2}{k^2 - a^2} \frac{\prod_{j=1}^{n-1} (k^2 + (j-k)^2 - a^2)(k^2 + (j+k)^2 - a^2)}{\prod_{j=1, \ j \neq k}^{n} (k^2 - j^2)(k^2 + j^2 - a^2)} = \frac{1}{n^2 - a^2} \binom{2n}{n},$$

for any integer $n \ge 1$, which we will then prove as corollary of the following result.

Theorem 2. Let $g(X) \in \mathbb{C}[X]$ be of degree at most 2. For any integer $n \ge 1$ and any complex numbers a and t, with $a \notin \{\pm 1, \pm 2, \ldots, \pm n\}$, we have that

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{2n}{n-k} \frac{4k^2}{k^2 - a^2} \left(\prod_{\substack{0 \le j < n-k \\ \text{or } n < j < n+k}} \left(t(k^2 - a^2) + g(j) \right) - \prod_{\substack{0 \le j < n-k \\ \text{or } n < j < n+k}} g(j) \right) = 0.$$
(1.5)

For the special case a = 0, we obtain the key identity proved in [1].

2. First step

We transform the right hand side of (1.4) by a partial fraction decomposition, with respect to b^4 :

$$\frac{1}{k^4 - a^2k^2 - b^4} \prod_{n=1}^{k-1} \frac{(n^2 - a^2)^2 + 4b^4}{n^4 - a^2n^2 - b^4} = \sum_{n=1}^k \frac{C_{n,k}(a)}{n^4 - a^2n^2 - b^4},$$
(2.1)

where

$$C_{n,k}(a) = \frac{\prod_{j=1}^{k-1} (n^2 + (j-n)^2 - a^2)(n^2 + (j+n)^2 - a^2)}{\prod_{j=1, j \neq n}^k (j^2 - n^2)(j^2 + n^2 - a^2)}.$$
(2.2)

Inserting (2.1) in the right hand side of (1.4) and inverting the summations, we see that it will be enough to show that (and in fact, this is equivalent)

$$\sum_{n=1}^{\infty} \frac{n}{n^4 - a^2 n^2 - b^4} = \sum_{n=1}^{\infty} \frac{1}{n^4 - a^2 n^2 - b^4} \sum_{k=n}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k}} \frac{5k^2 - a^2}{2k} C_{n,k}(a).$$

Clearly, it is enough to show that, for any integer $n \ge 1$ and any complex a with |a| < 1,

$$\sum_{k=n}^{\infty} \frac{(-1)^{k+1}}{\binom{2k}{k}} \frac{5k^2 - a^2}{2k} C_{n,k}(a) = n.$$
(2.3)

From now on, and otherwise specified, we assume that |a| < 1.

3. Second step

We define $t_n(k)$ to be the summand of the series in (2.3) and δ to be $\sqrt{n^2 - a^2}$ (for any fixed branch of the logarithm). We observe that $t_n(k)$ can be extended to a meromorphic function of the complex variable k:

$$t_n(k) = \frac{(-1)^n e^{i\pi k} n^2 \Gamma(1\pm i\delta) (5k^2 - a^2) \Gamma(k+1)^2 \Gamma(k\pm n\pm i\delta)}{\Gamma(1-n\pm i\delta) \Gamma(n\pm i\delta)) k \Gamma(2k+1) \Gamma(k+1\pm n) \Gamma(k+1\pm i\delta)},$$
(3.1)

where $\Gamma(x \pm y \pm z)$ is defined to be $\Gamma(x + y + z)\Gamma(x + y - z)\Gamma(x - y + z)\Gamma(x - y - z)$, etc.

We note that, as a result of the factor $\Gamma(k+1-n)$ in the denominator of (3.1), we have $t_n(k) = 0$ for k = 1, ..., n-1. Furthemore, simple computations give that $t_n(0) = a^2 n/(2n^2 - a^2)$ and, for $k \in \{1, ..., n\}$,

$$t_n(-k) = -\frac{n^3(n^2 - a^2)}{2n^2 - a^2} \binom{2k}{k} \frac{5k^2 - a^2}{(n^2 + (k - n)^2 - a^2)(n^2 + (k + n)^2 - a^2)} \cdot \prod_{j=1}^{k-1} \frac{(n^2 - j^2)(j^2 + n^2 - a^2)}{(n^2 + (j - n)^2 - a^2)(n^2 + (j + n)^2 - a^2)}.$$
 (3.2)

We are now ready to prove our second step.

