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Abstract

Zeros of Bessel functions Jα play an important role in physics. They are a mo-
tivation for studying zeros of exponential polynomials defined over Q, and more
generally of E-functions. In this paper we partially characterize E-functions with
zeros of the same multiplicity, and prove a special case of a conjecture of Jossen
on entire quotients of E-functions, related to Ritt’s theorem and Shapiro’s conjec-
ture on exponential polynomials. We also deduce from Schanuel’s conjecture many
results on zeros of exponential polynomials over Q, including π, logarithms of alge-
braic numbers, and zeros of Jα when 2α is an odd integer. For the latter we define (if
α ̸= ±1/2) an analogue of the minimal polynomial and Galois conjugates of algebraic
numbers. At last, we study conjectural generalizations to factorization and zeros of
E-functions.

1 Introduction

We recall the definition of E-functions. As usual, we embed Q into C. A power series
f(x) =

∑∞
n=0 anx

n/n! ∈ Q[[x]] is said to be an E-function if
(i) f(x) is solution of a non-zero linear differential equation with coefficients in Q(x).

(ii) There exists C1 > 0 such that all Galois conjugates of an have modulus ≤ Cn+1
1 ,

for n ≥ 0.

(iii) There exists C2 > 0 and a sequence of positive integers dn, with dn ≤ Cn+1
2 , such

that dnam are algebraic integers for all m ≤ n.
If an ∈ Q, (ii) and (iii) read |an| ≤ Cn+1

1 and dnam ∈ Z; in (i), there exists such a
differential equation with coefficients in Q(x), and the normalized one of minimal order
also has coefficients in Q(x). The set of E-functions is a subring of Q[[x]], whose units
are of the form αeβx for some α, β ∈ Q, α ̸= 0. Abusing a standard terminology for G-
functions, and because no confusion will be possible here, we shall say that an E-function
is globally bounded if there exists an integer D such that Dn+1an is an algebraic integer
for all n ≥ 0 (i.e., the associated G-function

∑
n≥0 anx

n is globally bounded in the usual
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sense). Finally, when some function F is solution of a linear differential equation with
polynomial coefficents, we shall often say that F is holonomic.

Siegel [26] defined and studied E-functions in 1929, and this in particular enabled him
to prove the Bourget hypothesis, i.e., that Jn and Jm share no common zero ξ ∈ C∗, where
m and n are distinct non-negative integers. Here Jα is one of the Bessel functions defined
by Jα(x) :=

∑∞
m=0

(−1)m

m!Γ(m+α+1)
(x
2
)2m+α. As this formula shows, Γ(α + 1)x−αJα(x) is an

E-function for α ∈ Q \ (−N∗). Zeros of Bessel functions play an important role in many
areas of physics; they are a motivation for studying zeros of E-functions.

During an online talk in 2021, Jossen [15] stated the following conjecture on the zeros
of E-functions.

Conjecture 1.1 (Jossen). (i) If f and g are two E-functions such that f/g is an entire
function, then f/g is an E-function.

(ii) If two E-functions f and g share at least one common root, then there exists a non-
unit E-function h such that f/h and g/h are E-functions.

His conjecture is inspired by Shapiro’s conjecture [24] (see below) and by Ritt-type
division theorems [20, 22] (see also [25]). Part (i) holds if f and g are exponential polyno-
mials over Q [20, 22]. Using [6, Proposition 4.1], part (i) holds if g ∈ Q[X] and part (ii)
does if the common root is algebraic. As far as we know, these are the only known results
on Conjecture 1.1.

Using asymptotic expansions and the indicator function of a holomorphic function, we
are able to prove the following.

Theorem 1.2. Let g be an entire function such that gm is an E-function for some m ≥ 1.
Let L ∈ Q(x)[d/dx] be a differential operator such that L(g)/g is an entire function. Then
L(g)/g ∈ Q[x].

Corollary 1.3. Part (i) of Jossen’s conjecture holds true if f is of the form L(g) for some
differential operator L ∈ Q(x)[d/dx], and in this case L(g)/g is a polynomial.

The present paper is devoted to a better understanding of zeros of E-functions, at least
from a conjectural point of view. We conjecture that multiple zeros of an E-function f
always occur for a trivial reason: the zeros of multiplicity j are exactly the zeros of an
E-function gj such that gjj divides f . A precise statement is the following.

Conjecture 1.4. Any non-zero E-function f can be written as
∏

j∈J gj(x)
j where J ⊂ N∗

is finite, and for each j ∈ J , gj is an E-function with zeros of multiplicity 1 such that gj
and gj′ have no common zero for j ̸= j′. This representation is unique up to multiplication
of the gj’s by units.

If f is not a unit, the set J can be chosen as the set of multiplicities of zeros of f . As
Jossen pointed out to us, it is then finite since except for singularities, all zeros of f have
multiplicity less than the order of a linear differential equation it satisfies.
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In direction of this conjecture, we shall prove the following result using Theorem 1.2
and the Hadamard factorization theorem.

Theorem 1.5. Let f ∈ Q[[x]] be a non-zero globally bounded E-function with zeros each
of the same multiplicity m ≥ 2. Assume that f is solution of a non-trivial differential
operator in Q(x)[d/dx] of order ≤ m+ 1.

Then there exists a non-zero globally bounded E-function g with zeros of multiplicity 1
such that f = gm, and g(x) ∈ αQ[[x]] where αm ∈ Q∗. Moreover g is solution of a
non-trivial differential operator in Q(x)[d/dx] of order ≤ 2.

The function g is unique up to the multiplication of α by any m-th root of unity. The
proof of Theorem 1.5 shows more precisely that, under the same assumptions, if f is of
minimal (differential) order m + 1 then g is exactly of order 2, while if f is of order ≤ m
then both g and f are of order 1, i.e. both of the form p(x)eξx with ξ ∈ Q and p ∈ Q[x].

In the special case where the E-functions under consideration are exponential polyno-
mials over Q, we are going to prove that Conjectures 1.1 and 1.4, and even much more
precise statements, follow from Schanuel’s conjecture. To stay in the framework of E-
functions (and because it changes completely the situation), all exponential polynomials
considered in the sequel will be over Q, namely functions

f(x) =
N∑
i=1

Pi(x)e
βix (1.1)

with N ≥ 1, P1, . . . , PN ∈ Q[X], β1, . . . , βN ∈ Q. We point out that we allow polynomial
coefficients Pi(x), instead of only constants in [22] for instance. However, we always restrict
ourselves to algebraic βi and polynomials Pi with algebraic coefficients, instead of βi ∈ C
and Pi ∈ C[X] in the literature on exponential polynomials.

Units of the ring P of exponential polynomials over Q are functions of the form λeαx

with λ, α ∈ Q and λ ̸= 0. Irreducible elements are those non-units that cannot be written
as a product of two non-units. Following Ritt, simple elements are those of the form
eαx

∑N
i=1 λie

βrix with α, β ∈ Q, β ̸= 0, N ≥ 2, λ1, . . . , λN ∈ Q∗
, and pairwise distinct

rational numbers r1, . . . , rN . The support of such a simple function is the 1-dimensional
Q-vector space spanned by β.

With these notations, any f ∈ P can be written in a unique way (up to units) as
a product of irreducible exponential polynomials over Q, and simple ones with pairwise
distinct supports. This result is due to Ritt [21] when the coefficients Pi in Eq. (1.1)
are constant, and to MacColl [18] in the general setting (see also [12]). This factorisation
result enables one to define gcd’s in the ring of exponential polynomials over Q (see [5,
Theorem 3.1.18]).

