Arithmetic theory of E and G-operators

Tanguy Rivoal,

CNRS and Université Grenoble 1
joint work with Stéphane Fischler, Université Paris-Sud

E and G-functions

We fix an embedding of $\overline{\mathbb{Q}}$ into \mathbb{C}.
Definition 1
A G-function is a formal power series $G(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ such that $a_{n} \in \overline{\mathbb{Q}}$ and there exists $C>0$ such that:
(i) the maximum of the moduli of the conjugates of a_{n} is $\leq C^{n+1}$ for any n.
(ii) there exists a sequence of rational integers $d_{n} \neq 0$, with $\left|d_{n}\right| \leq C^{n+1}$, such that $d_{n} a_{m}$ is an algebraic integer for all $m \leq n$.
(iii) $G(z)$ satisfies a homogeneous linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.

An E-function $E(z)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} z^{n}$ is defined similarly.

Properties of E and G-functions

A G-function is not entire, unless it is a polynomial, but it is always holomorphic at $z=0$. The set of G-functions is a ring (for the Cauchy product), stable by derivation and integration, it contains algebraic functions (over $\overline{\mathbb{Q}}(z))$ holomorphic at $z=0$ and $\log (1-z)$ for instance. Its group of units is formed by the algebraic functions holomorphic and non zero at $z=0$ (André).

An E-function is an entire function. The set of E-functions is a ring (for the Cauchy product), stable by derivation and integration, it contains the exponential function and the Bessel functions for instance. Its units are of the form $\alpha \exp (\beta z)$, where $\alpha \in \overline{\mathbb{Q}}^{*}$ and $\beta \in \overline{\mathbb{Q}}$ (André).

The intersection of both classes is reduced to polynomial functions.

Three sets of numbers related to E and G-functions

Definition 2

(i) The set \mathbf{E} is the set of all the values taken at algebraic points by E-functions.
It is a ring. Its group of units contains $\overline{\mathbb{Q}}^{*} \exp (\overline{\mathbb{Q}})$.
(ii) The set \mathbf{G} is the set of all the values taken at algebraic points by (analytic continuation of) G-functions.
It is a ring. Its group of units contains $\overline{\mathbb{Q}}^{*}$ and the Beta values $B(\mathbb{Q}, \mathbb{Q})$.
(iii) The set \mathbf{S} is the module generated over \mathbf{G} by all the values of derivatives of the Gamma function at rational points. It is also the module generated over $\mathbf{G}[\gamma]$ by all the values of Γ at rational points, where γ is Euler's constant.
It is a ring.

André-Chudnovski-Katz Theorem, G-operator

Given a G-function $G(z)$, consider the minimal linear differential equation $M y=0$ of order η and with coefficients in $\overline{\mathbb{Q}}[z]$, of which $G(z)$ is a solution. Let ξ_{1}, \ldots, ξ_{p} denote the singularities of the operator M at finite distance. Then,

- M is globally fuchsian, with rational exponents at each ξ_{j} and at ∞.
- In \mathbb{C} minus (fixed) cuts with the $\xi_{j}^{\prime} s$ for origin, M has a local basis of solutions $F_{1}(z), \ldots, F_{\eta}(z)$ at $z=\xi \in \overline{\mathbb{Q}}$ such that

$$
F_{k}(z)=\sum_{s \in S_{k}} \sum_{t \in T_{k}} \alpha_{s, t, k} \log (z-\xi)^{s}(z-\xi)^{t} G_{s, t, k}(z-\xi)
$$

where $S_{k} \subset \mathbb{N}$ and $T_{k} \subset \mathbb{Q}$ are finite, $\alpha_{s, t, k} \in \overline{\mathbb{Q}}$, and if $\xi \neq \xi_{k}$, $S_{k}=T_{k}=\{0\}$.
$G_{s, t, k}(z)$ are holomorphic at $z=0$; and they are G-functions.

- If $\xi=\infty$, the same result holds provided we replace $z-\xi$ by $1 / z$ everywhere.
M is called a G-operator.

Connection constants for G-functions, Structure of \mathbf{G}

Let $G(z)$ be a G-function solution of the minimal differential equation $M y(z)=0$ of order η.

Locally around $\alpha \in \overline{\mathbb{Q}} \cup\{\infty\}$, we have

$$
G(z)=\omega_{1} F_{1}(z)+\cdots+\omega_{\eta} F_{\eta}(z) .
$$

where $F_{1}(z), \ldots, F_{\eta}(z)$ are given by the André-Chudnovski-Katz theorem, and $\omega_{1}, \ldots, \omega_{\eta}$ are certain complex numbers.