Proposition 1. For any given $n \ge 1$, Equation (2.3) is equivalent to the following finite combinatorial identity:

$$\sum_{k=1}^{n} \binom{2k}{k} \frac{5k^2 - a^2}{(n^2 + (k-n)^2 - a^2)(n^2 + (k+n)^2 - a^2)} \cdot \prod_{j=1}^{k-1} \frac{(n^2 - j^2)(j^2 + n^2 - a^2)}{(n^2 + (j-n)^2 - a^2)(n^2 + (j+n)^2 - a^2)} = \frac{2}{n^2 - a^2}.$$
 (3.3)

Remark. Given any integer $n \ge 1$, if (3.3) is true for |a| < 1, it is true for any complex number a such that a^2 can not be written $a^2 = n^2 + m^2$ with an integer $m \in \{0, \pm 1, \ldots, \pm n\}$.

Proof. We will prove below that

$$\sum_{k=-n}^{+\infty} t_n(k) = 0.$$
 (3.4)

Equation (3.4) can be written

$$\sum_{k=1}^{n} t_n(-k) = -t_n(0) - \sum_{k=1}^{n-1} t_n(k) - \sum_{k=n}^{\infty} t_n(k) = -\frac{a^2n}{2n^2 - a^2} - \sum_{k=n}^{\infty} t_n(k)$$

and $\sum_{k=n}^{\infty} t_n(k) = n$ is clearly equivalent to $\sum_{k=1}^n t_n(-k) = -2n^3/(2n^2 - a^2)$, which, given (3.2), is exactly (3.3).

We now prove (3.4), and for that we closely follow Borwein & Bradley, whose method is based on Gosper's hypergeometric summation algorithm (see [7, p. 225–227] for details). We note that

$$\frac{t_n(k+1)}{t_n(k)} = -\frac{1}{2} \frac{5(k+1)^2 - a^2}{5k^2 - a^2} \frac{k}{2k+1} \frac{(k \pm n \pm i\delta)}{(k+1 \pm n)(k+1 \pm i\delta)} = \frac{p_n(k+1)q_n(k)}{p_n(k)r_n(k+1)},$$

is a rational function of k, with $q_n(k) = (k - n \pm i\delta)$, $r_n(k) = -2(2k - 1)(k + n)$ and

$$p_n(k) = (5k^2 - a^2) \prod_{j=1}^{n-1} (k-j)(k+j \pm i\delta).$$

Since q_n and r_n do not have roots differing by integers³, Gosper's algorithm ensures that there exists a polynomial s_n of degree at most $\deg(p_n) - \deg(q_n - r_n) = 3n - 3$ such that $p_n(k) = s_n(k+1)q_n(k) - r_n(k)s_n(k)$. We now define

$$T_n(k) = \frac{r_n(k)s_n(k)t_n(k)}{p_n(k)},$$

which satisfies $T_n(k+1) - T_n(k) = t_n(k)$. Since $t_n(-n)$ is finite and $p_n(-n) \neq 0 = r_n(-n)$, we have $T_n(-n) = 0$. Hence, for any $k \geq 1 - n$, $T_n(k) = \sum_{j=-n}^{k-1} t_n(k)$. Since $\deg(r_n s_n) = \deg(p_n)$, we have $T_n(k) = O(t_n(k))$ as $k \to +\infty$, which implies that $T_n(k)$ tends to 0 as $k \to +\infty$. It follows that (3.4) holds. \Box

4. Third step

Here, we generalise the last reduction step of [4] (due to Wenchang Chu).

Proposition 2. Equation (3.3) for every integer $n \ge 1$ is equivalent to the following identity for every integer $n \ge 1$:

$$\sum_{k=1}^{n} \frac{2}{k^2 - a^2} \frac{\prod_{j=1}^{n-1} (k^2 + (j-k)^2 - a^2) (k^2 + (j+k)^2 - a^2)}{\prod_{j=1, \ j \neq k}^{n} (k^2 - j^2) (k^2 + j^2 - a^2)} = \frac{1}{n^2 - a^2} \binom{2n}{n}.$$
 (4.1)

Remark. The simplification (4.2) below shows that, given any integer $n \ge 1$, if (4.1) is true for |a| < 1, it is true for any complex number a such that $a \notin \{\pm 1, \ldots, \pm n\}$. Furthermore, it can also be written as

$$2\sum_{k=1}^{n} \frac{C_{k,n}(a)}{k^2 - a^2} = \frac{(-1)^{n+1}}{n^2 - a^2} \binom{2n}{n},$$

where $C_{k,n}(a)$ is defined in (2.2).

³Since |a| < 1 and $n \ge 1$, $i\delta$ can't be an integer.