These results were first proved over C, not Q. Many papers are devoted to the study of
common zeros of two exponential polynomials with complex coefficients (namely, βi ∈ C
and Pi ∈ C[X] in Eq. (1.1)), for instance towards Shapiro’s conjecture [24] (see also
[10]): if two exponential polynomials (with constant coefficients, over C) have infinitely
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many common zeros, then both are divisible by an exponential polynomial with infinitely
many zeros. In this conjecture, one common zero is not enough: for instance, ex − e
and ex

√
2 − e

√
2 have a common zero at x = 1, but no non-unit common factor since the

gcd of these exponential polynomials is equal to 1. On the contrary, part (ii) of Jossen’s
Conjecture 1.1 suggests that restricting to exponential polynomials over Q (which are
E-functions) prevents this kind of behaviour: any common zero should be explained by
a common factor. We prove this in Theorem 1.7 below, assuming the following widely-
believed very powerful conjecture, due to Schanuel [16].

Conjecture 1.6 (Schanuel). Let x1, . . . , xn be complex numbers, linearly independent over
Q. Then Q(x1, . . . , xn, e

x1 , . . . , exn) has transcendence degree at least n over Q.

Theorem 1.7. Assume Schanuel’s conjecture holds. Let f1, f2 be non-zero exponential
polynomials over Q. Then f1

gcd(f1,f2)
and f2

gcd(f1,f2)
have no common zero in C∗.

In other words, common zeros of f1 and f2 in C∗ are exactly the zeros of gcd(f1, f2),
and for any such ξ, the order of vanishing of gcd(f1, f2) at ξ is the least of the orders of
vanishing of f1 and f2 at ξ.

We point out that 0 may be a common zero of f1 and f2 even in the case they are co-
prime, for instance if f1(x) = ex−1 and f2(x) = ex

√
2−1 (see the remark after Theorem 4.1

in §4).
Theorem 1.7 enables us to define a kind of analogue of the minimal polynomial of an

algebraic number for zeros of exponential polynomials over Q. Let ξ ∈ C∗ be a zero of
some f ∈ P \ {0}. Using Ritt’s theorem, ξ is a zero of either a simple or an irreducible
exponential polynomial over Q. The former case means that eβξ is algebraic for some
β ∈ Q∗

; these numbers ξ include π, logarithms of algebraic numbers, etc; they are periods.
As noted by André [4, §§2.1 and 2.3] (see also [14, §3.3]), it is not clear how to define an
analogue of the minimal polynomial for these numbers, in particular π. In this direction
we prove the following.

Theorem 1.8. Assume Schanuel’s conjecture holds. Let f be an exponential polynomial
over Q such that f(π) = 0. Then there exists N ≥ 1 such that

f(x)

e2ix/N − e2iπ/N

is an exponential polynomial over Q.

In some sense, the family of functions e2ix/N − e2iπ/N would be an analogue of the
minimal polynomial for π. Note that the function e2ix/N − e2iπ/N vanishes exactly at the
points (1 + kN)π, k ∈ Z. Therefore π is the only complex number at which all these
functions vanish. This approach does not yield any definition for a “conjugate” of π (recall
that conjugates of an algebraic number are the complex roots of its minimal polynomial).

The same holds, for instance, with log(2) and the functions ex/N − elog(2)/N .
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If ξ is a zero of a some f ∈ P \ {0}, and if eβξ is algebraic for no β ∈ Q∗
, then h(ξ) = 0

for some irreducible exponential polynomial h over Q. We suggest h as an analogue of the
minimal polynomial for ξ, and the zeros of h as analogues of the conjugates of ξ, in view
of the following result.

Theorem 1.9. Assume Schanuel’s conjecture holds. Let ξ ∈ C∗, and h be an irreducible
exponential polynomial over Q such that h(ξ) = 0. Then for any exponential polynomial f
over Q such that f(ξ) = 0, f/h is an exponential polynomial over Q.

For any integer n ∈ Z,
√
πx|n+1/2|Jn+1/2(x) is an exponential polynomial over Q. If

n ∈ {−1, 0}, it is
√
2 cosx or

√
2 sinx and the situation is similar to that of Theorem 1.8.

Now for n ∈ Z\{−1, 0} this exponential polynomial over Q is irreducible (see the beginning
of §4): Theorem 1.9 applies to all zeros ξ ∈ C∗ of the Bessel function Jn+1/2. This suggests
that Jn+1/2 can then be considered as an analogue of the minimal polynomial of ξ, and
its zeros as analogues of its conjugates. We believe that ξ is neither a period nor an
exponential period. Accordingly this is probably the first attempt to define these notions
for ξ. We would like to point out also that it would be very interesting to have a transitive
group action on the set of conjugates of ξ, as the Galois action in the algebraic setting.
The situation is the same for values ξ = W (c) of the Lambert W function at non-zero
algebraic points c (see the beginning of §4).

In order to deal with zeros of Bessel functions Jα of any rational order α, we propose
conjectures to extend the above properties to the ring E of E-functions. We start with a
generalization of Ritt’s theorem, that enables us to define the gcd of two E-functions so that
common zeros of E-functions should be the zeros of their gcd (as in Theorem 1.7). Then we
adapt Theorems 1.8 and 1.9. For Bessel functions, we deduce from our general conjectures
the following one (recall that J±1/2(x) is a simple exponential polynomial over Q).

Conjecture 1.10. Let α ∈ Q\ ({±1/2}∪ (−N∗)), and f be an E-function such that f and
Jα share a common zero in C∗. Then f(x) = g(x)Γ(α+1)x−αJα(x) for some E-function g.

For α ̸= ±1/2, this conjecture suggests Jα and its zeros as analogues of the minimal
polynomial and the Galois conjugates of ξ, when ξ is a zero of Jα (as above when α−1/2 ∈
Z).

The structure of this paper is as follows. In §2, we prove Theorem 1.2, which implies
a special case of Jossen’s conjecture and will be used in §3 to prove Theorem 1.5. Then
we move in §4 to zeros of exponential polynomials over Q, and conclude in §§5 and 6 with
factorization and zeros of E-functions.

2 A special case of Jossen’s conjecture

In this section, we prove Theorem 1.2 stated in the introduction. We shall use the indicator
function h associated with an holomorphic function f of exponential type in a sector
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α ≤ arg(x) ≤ β. We recall that f is said to be of exponential type in such a sector if there
exists τ > 0 such that, for any x ∈ C∗ with α ≤ arg(x) ≤ β, we have |f(x)| ≤ exp(τ |x|).
Then for any θ ∈ [α, β], h(θ) is defined by

h(θ) = lim sup
r→+∞

log |f(reiθ)|
r

.

We refer to [7, Ch. 5] for the general properties of the indicator function. We shall use the
following consequence of [7, Theorem 6.2.4, Ch. 6, p. 82]:

Proposition 2.1. If f is holomorphic and of exponential type in the (closed) upper half-
plane, bounded on R and such that h(π/2) ≤ 0, then it is bounded on the upper half-plane.

Proof of Theorem 1.2. For any θ ∈ [−π, π] outside a finite set, the E-function gm has
an asymptotic expansion in a large sector bisected by θ of the form

∑
ρ∈Σ fρ(z)e

ρz with

fρ(x) ∈ NGA{1/x}1 (see [3, Theorème de dualité] and [13, §4.1]). Up to changing z to eiαx
for a suitable α, we may assume that such an expansion holds in a large sector bisected by
π/2. Shrinking Σ if necessary, we also assume that fρ ̸= 0 for any ρ ∈ Σ.

