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Abstract. We prove a very general identity, conjectured by Henri Cohen, involving the
generating function of the familly (ζ(2r + 4s + 3))r,s≥0: it unifies two identities, proved
by Koecher in 1980 and Almkvist & Granville in 1999, for the generating functions of
(ζ(2r + 3))r≥0 and (ζ(4s + 3))s≥0 respectively. As a consequence, we obtain that, for any
integer j ≥ 0, there exist at least [j/2] + 1 Apéry-like formulae for ζ(2j + 3).

1. Introduction

In proving that ζ(3) =
∑∞

k=1 1/k3 is irrational, Apéry [2] noted that

ζ(3) =
5

2

∞∑

k=1

(−1)k+1

(
2k
k

)
k3

. (1.1)

Although the series on the right hand side converges much faster than the defining series
for ζ(3), formula (1.1) is not essential in Apéry’s proof since truncations of this series are
not diophantine approximations to ζ(3). On the other hand, it is very likely that (1.1) was
a source of inspiration for Apéry1 and many authors have looked for similar identities, in
the hope that they might give some idea of how to prove the irrationality of ζ(2s + 1) =∑∞

k=1 1/k2s+1 for any integer s ≥ 2: see for example [4, 6, 8, 10, 13]. This problem is far
from being solved2, but many beautiful Apéry-like formulae have been proved. In fact, two
apparently unrelated families of such formulae for ζ(2s + 3) and ζ(4s + 3) have emerged,
both of which are more easily explained with the help of the generating functions

∞∑
s=0

ζ(2s + 3) a2s =
∞∑

n=1

1

n(n2 − a2)
and

∞∑
s=0

ζ(4s + 3) b4s =
∞∑

n=1

n

n4 − b4
.

(The series on the left hand sides converge only for |a| < 1 and |b| < 1, whereas the
right hand sides converge on much larger domains.) Koecher [8] (and independently
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1See [5, 12] for a detailed explanation of Apéry’s original method.
2We now know that infinitely many of the values ζ(2s + 1) (s ≥ 1) are Q–linearly independent [3, 11]

and that at least one amongst ζ(5), ζ(7), ζ(9), ζ(11) is irrational [14].
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2

Leshchiner [10] in an expanded form) proved that

∞∑
n=1

1

n(n2 − a2)
=

1

2

∞∑

k=1

(−1)k+1

(
2k
k

)
k3

5k2 − a2

k2 − a2

k−1∏
n=1

(
1− a2

n2

)
, (1.2)

for any complex number a such that |a| < 1, and, more recently, Almkvist & Granville [1]
proved another identity, first conjectured by Borwein & Bradley [4]:

∞∑
n=1

n

n4 − b4
=

1

2

∞∑

k=1

(−1)k+1

(
2k
k

) 5k

k4 − b4

k−1∏
n=1

(
n4 + 4b4

n4 − b4

)
, (1.3)

for any complex number b such that |b| < 1. For a = b = 0, these identities reduce to (1.1),
but otherwise produce different identities for the values of the zeta function at odd integers.
For example, Borwein & Bradley note that (1.2) implies

ζ(7) = 2
∞∑

k=1

(−1)k+1

(
2k
k

)
k7

− 2
∑

k>j≥1

(−1)k+1

(
2k
k

)
k5j2

+
5

2

∑

k>j>i≥1

(−1)k+1

(
2k
k

)
k3j2i2

while (1.3) implies

ζ(7) =
5

2

∞∑

k=1

(−1)k+1

(
2k
k

)
k7

+
25

2

∑

k>j≥1

(−1)k+1

(
2k
k

)
k3j4

.

The purpose of this article is to prove the following very general generating function
identity, which was conjectured by H. Cohen on the basis of computations in Pari.

Theorem 1. Let a and b be complex numbers such that |a|2 + |b|4 < 1. Then

∞∑
n=1

n

n4 − a2n2 − b4
=

1

2

∞∑

k=1

(−1)k+1

(
2k
k

)
k

5k2 − a2

k4 − a2k2 − b4

k−1∏
n=1

(
(n2 − a2)2 + 4b4

n4 − a2n2 − b4

)
. (1.4)

We remark that Identity (1.4) unifies (1.2) (case b = 0) and (1.3) (case a = 0); conse-
quently, it should yield new Apéry-like formulae. This is indeed true since

∞∑
n=1

n

n4 − a2n2 − b4
=

∞∑
r=0

∞∑
s=0

(
r + s

r

)
ζ(2r + 4s + 3) a2r b4s

and since the number of representations of an integer j ≥ 0 as j = r + 2s with integers
r, s ≥ 0 is [j/2] + 1. Hence, (1.4) produces [j/2] + 1 different identities for ζ(2j + 3) for
any integer j ≥ 0, obtained by differentiating the right hand side of (1.4) r, resp. s, times
with respect to a2, resp. b4, with j = r + 2s, and then by letting a = b = 0.