Proof of Proposition 2. We use Krattenthaler's inversion formula [9]:

$$f(n) = \sum_{k=r}^{n} \frac{a_n d_n + b_n c_n}{d_k} \frac{\varphi(c_k/d_k; n)}{\psi_k(-c_k/d_k; n+1)} g(k) \quad \text{iff} \quad g(n) = \sum_{k=r}^{n} \frac{\psi(-c_n/d_n; k)}{\varphi(c_n/d_n; k+1)} f(k),$$

where

$$\varphi(x;k) = \prod_{j=0}^{k-1} (a_j + xb_j), \quad \psi(x;k) = \prod_{j=0}^{k-1} (c_j + xd_j) \quad \text{and} \quad \psi_m(x;k) = \prod_{j=0 \atop j \neq m}^{k-1} (c_j + xd_j).$$

Applied to (3.3), it yields the result with the choices r = 1, $a_j = (j^2 - a^2)^2$, $b_j = 4$, $c_j = j^4 - a^2 j^2$, $d_j = 1$,

$$f(k) = (-1)^k (5k^2 - a^2) \binom{2k}{k} \quad \text{and} \quad g(k) = \frac{2}{k^2 - a^2} \frac{4k^4 - 4a^2k^2 + (a^2 - 1)^2}{k^4 - a^2k^2}.$$

Using the same trick as Almkvist & Granville, it is easy to write (4.1) in a more convenient form, that we will prove below: for any $n \ge 1$,

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{2n}{n-k} \frac{4k^2}{k^2 - a^2} \prod_{\substack{0 \le j < n-k \\ \text{or } n < j < n+k}} (k^2 + j^2 - a^2) = \frac{(2n)!}{n^2 - a^2} \binom{2n}{n}.$$
 (4.2)

5. The final step

Note that (4.2) is simply Theorem 2 with $g(X) = X^2$ and t = 1: indeed, the first product in the left hand side of (1.5) corresponds exactly to the left hand side of (4.2) and (since only the *n*-th summand is non zero)

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{2n}{n-k} \frac{4k^2}{k^2 - a^2} \prod_{\substack{0 \le j < n-k \\ \text{or } n < j < n+k}} g(j) \\ = \frac{n^2}{n^2 - a^2} \prod_{n < j < 2n} j^2 = \frac{4n^2}{n^2 - a^2} \frac{(2n-1)!^2}{n!^2} = \frac{(2n)!}{n^2 - a^2} \binom{2n}{n}.$$

Hence Theorem 1 follows from Theorem 2.

Proof of Theorem 2. So far, we have been very lucky in that every step of [4] generalises without problems to this more general setting. But here, the general Theorem 1' in [1] is apparently not strong enough to prove (4.2). Fortunately, we can adapt the method there used for our purpose. For any $k \ge 1$, we define the polynomial of degree n-1

$$F_k(X) = \prod_{\substack{0 \le j < n-k \\ \text{or } n < j < n+k}} (X - g(j)).$$

Proposition 1 in [1] establishes the existence of polynomials $Q_r(X)$ of degree $d_r \leq r$ such that

$$F_k(X) - F_k(0) = \sum_{r=0}^{n-2} Q_r(k^2 - a^2) X^{n-1-r}.$$
(5.1)

The important point for us is the fact that since $F_k(X) - F_k(0)$ vanishes at X = 0, then the sum in (5.1) terminates at n-2. (In fact, $Q_r(X) = c_r(X + a^2)$ with the polynomials c_r given in [1].) We write $Q_r(X) = \sum_{i=0}^{d_r} q_{r,i} X^i$. Equation (1.5) can be expressed as

$$(-1)^{n-1} \sum_{k=1}^{n} (-1)^{n-k} {2n \choose n-k} \frac{4k^2}{k^2 - a^2} \left(F_k(-t(k^2 - a^2)) - F_k(0) \right)$$
$$= (-1)^{n-1} \sum_{r=0}^{n-2} \sum_{i=0}^{d_r} (-t)^{n-1-r} q_{r,i} \sum_{k=1}^{n} (-1)^{n-k} {2n \choose n-k} \frac{4k^2}{k^2 - a^2} (k^2 - a^2)^{i+n-1-r}.$$
(5.2)

Since $i \ge 0$ et $r \le n-2$, we have

$$\frac{4k^2}{k^2 - a^2} \left(k^2 - a^2\right)^{i+n-1-r} = P(k^2),$$

where $P(X) = 4X(X-a^2)^{n+i-r-2}$ is a polynomial of degree $i+n-r-1 \le d_r+n-r-1 \le n-1$ such that P(0) = 0. Lemma 1 in [1], which reads

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{2n}{n-k} k^{2\ell} = 0$$
(5.3)

for any $1 \leq \ell \leq n-1$, then gives that

$$\sum_{k=1}^{n} (-1)^{n-k} \binom{2n}{n-k} \frac{4k^2}{k^2 - a^2} (k^2 - a^2)^{i+n-1-r} = \sum_{k=1}^{n} (-1)^{n-k} \binom{2n}{n-k} P(k^2) = 0.$$

This proves that the left hand side of (5.2) is 0 for all t and the proof of Theorem 2 is complete.