Now we fix θ ∈ [0, π] and consider gm(x) as |x| → +∞ with arg(x) = θ; notice that
in this direction, | exp(ρx)| = exp(|x|Re(ρeiθ)) for any ρ ∈ Σ. Except for finitely many
values of θ (related to Stokes’ phenomenon), the maximum of Re(ρeiθ) as ρ ranges through
Σ is obtained for only one value ρθ. Then, as |x| → +∞ in this direction, exp(ρx) is
exponentially smaller than exp(ρθx), for any ρ ∈ Σ \ {ρθ}. Consequently, there exist
aθ ∈ Q, jθ ∈ N, and cθ ∈ C∗ such that

gm(x) ∼ cθx
aθ(log x)jθeρθx

as |x| → +∞ with arg(x) = θ. Taking m-th roots provides dθ ∈ C∗ such that

g(x) ∼ dθx
aθ/m(log x)jθ/meρθx/m.

Moreover, the same argument shows that either (Lg)(x) ∼ dθx
a′θ(log x)j

′
θeρθx/m for some

a′θ, j
′
θ ∈ Q, and dθ ∈ C∗, or (Lg)(x) = o(eρθx/m). The latter happens if the part relative

to eρθx/m in the asymptotic expansion of g is annihilated by L. In both cases, we obtain
L(g)
g
(x) = O(xAθ) for some Aθ ∈ N, as |x| → +∞ with arg(x) = θ.

Changing again x to eiαx if necessary, we may assume that for any θ ∈ {0, π/2, π} the
above-mentioned maximum of Re(ρeiθ) is obtained for only one value ρθ. Then we have
Lg
g
(x) = O(xAθ) as |x| → +∞ with arg(x) = θ. Now let A = max(A0, Aπ) and f(x) =

(x+ i)−AL(g)
g
(x). Then f is holomorphic and of exponential type in the closed upper half-

plane, bounded on R. Its indicator function satisfies h(π/2) ≤ 0. Using Proposition 2.1,

it is bounded, so that |L(g)
g
(x)| ≤ |x + i|A for any x ∈ C with Im(x) ≥ 0. The same proof

yields |L(g)
g
(x)| ≤ |x − i|A when Im(x) ≤ 0. Therefore L(g)/g has (at most) a polynomial

growth at infinity: it is a polynomial by Liouville’s theorem. Now gm has algebraic Taylor
coefficients at 0: so do g, L(g) and L(g)/g. Finally, L(g)/g ∈ Q[x]: this concludes the
proof of Theorem 1.2.
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3 Proof of Theorem 1.5

We do not repeat the assumptions of Theorem 1.5 which are assumed throughout this
section. If 0 is a zero of f (of multiplicity m), f̃(x) := f(x)/xm ̸= 0 is still an E-function in

Q[[x]] with zeros all of multiplicity m, all different from 0, and f̃(0) ∈ Q∗. It is then clearly

enough to prove the theorem for f̃(x)/f̃(0), which is globally bounded and solution of a
differential operator in Q(x)[d/dx] of order ≤ m+1. Therefore, without loss of generality,
we assume that f(0) = 1 from now on.

Before going further and because this will appear below, we recall that E-functions have
been defined by Siegel [26] in a more general way, i.e., the two bounds (· · · ) ≤ Cn+1

i in the
definition in the introduction of E-functions (which are often said to be in the strict sense)
are replaced by: for all ε > 0, (· · · ) ≤ n!ε for all n ≥ N(ε). A globally bounded E-function
as defined in the introduction is automatically a strict E-function by a theorem of Perron
[19]; see the details in [3, p. 715]. We have decided to state our conjectures for E-functions
in the strict sense, but we could formulate the same conjectures for E-functions in Siegel’s
sense mutatis mutandis. However, it is believed that an E-function in Siegel’s sense is
automatically a strict E-function; see again [3, p. 715] for a discussion.

3.1 Existence of g entire of order ≤ 1 such that f = gm and g(0) = 1

We recall that the order of an entire function h is the infimum of the set of all c such
that h(x) = O(exp(|x|c)) as x tends to infinity in the complex plane. Since f is of order
ρ(f) ≤ 1, by the Hadamard factorization theorem [7, Chapter 2], we have

f(x) = eβx
∏

ζ∈Z(f)

(
1− x

ζ

)m

emx/ζ ,

with β = f ′(0) ∈ Q, where Z(f) is the set of zeros of f . Then

g(x) := eβx/m
∏

ζ∈Z(f)

(
1− x

ζ

)
ex/ζ

is also an entire function of order ρ(g) ≤ 1, and such that g(0) = 1 and gm = f .
Let

g(x) =
∞∑
n=0

bn
n!
xn, b0 = 1.

By [7, p. 9], we have

lim sup
n→+∞

n log(n)

log(n!/bn)
= ρ(g) ≤ 1,

so that for all ε > 0, we have bn = O(n!ε) for all n ≥ N(ε).

This is the growth requested on the sequence (bn)n for g to be an E-function in Siegel’s
sense. Moreover, if g can be proved to be holonomic, then by above mentioned theorem
of Perron [19] this bound automatically implies that bn = O(Cn) for some C > 0 which is
the growth requested in (ii) for g to be an E-function in the strict sense.
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3.2 Denominators of the Taylor coefficients of g at the origin

Let f(x) =
∑∞

n=0
an
n!
xn with a0 = 1. We consider again the function g defined in the

previous section. Locally around x = 0, we have (because g(0) = 1):

g(x) = f(x)1/m =
(
1 +

∞∑
n=1

an
n!

xn
)1/m

=
∞∑
k=0

(
1/m

k

)( ∞∑
n=1

an
n!

xn
)k

=
∞∑
ℓ=0

bℓ
ℓ!
xℓ,

so that for any ℓ ≥ 1,

bℓ =
ℓ∑

k=1

(−1)k
(−1/m)k

k!

∑
n1+···+nk=ℓ

nj≥1

(
ℓ

n1, . . . , nk

)
an1 · · · ank

∈ Q. (3.1)

Since f is assumed to be globally bounded and a0 = 1, consider an integer D ≥ 1 such
that Dnan ∈ Z for all n ≥ 1. It is well-known that m2k (−1/m)k

k!
∈ Z for all k ≥ 1 (see

for instance [11, Theorem 4]). Therefore, we deduce from (3.1) that (m2D)ℓbℓ ∈ Z for all
ℓ ≥ 0. This estimate is what is requested in (iii) for g to be an E-function, and even a
globally bounded one.

However, if f is not assumed to be globally bounded, it does not seem possible to
deduce from (3.1) that the least positive common denominator of b0, . . . , bn is bounded by
n!ε, resp by Cn+1, if the least positive common denominator of a0, . . . , an is bounded by
n!ε, resp by Dn+1.

In summary, the results proven so far show that if g is also holonomic, then it is a
globally bounded E-function.

3.3 Holonomicity of g

Let m ≥ 2. By Leibniz formula, we have for all k ≥ 0:

f (k) = (gm)(k) =
∑

ℓ1+···+ℓm=k

(
k

ℓ1, . . . , ℓm

)
g(ℓ1) · · · g(ℓm)

where the sum runs over the integers ℓj ≥ 0 such that ℓ1 + · · ·+ ℓm = k.
We claim that there exist Pk,m ∈ Z[X1, . . . , Xk+1] \ {0} and ck,m ∈ N∗ such that for

k ≤ m− 1,
(gm)(k) = gPk,m(g, g

′, . . . , g(k))
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and for k = m and k = m+ 1,

(gm)(k) = gPk,m(g, g
′, . . . , g(k)) + ck,mg

(k−m+1)(g′)m−1.

Let k ≤ m − 1. We see that in Leibniz formula, given an m-tuple (ℓ1, . . . , ℓm) such
ℓ1 + · · · + ℓm = k, we obviously cannot have ℓj ≥ 1 for each j, hence g always appears in
the products g(ℓ1) · · · g(ℓm) and the claim follows in this case.

Let k = m. If one of the ℓj = 0, the corresponding term g(ℓ1) · · · g(ℓm) contributes to
gPk,m(g, g

′, . . . , g(k)). If none of the ℓj = 0, i.e., all are ≥ 1, then in fact ℓ1 = · · · = ℓm = 1
because otherwise ℓ1 + · · · + ℓm ≥ m + 1 > k; hence in that case, we have a unique term
m! · (g′)m. This proves the claim in this case.