For 0 ≤ j ≤ 2, one of r, s is 0 and we only obtain identities resulting from (1.2) or (1.3).
This is also the case for j = 3, (r, s) = (3, 0) and the first apparently new identity is for
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j = 3, (r, s) = (1, 1) :

ζ(9) =
9

4

∞∑

k=1

(−1)k+1

(
2k
k

)
k9

+ 5
∑

k>j≥1

(−1)k+1

(
2k
k

)
k5j4

+ 5
∑

k>j≥1

(−1)k+1

(
2k
k

)
k3j6

− 5

4

∑

k>j≥1

(−1)k+1

(
2k
k

)
k7j2

− 25

4

∑

k>j>i≥1

(−1)k+1

(
2k
k

)
k3j4i2

− 25

4

∑

k>j>i≥1

(−1)k+1

(
2k
k

)
k3j2i4

.

To prove Theorem 1, we will use Borwein & Bradley’s method in which the proof of (1.4)
was reduced in several steps to the proof of a finite combinatorial identity (the last step in
[4] is due to Wenchang Chu), which was finally proved by Almkvist & Granville. In our
case, we will show that Theorem 1 follows from the identity

n∑

k=1

2

k2 − a2

∏n−1
j=1 (k2 + (j − k)2 − a2)(k2 + (j + k)2 − a2)∏n

j=1, j 6=k(k
2 − j2)(k2 + j2 − a2)

=
1

n2 − a2

(
2n

n

)
,

for any integer n ≥ 1, which we will then prove as corollary of the following result.

Theorem 2. Let g(X) ∈ C[X] be of degree at most 2. For any integer n ≥ 1 and any
complex numbers a and t, with a 6∈ {±1,±2, . . . ,±n}, we have that

n∑

k=1

(−1)n−k

(
2n

n− k

)
4k2

k2 − a2

( ∏
0≤j<n−k

or n<j<n+k

(
t(k2 − a2) + g(j)

)−
∏

0≤j<n−k
or n<j<n+k

g(j)

)
= 0. (1.5)

For the special case a = 0, we obtain the key identity proved in [1].

2. First step

We transform the right hand side of (1.4) by a partial fraction decomposition, with
respect to b4:

1

k4 − a2k2 − b4

k−1∏
n=1

(n2 − a2)2 + 4b4

n4 − a2n2 − b4
=

k∑
n=1

Cn,k(a)

n4 − a2n2 − b4
, (2.1)

where

Cn,k(a) =

∏k−1
j=1(n

2 + (j − n)2 − a2)(n2 + (j + n)2 − a2)
∏k

j=1, j 6=n(j2 − n2)(j2 + n2 − a2)
. (2.2)

Inserting (2.1) in the right hand side of (1.4) and inverting the summations, we see that it
will be enough to show that (and in fact, this is equivalent)

∞∑
n=1

n

n4 − a2n2 − b4
=

∞∑
n=1

1

n4 − a2n2 − b4

∞∑

k=n

(−1)k+1

(
2k
k

) 5k2 − a2

2k
Cn,k(a).
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Clearly, it is enough to show that, for any integer n ≥ 1 and any complex a with |a| < 1,

∞∑

k=n

(−1)k+1

(
2k
k

) 5k2 − a2

2k
Cn,k(a) = n. (2.3)

From now on, and otherwise specified, we assume that |a| < 1.

3. Second step

We define tn(k) to be the summand of the series in (2.3) and δ to be
√

n2 − a2 (for any
fixed branch of the logarithm). We observe that tn(k) can be extended to a meromorphic
function of the complex variable k:

tn(k) =
(−1)neiπkn2Γ(1± iδ)(5k2 − a2)Γ(k + 1)2Γ(k ± n± iδ)

Γ(1− n± iδ)Γ(n± iδ)) k Γ(2k + 1)Γ(k + 1± n)Γ(k + 1± iδ)
, (3.1)

where Γ(x± y± z) is defined to be Γ(x + y + z)Γ(x + y− z)Γ(x− y + z)Γ(x− y− z), etc.
We note that, as a result of the factor Γ(k + 1 − n) in the denominator of (3.1), we

have tn(k) = 0 for k = 1, . . . , n − 1. Furthemore, simple computations give that tn(0) =
a2n/(2n2 − a2) and, for k ∈ {1, . . . , n},

tn(−k) = −n3(n2 − a2)

2n2 − a2

(
2k

k

)
5k2 − a2

(n2 + (k − n)2 − a2)(n2 + (k + n)2 − a2)

·
k−1∏
j=1

(n2 − j2)(j2 + n2 − a2)

(n2 + (j − n)2 − a2)(n2 + (j + n)2 − a2)
. (3.2)

We are now ready to prove our second step.