Theorem 1 (Fischler-R, 2012)
(i) The connection constants $\omega_{1}, \ldots, \omega_{\eta}$ belong to \mathbf{G}.
(ii) A number ξ is in \mathbf{G} if and only if $\xi=G(1)$, where G is a G-function with coefficients in $\mathbb{Q}(i)$, whose radius of convergence can be as large as a priori wished.

Corollary 1
\mathbf{G} is a ring.

Theorem 1(ii) for E-functions?

Given $\xi \in \mathbf{E}$, can we alway find an E-function $E(z)$ with coefficients in $\mathbb{Q}(i)$ such that $\xi=E(1)$?

No.

Theorem 2
An E-function with coefficients in a number field \mathbb{K} takes at an algebraic point α either a transcendental value or a value in $\mathbb{K}(\alpha)$.

In particular, there is no E-function $E(z) \in \mathbb{Q}[[z]]$ such that $E(1)=\sqrt{2}$.
This theorem is due to the referee of our 2012 paper in the case $\mathbb{K}=\mathbb{Q}(i)$ and $\alpha=1$, but his proof can be easily generalized. It is based on Beukers' refinement of the Siegel-Shidlovskii theorem.

Aparté

Let $Y(z)={ }^{t}\left(E_{1}(z), \ldots, E_{n}(z)\right)$ be a vector of E-functions solution of a differential system $Y^{\prime}(z)=M(z) Y(z)$ where $M(z) \in M_{n}(\overline{\mathbb{Q}}(z))$. Let $T(z)$ be the least common denominator of the entries of $M(z)$.

- Siegel-Shidlovskii $(1929,1956)$. For any $\alpha \in \overline{\mathbb{Q}}$ such that $\alpha T(\alpha) \neq 0$

$$
\operatorname{degtr}_{\overline{\mathbb{Q}}(z)}\left(E_{1}(z), \ldots, E_{n}(z)\right)=\operatorname{degtr}_{\overline{\mathbb{Q}}}\left(E_{1}(\alpha), \ldots, E_{n}(\alpha)\right) .
$$

- Nesterenko-Shidlovskii (1996). There exists a finite set S such that for any $\alpha \in \overline{\mathbb{Q}}, \alpha \notin S$, the following holds. For any $P \in \overline{\mathbb{Q}}\left[X_{1}, \ldots, X_{n}\right]$ such that $P\left(E_{1}(\alpha), \ldots, E_{n}(\alpha)\right)=0$, there exists $Q \in \overline{\mathbb{Q}}\left[Z, X_{1}, \ldots, X_{n}\right]$ such that $Q\left(\alpha, X_{1}, \ldots, X_{n}\right)=P\left(X_{1}, \ldots, X_{n}\right)$ and $Q\left(z, E_{1}(z), \ldots, E_{n}(z)\right)=0$.
- Beukers (2006). We have $S \subset\{\alpha \in \overline{\mathbb{Q}}: \alpha T(\alpha) \neq 0\}$.
- The analogue of the Siegel-Shidlovskii theorem for G-functions is false in general (André, Beukers, $n=2$). It is believed that the polynomial relations between values of G-functions are described by the "Period Conjecture" of Grothendieck, through the Bombieri-Dwork Conjecture (ie, G-functions come from geometry).

E-operators

Definition 3 (André, 2000)
A differential operator $L \in \overline{\mathbb{Q}}\left[x, \frac{d}{d x}\right]$ is an E-operator if the operator $M \in \overline{\mathbb{Q}}\left[z, \frac{d}{d z}\right]$ obtained from L by formally changing

$$
x \rightarrow-\frac{d}{d z}, \quad \frac{d}{d x} \rightarrow z \quad \text { (Fourier-Laplace transform of } L \text {) }
$$

is a G-operator, i.e. $M y(z)=0$ has at least one G-function solution for which it is minimal.