Let k = m + 1. Again if one of the ℓj = 0, the corresponding term g(ℓ1) · · · g(ℓm)

contributes to gPk,m(g, g
′, . . . , g(k)). If none of the ℓj = 0, i.e., all are ≥ 1, then exactly one

must be equal to 2 and the others must be equal to 1. Indeed, if at least two are ≥ 2, then
ℓ1 + · · ·+ ℓm ≥ m+ 2 > k while if they are all equal to 1, we have ℓ1 + · · ·+ ℓm = m < k;
hence in that case we have a (non-empty) sum of terms all of the form c ·g′′(g′)m−1, c ∈ N∗.
This proves the claim in this case as well.

Let us now assume that f is solution of a differential operator in Q(x)[d/dx] of order
m+ 1, i.e., we have

m+1∑
k=0

ak(x)f
(k)(x) = 0, am+1 ̸= 0, ak ∈ Z[x].

Using the above expressions for (gm)(k), we then obtain an algebraic differential equation
for g of the form(

cm+1,mam+1g
′′ + cm,mamg

′)g′m−1 = gQ
(
x, g, g′, . . . , g(m+1)

)
, Q ∈ Z[X0, X1, . . . Xm+2].

Since g has simple zeros, it has no common zeros with g′. Since Q(x, g, g′, . . . , g(m+1)) is
an entire function, all these simple zeros are zeros of cm+1,mam+1g

′′ + cm,mamg
′ so that

h :=
cm+1,mam+1g

′′ + cm,mamg
′

g
(3.2)

is an entire function. Hence by Theorem 1.2, h is in Q[x]. Moreover, as the right-hand
side of (3.2) is in Q((x)), we deduce that h ∈ Q[x]. The equation

cm+1,mam+1g
′′ + cm,mamg

′ − hg = 0

then shows that g is solution of a differential operator in Q(x)[d/dx] of order 2. Note that
if f is of minimal differential order m+1, then g is of minimal differential order 2: indeed,
by what precedes, g would otherwise be of minimal order 1 and thus f as well, which is
not possible.
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Finally, let us assume that f is solution of a differential operator in Q(x)[d/dx] of
order ≤ m. We distinguish two cases.

First case. Let us assume that f has infinitely many zeros of multiplicity m. Then
at one such zero ξ which is not one of the finitely many singularities of the differential
equation of f , we have f(ξ) = f ′(ξ) = · · · = f (m−1)(ξ) = 0. Since ξ is an ordinary point of
this equation of order ≤ m, by the Cauchy-Lipschitz theorem, f must be identically zero,
which is excluded.

Second case. Let us assume that f has finitely many zeros. Then f ∈ Q[[x]] is of the
form p(x)eξx by the Hadamard factorization formula, with ξ ∈ C and p ∈ C[x]. Since
f is an E-function, we know that ξ ∈ Q hence p ∈ Q[x]. If ξ = 0, then p = f is in
Q[x]. Let us now assume that f is transcendental, i.e., ξ ̸= 0. By [8, Theorem 3.4], there
exist unique u, v ∈ Q[x] and h ∈ Q[[x]] a purely transcendental E-function (1) such that
v is monic, v(0) ̸= 0, deg(u) < deg(v) and f = u + vh (canonical decomposition of f);
moreover u, v, h have rational Taylor coefficients because f ∈ Q[[x]]. Let pµ ∈ Q∗

denote
the leading coefficient of p: since pµe

ξx is purely transcendental, (p(x)/pµ) · pµeξx is the
canonical decomposition of f and thus (p(x)/pµ) ∈ Q[x] and pµe

ξx ∈ Q[[x]]. Hence pµ ∈ Q
and consequently f ∈ Q[x]eQx with roots of multiplicity m. Therefore g is in Q[x]eQx, is
solution of a differential operator in Q(x)[d/dx] of order 1, and is globally bounded because

this is the case of all E-functions in Q[x]eQx. This case is thus possible.

4 Zeros of exponential polynomials over Q
In this section we consider exponential polynomials over Q, defined as functions

f(x) =
N∑
i=1

Pi(x)e
βix (4.1)

with N ≥ 1, P1, . . . , PN ∈ Q[X], β1, . . . , βN ∈ Q. We emphasize that we allow polynomial
coefficients Pi(x), instead of only constants in [22] for instance. However we restrict to
algebraic βi and polynomials with algebraic coefficients, instead of βi ∈ C and Pi ∈ C[X]
in the literature on exponential polynomials. This changes the situation completely. This
restriction is necessary for exponential polynomials to be E-functions. All exponential
polynomials considered in this section are over Q, unless stated otherwise.

Units and irreducible elements of the ring P of exponential polynomials have been
defined in the introduction. For instance, given c ∈ Q∗

, the function hc(x) = xex − c
is irreducible in P . Indeed, using Ritt’s theory this follows from the irreducibility of
X0X

n
1 − c in Q[X0, X1] for any n ≥ 1 (which is a consequence of Eisenstein’s criterion

applied to Xn
1 − c/X0, seen as a polynomial in X1 with coefficients in the factorial ring

Q[1/X0]).
For any n ∈ Z, we have

√
π/2x|n+1/2|Jn+1/2(x) = e−ix(An(x)e

2ix+Bn(x)) with An, Bn ∈
Q[X]. Ritt’s theory shows that the irreducibility of this exponential polynomial in P

1By definition, a purely transcendental E-function h is such that h(η) /∈ Q for all η ∈ Q∗
.
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follows from that of An(X)Y k + Bn(X) in Q[X, Y ] for any k ≥ 1; we shall prove it
now for any n ∈ Z \ {−1, 0} using Eisenstein’s criterion. To begin with, we notice that
x−|n+1/2|An(x)e

ix and x−|n+1/2|Bn(x)e
−ix are solution of the Bessel differential operator

of order 2 that annihilates Jn+1/2, of which 0 is the only finite singularity. Therefore
An(x) and Bn(x) are also solutions of differential equations of order 2 with no non-zero
finite singularities. The Cauchy-Lipschitz theorem shows that they have only simple roots
(except possibly 0). Since n ̸∈ {−1, 0}, at least one of An and Bn has a simple root ξ.
It cannot be a common root of An and Bn, since otherwise Jn+1/2 would have a non-
zero algebraic zero, in contradiction with Siegel’s theorem. Therefore Eisenstein’s criterion
applies with the irreducible polynomial X − ξ, and proves that An(X)Y k + Bn(X) is
irreducible in Q(X)[Y ] and then in Q[X, Y ] since An and Bn are coprime. This concludes
the proof that

√
π/2x|n+1/2|Jn+1/2(x) is irreducible in P .

Theorem 1.7 stated in the introduction is an immediate consequence of the following
result, since units of P have no zeros.

Theorem 4.1. Assume that Schanuel’s conjecture holds. Let f1, f2 be non-zero exponential
polynomials with (at least) a common zero ξ ∈ C∗. Then there exists f ∈ P \ {0}, which
vanishes at ξ, such that f1/f and f2/f are exponential polynomials.

We point out that Theorem 4.1 would be false with ξ = 0; for instance f1(x) = ex − 1

and f2(x) = ex
√
2 − 1 both vanish at 0, but are not multiple of an exponential polynomial

vanishing at 0 because they are simple with distinct supports (see Lemma 4.4 below).
Another remark is that Theorem 4.1 is remniscent of the Shapiro conjecture: if f1, f2 are
exponential polynomials with constant complex coefficients (i.e., of the form (4.1) with
βi, Pi ∈ C) with infinitely many common zeros, then the conclusion of Theorem 4.1 holds.