Proposition 1. For any given n ≥ 1, Equation (2.3) is equivalent to the following finite
combinatorial identity:

n∑

k=1

(
2k

k

)
5k2 − a2

(n2 + (k − n)2 − a2)(n2 + (k + n)2 − a2)

·
k−1∏
j=1

(n2 − j2)(j2 + n2 − a2)

(n2 + (j − n)2 − a2)(n2 + (j + n)2 − a2)
=

2

n2 − a2
. (3.3)

Remark. Given any integer n ≥ 1, if (3.3) is true for |a| < 1, it is true for any complex
number a such that a2 can not be written a2 = n2+m2 with an integer m ∈ {0,±1, . . . ,±n}.
Proof. We will prove below that

+∞∑

k=−n

tn(k) = 0. (3.4)
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Equation (3.4) can be written

n∑

k=1

tn(−k) = −tn(0)−
n−1∑

k=1

tn(k)−
∞∑

k=n

tn(k) = − a2n

2n2 − a2
−

∞∑

k=n

tn(k)

and
∑∞

k=n tn(k) = n is clearly equivalent to
∑n

k=1 tn(−k) = −2n3/(2n2 − a2), which,
given (3.2), is exactly (3.3).

We now prove (3.4), and for that we closely follow Borwein & Bradley, whose method is
based on Gosper’s hypergeometric summation algorithm (see [7, p. 225–227] for details).
We note that

tn(k + 1)

tn(k)
= −1

2

5(k + 1)2 − a2

5k2 − a2

k

2k + 1

(k ± n± iδ)

(k + 1± n)(k + 1± iδ)
=

pn(k + 1)qn(k)

pn(k)rn(k + 1)
,

is a rational function of k, with qn(k) = (k − n± iδ), rn(k) = −2(2k − 1)(k + n) and

pn(k) = (5k2 − a2)
n−1∏
j=1

(k − j)(k + j ± iδ).

Since qn and rn do not have roots differing by integers3, Gosper’s algorithm ensures that
there exists a polynomial sn of degree at most deg(pn)− deg(qn − rn) = 3n− 3 such that
pn(k) = sn(k + 1)qn(k)− rn(k)sn(k). We now define

Tn(k) =
rn(k)sn(k)tn(k)

pn(k)
,

which satisfies Tn(k +1)−Tn(k) = tn(k). Since tn(−n) is finite and pn(−n) 6= 0 = rn(−n),

we have Tn(−n) = 0. Hence, for any k ≥ 1 − n, Tn(k) =
∑k−1

j=−n tn(k). Since deg(rnsn) =

deg(pn), we have Tn(k) = O(tn(k)) as k → +∞, which implies that Tn(k) tends to 0 as
k → +∞. It follows that (3.4) holds. ¤

4. Third step

Here, we generalise the last reduction step of [4] (due to Wenchang Chu).

Proposition 2. Equation (3.3) for every integer n ≥ 1 is equivalent to the following
identity for every integer n ≥ 1:

n∑

k=1

2

k2 − a2

∏n−1
j=1 (k2 + (j − k)2 − a2)(k2 + (j + k)2 − a2)∏n

j=1, j 6=k(k
2 − j2)(k2 + j2 − a2)

=
1

n2 − a2

(
2n

n

)
. (4.1)

Remark. The simplification (4.2) below shows that, given any integer n ≥ 1, if (4.1) is true
for |a| < 1, it is true for any complex number a such that a 6∈ {±1, . . . ,±n}. Furthermore,
it can also be written as

2
n∑

k=1

Ck,n(a)

k2 − a2
=

(−1)n+1

n2 − a2

(
2n

n

)
,

where Ck,n(a) is defined in (2.2).

3Since |a| < 1 and n ≥ 1, iδ can’t be an integer.



6

Proof of Proposition 2. We use Krattenthaler’s inversion formula [9]:

f(n) =
n∑

k=r

andn + bncn

dk

ϕ(ck/dk; n)

ψk(−ck/dk; n + 1)
g(k) iff g(n) =

n∑

k=r

ψ(−cn/dn; k)

ϕ(cn/dn; k + 1)
f(k),

where

ϕ(x; k) =
k−1∏
j=0

(aj + xbj), ψ(x; k) =
k−1∏
j=0

(cj + xdj) and ψm(x; k) =
k−1∏
j=0
j 6=m

(cj + xdj).