We conclude this section with the following remark. Almkvist & Granville proved (5.3) by expressing its left hand side as the 2ℓ -th Taylor coefficient of the function $e^{-nz}(e^z-1)^{2n}$. Another proof is as follows: define $S(z) = z^{\ell}/z(z-1^2)\cdots(z-n^2)$ for any integers $\ell \geq 0$ and $n \geq 0$. Then, by the residue theorem, for any closed direct contour Γ enclosing the poles of S, we have

$$-\operatorname{Res}_{\infty}(S) = \frac{1}{2i\pi} \int_{\Gamma} S(z) \, \mathrm{d}z = \sum_{k=0}^{n} \operatorname{Res}_{k^{2}}(S) = 2\sum_{k=0}^{n} (-1)^{n-k} \frac{k^{2\ell}}{(n-k)!(n+k)!}$$

If we assume that $\ell \leq n-1$, then $\operatorname{Res}_{\infty}(S) = 0$ and if furthermore $\ell \geq 1$, then (5.3) follows after multiplication by (2n)!/2.

ACKNOWLEDGMENT

The main result (Theorem 1) of this paper was conjectured by Henri Cohen, and it was his encouragement that prompted me to work on this problem. I warmly thank him for this.

BIBLIOGRAPHY

- [1] G. Almkvist and A. Granville, Borwein and Bradley's Apéry-Like Formulae for $\zeta(4n+3)$, Exp. Math. 8 (1999), no. 2, 197–203. Available at http://www.expmath.org/expmath/volumes/8/8.html.
- [2] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Astérisque **61** (1979), 11–13.
- [3] K. Ball and T. Rivoal, Irrationalité d'une infinité de valeurs de la fonction zêta aux entiers impairs, Invent.Math. 146 (2001), no. 1, 193–207.
- [4] J. Borwein and D. Bradley, *Empirically Determined Apéry-Like Formulae*, Exp. Math. 6 (1997), no. 3, 181–194. Available at http://www.expmath.org/expmath/volumes/6/6.html.
- [5] H. Cohen, *Démonstration de l'irrationalité de* $\zeta(3)$ (d'après Apéry), Sém. de Théorie des Nombres de Grenoble, octobre 1978 (9 p.).
- [6] H. Cohen, Généralisation d'une construction de R. Apéry, Bull. Soc. Math. France 109 (1981), 269–281. Available at http//www.numdam.org/accueil.php.
- [7] R. L. Graham, D. E. Knuth and O. Patashnik, Concrete mathematics: a fundation for computer science, 2nd edition, Addison-Wesley Publishing, 1994.
- [8] M. Koecher, Letter to the editor, Math. Intelligencer 2 (1980), 62–64.
- [9] C. Krattenthaler, A new matrix inverse, Proc. Amer. Math. Soc 124 (1996), no. 1, 47–59.
- [10] D. H. Leshchiner, Some new identities for $\zeta(k)$, J. Number Theory 13 (1981), no. 3, 355–362.
- [11] T. Rivoal, La fonction Zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs, C. R. Acad. Sci. Paris, Série I Math. 331 (2000), no. 4, 267–270. Available at http//arXiv.org/abs/math.NT/0008051.
- [12] A. van der Poorten, A proof that Euler missed... Apéry's proof of the irrationality of $\zeta(3)$. An informal report, Math. Intelligencer 1 (1978/79), no. 4, 195–203.
- [13] A. van der Poorten, Some wonderful formulas... An introduction to polylogarithms, Queen's Papers in Pure and Applied Mathematics 54, Proc. 1979 Queen's Number Theory Conference, 1980, 269–286.
- [14] W. Zudilin, Arithmetic of linear forms involving odd zeta values, to appear in J. Théor. Nombres Bordeaux (2004). Available at http//arXiv.org/abs/math.NT/0206176.

LABORATOIRE DE MATHÉMATIQUES NICOLAS ORESME, CNRS UMR 6139, UNIVERSITÉ DE CAEN, BP 5186, 14032 CAEN CEDEX, FRANCE

E-mail address: rivoal@math.unicaen.fr