In the complex setting, one common zero is not enough: for instance ex− e and ex
√
2− e

√
2

have a common zero at 1, but are not multiple of an exponential polynomial vanishing
at 1. This example shows that restricting to βi ∈ Q and Pi ∈ Q[X] in Eq. (4.1) changes
completely the situation.

Corollary 4.2. If Schanuel’s conjecture holds then irreducible exponential polynomials
have only simple zeros.

Proof of Corollary 4.2. Let h ∈ P be irreducible. If ξ is a multiple zero of h, then it is also
a zero of h′. Using Theorem 4.1 it is a zero of gcd(h, h′) so this gcd is not a unit. Since h
is irreducible, this gcd is equal to h (up to a unit), and h divides h′ in P . Denoting by ω
the multiplicity of ξ as a zero of h, we obtain ω ≤ ω − 1 since all exponential polynomials
are holomorphic at ξ: this is a contradiction, and Corollary 4.2 is proved.

Let us deduce the following consequence of Theorem 4.1; it contains Theorems 1.8 and
1.9 stated in the introduction.

Corollary 4.3. Assume that Schanuel’s conjecture holds, and let ξ ∈ C∗ be a zero of an
exponential polynomial. Then one, and only one, of the following holds:
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• We have eβξ ∈ Q for some β ∈ Q∗
, and for any f ∈ P with f(ξ) = 0 there exists

N ≥ 1 such that f is divisible by eβx/N − eβξ/N in P.

• We have h(ξ) = 0 for some irreducible h ∈ P, and h divides in P any exponential
polynomial that vanishes at ξ.

Proof of Corollary 4.3. To begin with, let ξ ∈ C∗ and h, f ∈ P be such that h(ξ) = f(ξ) =
0, with h irreducible. Using Theorem 1.7, gcd(h, f) vanishes at ξ so it is not a unit. Since
h is irreducible, it is h (up to a unit) so that h divides f in P . This proves the second
part. Moreover, if f(x) = eβx − c with β, c ∈ Q∗

then f is simple so h cannot divide f (by
uniqueness in Ritt’s factorization theorem): ξ cannot be in both situations of Corollary 4.3.

At last, if ξ ∈ C∗ is a zero of some f0 ∈ P \ {0} but of no irreducible h ∈ P , then ξ a
zero of a simple factor g of f0. Up to a unit, we can write g(x) = P (eβx) for some β ∈ Q∗

and P ∈ Q[X] \ {0}. Therefore eβξ is a zero of P : it is algebraic. If f ∈ P is such that
f(ξ) = 0, there exists β1 ∈ Q∗

and P1 ∈ Q[X] \ {0} such that g1(x) = P1(e
β1x) divides

f in P and vanishes at ξ. Both eβξ and eβ1ξ = (eβξ)β1/β are algebraic, and eβξ ̸= 1: the
Gel’fond-Schneider theorem yields β1/β ∈ Q. This provides β2 ∈ Q∗

such that β, β1 ∈ β2Z.
Up to multiplying g and g1 with suitable units, we may assume that β = nβ2 and β1 = n1β2

with n, n1 ∈ N∗. Letting Q(X) = P (Xn) and Q1(X) = P1(X
n1) we have g(x) = Q(eβ2x)

and g1(x) = Q1(e
β2x). Since g(ξ) = g1(ξ) = 0, the polynomials Q and Q1 have eβ2ξ as

a common root, so they are multiples of X − eβ2ξ in Q[X]. Finally the simple function
eβ2x − eβ2ξ, with β2 = β/n, vanishes at ξ and divides f . This concludes the proof of
Corollary 4.3.

Proof of Theorem 4.1. We denote by β1, . . . , βN the exponents in an expression (4.1) of f1,
and by β′

1, . . . , β
′
N ′ those for f2. LetW be the Z-module generated by β1, . . . , βN , β

′
1, . . . , β

′
N ′ .

There exists a Z-basis α1, . . . , αp of W ; all exponents βi, β
′
j can be written as Z-linear com-

binations of α1, . . . , αp. Multiplying f1 and f2 with eγx for a suitable γ ∈ W ⊂ Q, we
may assume that these linear combinations involve only non-negative coefficients. Then
we have

f1(x) = P1(x, e
α1x, . . . , eαpx) and f2(x) = P2(x, e

α1x, . . . , eαpx)

for some P1, P2 ∈ Q[X0, . . . , Xp] \ {0}. The complex numbers α1ξ, . . . , αpξ are linearly
independent over Q because α1, . . . , αp are, and ξ ̸= 0; but they are linearly dependent
over Q. Schanuel’s conjecture implies that

Q(α1ξ, . . . , αpξ, e
α1ξ, . . . , eαpξ) = Q(ξ, eα1ξ, . . . , eαpξ)

has transcendence degree at least p over Q. In other words, letting

J = {S ∈ Q[X0, . . . , Xp], S(ξ, eα1ξ, . . . , eαpξ) = 0},

the zero set of J in Qp+1
has dimension at least p; since P1 and P2 are non-zero and

belong to J , this dimension is equal to p. Therefore J is principal: there exists P ∈
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Q[X0, . . . , Xp] \ {0} such that J consists in all multiples of P , and accordingly there exist
T1, T2 ∈ Q[X0, . . . , Xp] such that P1 = T1P and P2 = T2P . Letting

f(x) = P (x, eα1x, . . . , eαpx), f̃1(x) = T1(x, e
α1x, . . . , eαpx), f̃2(x) = T2(x, e

α1x, . . . , eαpx),

we have f(ξ) = 0, f1 = ff̃1 and f2 = ff̃2. This concludes the proof of Theorem 4.1.

To conclude this section we state the following well-known result, valid also in the
complex setting. It follows immediately from [5, Proposition 3.1.1].

Lemma 4.4. Let f1, f2 be non-zero exponential polynomials such that f1f2 is simple. Then
f1 and f2 are simple and f1, f2, f1f2 have the same support.

This lemma shows that if f is simple, then all divisors of f in P are also simple with
the same support.

5 Factorization of E-functions

In this section we describe the (conjectural) structure of the ring E of E-functions.
A unit u ∈ E is an E-function such that uv = 1 for some v ∈ E ; we denote by E× the

set of units. Units are exactly non-vanishing E-functions, i.e., the functions of the form
λeαx with λ, α ∈ Q and λ ̸= 0 (using the Hadamard factorization theorem).

An irreducible element is a non-unit f ∈ E such that f = gh with g, h ∈ E implies
that either g or h is a unit. We shall see in the proof of Proposition 5.7 below that if
f(x0) = 0 for some x0 ∈ Q, then f is irreducible if and only if f(x) = (x − x0)u(x) for
some unit u. In particular a polynomial f ∈ Q[x] is irreducible in E if, and only if, it has
degree one. We conjecture Bessel’s E-functions Γ(α + 1)x−αJα(x) to be irreducible when
α ∈ Q \ ({±1/2} ∪ (−N∗)).

The integral domain E is not a factorial ring. Indeed, for any N ≥ 1 we have

ex − 1 =
N∏
k=1

(
ex/N − e2iπk/N

)
(5.1)

whereas in a factorial ring, no non-zero element can be written as a product of arbitrarily
many non-units. In the spirit of [23, Theorem 5] we conjecture that, as in the setting of
exponential polynomials over Q, this problem happens only with simple functions, defined
as follows.

Definition 5.1. A simple element of E is an E-function of the form

g(x) = x−ωeαx
N∑
i=1

λie
βrix (5.2)

13



with α, β ∈ Q, β ̸= 0, N ≥ 2, λ1, . . . , λN ∈ Q∗
, and pairwise distinct rational numbers

r1, . . . , rN ; the integer ω is chosen so that f is holomorphic at 0 and g(0) ̸= 0. The support
of g, denoted by supp(g), is the 1-dimensional vector space

SpanQ(β) = {βr, r ∈ Q} ⊂ Q

which depends only on g and not on the choice of α, β, λ1, . . . , λN , r1, . . . , rN .