Applied to (3.3), it yields the result with the choices r = 1, aj = (j2 − a2)2, bj = 4,
cj = j4 − a2j2, dj = 1,

f(k) = (−1)k(5k2 − a2)

(
2k

k

)
and g(k) =

2

k2 − a2

4k4 − 4a2k2 + (a2 − 1)2

k4 − a2k2
.

¤

Using the same trick as Almkvist & Granville, it is easy to write (4.1) in a more conve-
nient form, that we will prove below: for any n ≥ 1,

n∑

k=1

(−1)n−k

(
2n

n− k

)
4k2

k2 − a2

∏
0≤j<n−k

or n<j<n+k

(k2 + j2 − a2) =
(2n)!

n2 − a2

(
2n

n

)
. (4.2)

5. The final step

Note that (4.2) is simply Theorem 2 with g(X) = X2 and t = 1: indeed, the first product
in the left hand side of (1.5) corresponds exactly to the left hand side of (4.2) and (since
only the n–th summand is non zero)

n∑

k=1

(−1)n−k

(
2n

n− k

)
4k2

k2 − a2

∏
0≤j<n−k

or n<j<n+k

g(j)

=
n2

n2 − a2

∏
n<j<2n

j2 =
4n2

n2 − a2

(2n− 1)!2

n!2
=

(2n)!

n2 − a2

(
2n

n

)
.

Hence Theorem 1 follows from Theorem 2.

Proof of Theorem 2. So far, we have been very lucky in that every step of [4] generalises
without problems to this more general setting. But here, the general Theorem 1′ in [1] is
apparently not strong enough to prove (4.2). Fortunately, we can adapt the method there
used for our purpose. For any k ≥ 1, we define the polynomial of degree n− 1

Fk(X) =
∏

0≤j<n−k
or n<j<n+k

(X − g(j)).
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Proposition 1 in [1] establishes the existence of polynomials Qr(X) of degree dr ≤ r such
that

Fk(X)− Fk(0) =
n−2∑
r=0

Qr(k
2 − a2) Xn−1−r. (5.1)

The important point for us is the fact that since Fk(X) − Fk(0) vanishes at X = 0, then
the sum in (5.1) terminates at n− 2. (In fact, Qr(X) = cr(X + a2) with the polynomials

cr given in [1].) We write Qr(X) =
∑dr

i=0 qr,i X
i. Equation (1.5) can be expressed as

(−1)n−1

n∑

k=1

(−1)n−k

(
2n

n− k

)
4k2

k2 − a2

(
Fk(−t(k2 − a2))− Fk(0)

)

= (−1)n−1

n−2∑
r=0

dr∑
i=0

(−t)n−1−rqr,i

n∑

k=1

(−1)n−k

(
2n

n− k

)
4k2

k2 − a2
(k2 − a2)i+n−1−r. (5.2)

Since i ≥ 0 et r ≤ n− 2, we have

4k2

k2 − a2
(k2 − a2)i+n−1−r = P (k2),

where P (X) = 4X(X−a2)n+i−r−2 is a polynomial of degree i+n−r−1 ≤ dr+n−r−1 ≤ n−1
such that P (0) = 0. Lemma 1 in [1], which reads

n∑

k=1

(−1)n−k

(
2n

n− k

)
k2` = 0 (5.3)

for any 1 ≤ ` ≤ n− 1, then gives that

n∑

k=1

(−1)n−k

(
2n

n− k

)
4k2

k2 − a2
(k2 − a2)i+n−1−r =

n∑

k=1

(−1)n−k

(
2n

n− k

)
P (k2) = 0.

This proves that the left hand side of (5.2) is 0 for all t and the proof of Theorem 2 is
complete. ¤

We conclude this section with the following remark. Almkvist & Granville proved (5.3)
by expressing its left hand side as the 2`-th Taylor coefficient of the function e−nz(ez−1)2n.
Another proof is as follows: define S(z) = z`/z(z − 12) · · · (z − n2) for any integers ` ≥ 0
and n ≥ 0. Then, by the residue theorem, for any closed direct contour Γ enclosing the
poles of S, we have

−Res∞(S) =
1

2iπ

∫

Γ

S(z) dz =
n∑

k=0

Resk2(S) = 2
n∑

k=0

(−1)n−k k2`

(n− k)!(n + k)!
.

If we assume that ` ≤ n− 1, then Res∞(S) = 0 and if furthemore ` ≥ 1, then (5.3) follows
after multiplication by (2n)!/2.
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