We point out that this definition is slightly different from the usual one in the setting of
exponential polynomials over Q (which amounts to taking ω = 0 in Eq. (5.2)). For instance
sin(x)

x
(which is an E-function but not an exponential polynomial) is simple, whereas sin(x)

is not, with our definition. This modification is necessary for Conjecture 5.4 below to be
reasonable (otherwise, conjecturally sin(x)

x
would have no factorization).

An E-function is simple if, and only if, it is not a unit and it can be written as

g(x) = x−ωeαx
N∑
i=1

λie
βix

with N ≥ 2, α, λ1, . . . , λN ∈ Q, β1, . . . , βN ∈ Q such that βi/βj ∈ Q for any i, j such that
βj ̸= 0, and ω ∈ N such that g(0) ̸= 0. With this notation, the support of g is SpanQ(βi),
for any i such that βi ̸= 0.

We shall use the following characterization very often; here ord1P is the order of mul-
tiplicity of 1 as a root of P .

Lemma 5.2. A function g is a simple E-function if, and only if, it can be written as

g(x) = x−ord1Pu(x)P (eβx) (5.3)

with β ∈ Q∗
, a unit u ∈ E×, and P ∈ Q[X] such that P (0) ̸= 0. Moreover, we have

supp(g) = SpanQ(β).

We point out that this expression is not unique: for instance eβx = (eβx/N)N so that
β and P (X) can be replaced with β/N and P (XN), for any N ≥ 1. Given finitely many
simple functions with the same support, this remark enables one to write them as (5.3) with
the same β. Indeed given finitely many elements βi ∈ V \ {0}, where V is a 1-dimensional
vector space over Q, there exists β ∈ V \ {0} such that all βi are integer multiples of β
(see the proof of Corollary 4.3 in §4).

Proof of Lemma 5.2. Let g be a simple function, written as (5.2). Modifying α if necessary,
we may assume that ri ≥ 0 for any i, with equality for an index i. Let D be a common
denominator of the rationals ri; replacing β with β/D we may assume that D = 1, so
that ri ∈ N for any i. Then letting u(x) = eαx and P (X) =

∑N
i=1 λiX

ri ∈ Q[X], we have
P (0) ̸= 0 (because λi ̸= 0 for all i, and ri = 0 for some i), and g(x) = x−ωu(x)P (eβx).
We may write P (X) = (X − 1)ord1PQ(X) with Q(X) ∈ Q[X] such that Q(1) ̸= 0. Then
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we have g(x) = x−ωu(x)(eβx − 1)ord1PQ(eβx), and the function Q(eβx) does not vanish at

x = 0. Now both g(x) and eβx−1
x

are holomorphic and do not vanish at 0, so that ω = ord1P
and g is of the form (5.3). The converse can be proved easily along the same lines. This
concludes the proof of Lemma 5.2.

Definition 5.3. A non-zero element f ∈ E is said to be normalized if its Taylor expansion∑∞
n=0 anx

n around the origin satisfies

a0 = . . . = ap−1 = 0, ap = 1, ap+1 = 0

for some p ≥ 0.

In other words, f is normalized if, and only if, its first non-zero Taylor coefficient at
the origin is equal to 1, and the next one vanishes. The point is that for any non-zero
f ∈ E , there exists a unique u ∈ E× such that fu is normalized. Moreover, any product
of normalized E-functions is again normalized. This allows one to have really equalities
between functions, not only “up to units”. We conjecture that the following analogue of
Ritt’s factorization theorem holds.

Conjecture 5.4. Let f be a non-zero E-function. Then there exist a unit u ∈ E×, sim-
ple normalized E-functions s1, . . . , sp with pairwise distinct supports (where p ≥ 0), and
irreducible normalized E-functions h1, . . . , hn (with n ≥ 0), such that

f = us1 . . . sph1 . . . hn. (5.4)

Moreover u, s1, . . . , sp, h1, . . . , hn are unique.

To state Conjecture 5.4 in a different way, we denote by V the set of all Q-vector spaces
of dimension 1 contained in Q, and by I the set of all normalized irreducible E-functions.

Proposition 5.5. Conjecture 5.4 is equivalent to the following statement.
Let f be a non-zero E-function. There exist a unit u, a function sV which is either

equal to 1 or simple normalized with support V (for each V ∈ V), and a non-negative
integer nh (for each h ∈ I), such that

f = u
( ∏

V ∈V

sV

)(∏
h∈I

hnh

)
, (5.5)

with sV = 1 for all but finitely many V ∈ V, and nh = 0 for all but finitely many h ∈ I.
Moreover u, (sV )V ∈V and (nh)h∈I are uniquely determined by f .

We notice that in the products of Eq. (5.5), all factors are equal to the constant function
1 except finitely many of them.

The proof of Proposition 5.5 is straightforward since decompositions (5.4) and (5.5) are
equivalent. Indeed for h ∈ I, nh is the number of i such that hi = h; and for V ∈ V ,
sV = si if there is a (necessarily unique) index i such that supp(si) = V , and sV = 1
otherwise.

Until the end of §5, we assume that Conjecture 5.4 holds.
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Definition 5.6. Let f be a non-zero E-function, and h ∈ I. The h-adic valuation of f ,
denoted by vh(f), is the exponent nh of h in the decomposition (5.5) of f .

Let x0 ∈ Q. Then x − x0 is an irreducible E-function. Indeed, if x − x0 = f1f2
with f1, f2 ∈ E , then up to swapping f1 and f2 we may assume that f1(x0) = 0; then [6,
Proposition 4.1] yields f3 ∈ E such that f1(x) = (x − x0)f3(x), and therefore f2f3 = 1 so
that f2 is a unit. Now consider the E-function hx0 defined by h0(x) = x and, if x0 ̸= 0,

hx0(x) =
−1
x0
ex/x0(x−x0) =

(
1− x

x0

)
ex/x0 . Then hx0 is irreducible too, and it is normalized

so that hx0 ∈ I.

Proposition 5.7. Let x0 ∈ Q, and f be a non-zero E-function. Then vhx0
(f) is the order

of vanishing of f at x0, where h0(x) = x and, if x0 ̸= 0,

hx0(x) =
(
1− x

x0

)
ex/x0 .

We point out that Proposition 5.7 applies to any x0 ∈ Q, including x0 = 0, whereas the
corresponding statement with exponential polynomials would be false for x0 = 0: indeed
ex − 1 vanishes at 0 but is not divisible by x in the ring of exponential polynomials.

Proof of Proposition 5.7. Let x0 be an algebraic number. First of all, we claim that if g
is simple then g(x0) ̸= 0. This is part of the definition of a simple function if x0 = 0.
Otherwise, Lemma 5.2 yields g(x) = x−ord1Pu(x)P (eβx) for some non-zero β ∈ supp(g) ⊂
Q, u ∈ E× and P ∈ Q[X]. Now eβx0 is transcendental due to the Hermite-Lindemann
Theorem, and P ̸= 0, so that P (eβx0) is non-zero and finally g(x0) ̸= 0.

Now let us prove that if h ∈ I is such that h(x0) = 0, then h = hx0 . Indeed, using [6,
Proposition 4.1], h can be written as (x− x0)h1(x) with h1 ∈ E . Since x− x0 vanishes at
x0, it is not a unit. Now h is irreducible, so that h1 is a unit: we have h(x) = λeαx(x− x0)
for some λ, α ∈ Q with λ ̸= 0. To conclude we recall that h is normalized. If x0 = 0 then
h(0) = 0 and h′(0) = λ so that λ = 1 and α = 0: we have h(x) = x = h0(x). On the
contrary, if x0 ̸= 0 then h(0) = −λx0 so that λ = −1/x0 and α = 1/x0. This concludes
the proof that if h ∈ I is such that h(x0) = 0, then h = hx0 .

To conclude the proof of Proposition 5.7, we notice that in Eq. (5.5) no factor on the
right-hand side vanishes at x0, except the one that corresponds to hx0 .

Recall that g divides f (with f, g ∈ E) means that f = gg1 for some g1 ∈ E ; Jossen’s
conjecture asserts that this is equivalent to f/g being entire. We shall explain now how to
translate the property that g divides f in terms of the decompositions (5.5) of f and g.

Proposition 5.7 shows that hx0 divides a non-zero f ∈ E if, and only if, f(x0) = 0.
Indeed a normalized irreducible E-function h divides f ∈ E \{0} if, and only if, vh(f) ≥ 1:
this follows at once from the unique decomposition (5.5).
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Given simple functions g1, g2 with the same support V ∈ V , using Lemma 5.2 and the
remark following it, we write

g1(x) = x−ord1P1u1(x)P1(e
βx) and g2(x) = x−ord1P2u2(x)P2(e

βx)

with β ∈ V \ {0} ⊂ Q∗
, units u1, u2 ∈ E×, and P1, P2 ∈ Q[X] such that P1(0) ̸= 0 and

P2(0) ̸= 0. We claim that g1 divides g2 in E if, and only if, P1 divides P2 in Q[X]. If P1

divides P2 this is clear. Otherwise, upon dividing P1 and P2 by their gcd we may assume
they are coprime, and that P1 is non constant. Then P1 has a root y1 ∈ C, which is not
a root of P2. Since P1(0) ̸= 0 we have y1 ̸= 0: there exists x1 ∈ C such that eβx1 = y1.
If x1 = 0 then we may also choose x1 = 2iπ/β, so we assume x1 ̸= 0. Then g1(x1) = 0
and g2(x1) ̸= 0, so that g1 does not divide g2 in E (recall that E-functions are entire, and
therefore holomorphic at x1). This enables us to understand divisibility amongst simple
functions with the same support. To understand divisibility in E we need the following
definition.

Definition 5.8. Let f be a non-zero E-function, and V ∈ V. The simple part with support
V of f , denoted by sV (f), is the function sV in the decomposition (5.5) of f .

Notice there is a slight abuse in this terminology: if sV (f) = 1, it is not simple and
therefore has no support. We call it the simple part with support V of f anyway.

With this definition we have the following result.

Proposition 5.9. Let f1, f2 be non-zero E-functions. Then f1 divides f2 in E if, and only
if, the following properties hold:

• For any V ∈ V, sV (f1) divides sV (f2).

• For any h ∈ I, vh(f1) ≤ vh(f2).

Proof of Proposition 5.9. If f1 divides f2, we have f2 = f1f for some f ∈ E \ {0}. Com-
paring the decompositions (5.5) of f , f1 and f2 gives sV (f2) = sV (f1)sV (f) and vh(f2) =
vh(f1) + vh(f) by unicity, and this concludes the proof. Conversely, let V ∈ V and assume
that sV (f1) divides sV (f2). Then we have sV (f2) = sV (f1)fV for some fV ∈ E \ {0}.
Decomposing fV as in (5.5) yields a decomposition of sV (f2). By unicity of the latter,
we have sV (f2) = sV (f1)sV (fV ). Moreover, if sV (f2) = sV (f1) = 1 then fV = 1 so that
sV (fV ) = 1. Finally, if we assume that for any V ∈ V , sV (f1) divides sV (f2) and for any
h ∈ I, vh(f1) ≤ vh(f2), then letting

f =
( ∏

V ∈V

sV (fV )
)(∏

h∈I

hvh(f2)−vh(f1)
)

(where in each product, only finitely many factors are different from 1), we have f2 = f1f .
This concludes the proof of Proposition 5.9.

Proposition 5.9 enables us to define gcd’s in E as follows, starting with simple functions
with the same support.
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Definition 5.10. Let g1, g2 be simple functions with the same support V . Using Lemma 5.2
we may write g1(x) = x−ord1P1u1(x)P1(e

βx) and g2(x) = x−ord1P2u2(x)P2(e
βx) where u1, u2 ∈

E×, P1, P2 ∈ Q[X] don’t vanish at 0, and β ∈ V \ {0} ⊂ Q∗
. The gcd of g1 and g2, denoted

by gcd(g1, g2), is then P (eβx) where P is the gcd of P1 and P2 in Q[X].

The following lemma shows that this gcd is independent (up to a unit of E) of the
choice of β, P1, P2, u1, u2.

Lemma 5.11. Let g1, g2, g3 be simple functions with the same support V . Then g3 divides
gcd(g1, g2) if, and only if, g3 divides both g1 and g2.

The proof of this lemma is straightforward upon writing gi(x) = x−ord1Piui(x)Pi(e
βx)

where β is independent of i ∈ {1, 2, 3}, and using the remark before Definition 5.8.
We can now generalize the definition of gcd.

Definition 5.12. Let f1, f2 be non-zero E-functions. The gcd of f1 and f2, denoted by
gcd(f1, f2), is ( ∏

V ∈V

gcd(sV (f1), sV (f2))
)(∏

h∈I

hmin(vh(f1),vh(f2))
)
.

This definition makes sense because of the following result, which is an immediate
consequence of Proposition 5.9 and Lemma 5.11.

Proposition 5.13. Let f1, f2, f3 be non-zero E-functions. Then f3 divides gcd(f1, f2) if,
and only if, f3 divides both f1 and f2.

To sum up the results obtained in this section, we state the following (see [2, p. 4] for
the definition and various other names of a gcd domain, including pseudo-Bezout ring [9,
p. 280]).

Theorem 5.14. The ring E is neither factorial nor noetherian. However, if Conjecture 5.4
holds, it is a gcd domain.

The non-factoriality of E has been proved already using Eq. (5.1). To prove that E is
not noetherian, we show that (IN)N≥0 is an increasing sequence of ideals, where

IN = {f ∈ E , ∀k ∈ Z f(k2Nπ) = 0}.

Indeed, for any N ≥ 0 we have IN ⊂ IN+1 and fN(x) = sin(x/2N+1) belongs to IN+1 \ IN .
At last, given f1, f2 ∈ E , we conjecture that the ideal of E generated by f1 and f2 is

not principal in general, so that there are no Bezout relations in E .
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6 Zeros of E-functions

In this section we study zeros of E-functions. Our point of view is to state two conjectures
dealing with special E-functions, and then to deduce the general properties in Theorems
6.3 and 6.5.

Conjecture 6.1. Let h1, h2 be irreducible E-functions with (at least) a common zero in
C. Then h1 = uh2 for some unit E-function u.

This conjecture holds if h1(x) = x − x0 for some x0 ∈ Q. Indeed, if h2(x0) = 0 then
hx0 divides h2 (see Proposition 5.7 above). Now both hx0 and h2 are irreducible, so that
h2 = u1hx0 = u2h1 for some u1, u2 ∈ E×.

Conjecture 6.2. Let ξ ∈ C∗ be such that eβξ is algebraic for some β ∈ Q∗
. Then h(ξ) ̸= 0

for any irreducible E-function h.

This result follows from the Hermite-Lindemann theorem if h(x) = x − x0 for some
x0 ∈ Q. If h is an exponential polynomial over Q, the conclusion of Conjecture 6.2 follows
from Schanuel’s conjecture (see Corollary 4.3 in §4).

In particular Conjecture 6.2 implies that no irreducible E-function vanishes at π, log 2,
etc.

We are now ready to provide an analogue of Theorem 1.7 for E-functions.

Theorem 6.3. Assume that Conjectures 5.4, 6.1 and 6.2 hold. Let f1, f2 be non-zero
E-functions. Then f1

gcd(f1,f2)
and f2

gcd(f1,f2)
have no common zero in C. In other words,

common zeros of f1 and f2 are exactly the zeros of gcd(f1, f2), and for any such ξ, the
order of vanishing of gcd(f1, f2) at ξ is the least of the orders of vanishing of f1 and f2
at ξ.

At last, this result holds unconditionally if f1 and f2 are simple.

Assuming that Conjecture 5.4 holds (i.e., that E-functions can be factored as in Ritt’s
theorem, so that gcd’s exist), part (ii) of Jossen’s Conjecture 1.1 implies the conclusion of
Theorem 6.3: coprime E-functions have no common zeros. In a converse way, we have the
following.

Corollary 6.4. If Conjectures 5.4, 6.1 and 6.2 hold then:

• Irreducible E-functions have only simple zeros.

• Conjecture 1.4 and Jossen’s Conjecture 1.1 hold.

Proof of Corollary 6.4. The first part can be proved exactly in the same way as Corol-
lary 4.2.

To deduce Conjecture 1.4, we may therefore restrict (using the decomposition (5.5)) to
a simple function g, and even (using Lemma 5.2) to g(x) = P (eβx) with P ∈ Q[X] and
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β ∈ Q∗
. Factoring P in Q[X], what remains to consider is the case where P (X) = X − y0

for some y0 ∈ Q. Then g′ does not vanish, so that g has only simple roots.
To deduce Conjecture 1.1, we consider f, g ∈ E \{0} such that f/g is entire. Dividing f

and g by their gcd if necessary, we may assume that gcd(f, g) = 1. Then all zeros of g are
zeros of f , but f and g have no common zeros due to Theorem 6.3. Therefore g does not
vanish: it is a unit of E , and f/g is an E-function. This proves the first part of Jossen’s
conjecture; the second one follows at once from Theorem 6.3.

Proof of Theorem 6.3. Upon dividing f1 and f2 by their gcd (which exists unconditionally
if f1 and f2 are simple), we may assume that gcd(f1, f2) = 1. Let ξ ∈ C be a common
zero of f1 and f2. Then in the decomposition (5.5) of f1 (resp. of f2), at least one factor
vanishes at ξ. There are 3 possibilities.

First, let us consider the case where there exist V1, V2 ∈ V such that g1 = sV1(f1)
and g2 = sV2(f2) vanish at ξ; in particular this happens if f1 and f2 are simple. Recall
that gi(x) can be written as x−ord1Piui(x)Pi(e

βix) with ui ∈ E×, βi ∈ supp(gi) \ {0}, and
Pi ∈ Q[X] \ {0}. Since gi(ξ) = 0, we have ξ ̸= 0 and eβiξ is a root of Pi and therefore an
algebraic number. Now eβ1ξ and eβ2ξ are both algebraic, so that β1/β2 is rational using the
Gel’fond-Schneider Theorem. Accordingly we may write gi(x) = x−ord1Piui(x)Pi(e

βx) with
β independent from i; and g = gcd(g1, g2) is defined by g(x) = P (eβx) where P is the gcd
of P1 and P2 in Q[X]. If ξ is a common zero of g1/g and g2/g then eβξ is a common zero
of P1/P and P2/P , which is impossible since these polynomials are coprime.

If there exist h1, h2 ∈ I such that vh1(f1) and vh2(f2) are positive and h1(ξ) = h2(ξ) = 0,
then Conjecture 6.1 implies h1 = h2, and this irreducible E-function divides gcd(f1, f2) = 1:
this is a contradiction.

The last possibility (up to swapping f1 and f2) is that there exist V ∈ V and h ∈
I such that both sV (f1) and h vanish at ξ, with vh(f2) ≥ 1. Writing sV (f1)(x) =
x−ord1Pu(x)P (eβx) with u ∈ E×, P ∈ Q[X] and β ∈ Q, we obtain that eβξ is algebraic.
Since h(ξ) = 0 this contradicts Conjecture 6.2, and concludes the proof of Theorem 6.3.

We can deduce now an analogue of Corollary 4.3 for E-functions.

Theorem 6.5. Assume that Conjectures 5.4, 6.1 and 6.2 hold. Let ξ ∈ C be a zero of a
non-zero E-function. Then one, and only one, of the following holds:

• We have ξ ̸= 0, eβξ ∈ Q for some β ∈ Q∗
, and for any f ∈ E with f(ξ) = 0 there

exists N ≥ 1 such that f is divisible by eβx/N − eβξ/N in E.

• We have h(ξ) = 0 for some irreducible h ∈ E, and h divides in E any E-function
that vanishes at ξ.

This result shows that there are (conjecturally) two types of zeros of E-functions. The

first one corresponds to ξ = log(α)
β

with α, β ∈ Q∗
and any determination of log(α); the
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second one includes (conjecturally) zeros of Bessel functions Jα, α ∈ Q \ {±1/2}, and
values at algebraic points of the Lambert W function. Moreover Theorem 6.5 gives a kind
of generalization of minimal polynomials (resp. conjugates) of algebraic numbers; in the
second case, it would be the irreducible function h, which is unique up to multiplication
by a unit of E (resp. its zeros).

If ξ is algebraic then the conclusion of Theorem 6.5 holds inconditionally. Indeed the
first case cannot occur due to the Hermite-Lindemann Theorem, and the second one holds
with h(x) = x− ξ using [6, Proposition 4.1]. We see that the minimal function of ξ would
be x − ξ, which is reasonable: recall that Q[X] ⊂ E . Maybe the minimal polynomial
of ξ over Q could be recovered in this setting by restricting to E-functions with rational
coefficients, but we did not try to do it.

Proof of Theorem 6.5. First of all, Conjecture 6.2 shows that both cases of Theorem 6.5
cannot occur simultaneously. Let f0 ∈ E \ {0} and ξ ∈ C be such that f0(ξ) = 0.
Decomposing f0 as in Conjecture 5.4, at least one factor vanishes at ξ: either a simple
function or an irreducible one.

If a simple function g(x) = x−ord1Pu(x)P (eβx) vanishes at ξ, then eβξ is algebraic.
We write V = SpanQ(β) = supp(g) and consider any f ∈ E \ {0} such that f(ξ) = 0.
Theorem 6.3 shows that ξ is a zero of gcd(f, g) = gcd(sV (f), g). We have sV (f)(x) =
x−ord1Qv(x)Q(eβ

′x) for some v ∈ E×, Q ∈ Q[X] and β′ ∈ V \ {0}. Since β and β′ span
the same Q-vector space, there exists N ≥ 1 such that β′ is an integer multiple of β/N .
Then sV (f), g and gcd(sV (f), g) can be written (up to units) as polynomials in eβx/N

multiplied by suitable powers of x. This provides S ∈ Q[X] and w ∈ E× such that
gcd(sV (f), g)(x) = xord1Sw(x)S(eβx/N) vanishes at ξ. We have S(eβξ/N) = 0 so that
S(X) = (X − eβξ/N)T (X) for some T ∈ Q[X], since eβξ/N is algebraic. Then eβx/N − eβξ/N

divides gcd(sV (f), g) = gcd(f, g), and therefore f , in E . This concludes the proof in the
case where a simple function vanishes at ξ.

Let us assume now that h(ξ) = 0 for some irreducible E-function h; we assume h
to be normalized. For any f ∈ E \ {0} such that f(ξ) = 0, Theorem 6.3 shows that
gcd(f, h) = hmin(1,vh(f)) vanishes at ξ. Therefore vh(f) ≥ 1 and h divides f . This concludes
the proof of Theorem 6.5.
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91405 Orsay, France.
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