Motivation: Given an E-function $E(x)=\sum_{n=0}^{\infty} \frac{a_{n}}{n!} x^{n}$, there exists an E-operator L, of order μ say, such that $L E(x)=0$. Moreover, let

$$
g(z)=\int_{0}^{\infty} E(x) e^{-x z} d x=\sum_{n=0}^{\infty} \frac{a_{n}}{z^{n+1}} \quad(\text { Laplace transform of } E) .
$$

Then

$$
\left(\left(\frac{d}{d z}\right)^{\mu} \circ M\right) g(z)=0
$$

Basis of solutions of L at $z=0$

Theorem 3 (André, 2000)
(i) An E-operator has at most 0 and ∞ as singularities: 0 is always a regular singularity, while ∞ is an irregular one in general.
(ii) An E-operator L of order μ has a basis of solutions at $z=0$ of the form

$$
\left(E_{1}(z), \ldots, E_{\mu}(z)\right) \cdot z^{M}
$$

where M is an upper triangular $\mu \times \mu$ matrix with coefficients in \mathbb{Q} and the $E_{j}(z)$ are E-functions.

Any local solution $F(z)$ of $L y(z)=0$ at $z=0$ is of the form

$$
\begin{equation*}
F(z)=\sum_{j=1}^{\mu}\left(\sum_{s \in S_{j}} \sum_{k \in K_{j}} \phi_{j, s, k} z^{s} \log (z)^{k}\right) E_{j}(z) \tag{1}
\end{equation*}
$$

where $S_{j} \subset \mathbb{Q}, K_{j} \subset \mathbb{N}$ are finite and $\phi_{j, s, k} \in \mathbb{C}$.
Interesting case for us: $\phi_{j, s, k} \in \overline{\mathbb{Q}}$.

Connection constants at finite distance

Let $F(z)$ be a local solution of $L y(z)=0$ at $z=0$, of the form given in (1).

Any point $\alpha \in \overline{\mathbb{Q}} \backslash\{0\}$ is a regular point of L.
There exists a basis of local solutions $F_{1}(z), \ldots, F_{\mu}(z) \in \overline{\mathbb{Q}}[[z-\alpha]]$, holomorphic around $z=\alpha$, such that

$$
\begin{equation*}
F(z)=\omega_{1} F_{1}(z)+\cdots+\omega_{\mu} F_{\mu}(z) \tag{2}
\end{equation*}
$$

where $\omega_{1}, \ldots, \omega_{\mu}$ are connection constants.
Theorem 4 ($\mathrm{F}-\mathrm{R}, 2014$)
If $\phi_{j, s, k} \in \overline{\mathbb{Q}}$ in (1), then $\omega_{1}, \ldots, \omega_{\mu}$ belong to $\mathbf{E}[\log \alpha]$, and even to \mathbf{E} if $F(z)$ is an E-function.

Proof: Differentiate $\mu-1$ times (2) to construct a $\mu \times \mu$ linear system with the ω_{j} 's as unknown. Solve it at $z=\alpha$ using the wronskian built on the F_{j} 's (Cramer's rule). Use in particular the fact that, by André's result on singularities of E-operators, the wronskian $=c z^{\rho} e^{\beta z}$ with $c \in \overline{\mathbb{Q}}^{*}$, $\rho \in \mathbb{Q}$ and $\beta \in \overline{\mathbb{Q}}$.

Basis of solutions of L at $z=\infty$

The situation is more complicated because of divergent asymptotic series and of Stokes' phenomenon.

Let $\theta \in[0,2 \pi)$ not in some explicit finite set which contains the anti-Stokes directions. We have a generalized asymptotic expansion

$$
\begin{equation*}
E(z) \sim \sum_{\rho \in \Sigma} e^{\rho z} \sum_{\alpha \in S} z^{\alpha} \sum_{i \in T} \log (z)^{i} \sum_{n=0}^{\infty} \frac{c_{\theta, \rho, \alpha, i}(n)}{z^{n}} \tag{3}
\end{equation*}
$$

as $|z| \rightarrow \infty$ in a large angular sector bisected by $\{z: \arg (z)=\theta\}$.
The sets $\Sigma \subset \overline{\mathbb{Q}}, S \subset \mathbb{Q}$ and $T \subset \mathbb{N}$ are finite, and $c_{\theta, \rho, \alpha, i}(n) \in \mathbb{C}$.

We have found a new explicit construction of (3) by deforming the integral

$$
E(x)=\frac{1}{2 i \pi} \int_{L} g(z) e^{z x} d z \quad(L \text { "vertical" })
$$

The series $\sum_{n=0}^{\infty} c_{\theta, \rho, \alpha, i}(n) z^{-n}$ in (3) are divergent, but

$$
\sum_{n=0}^{\infty} \frac{1}{n!} c_{\theta, \rho, \alpha, i}(n) z^{n}
$$

are finite linear combinations of G-functions.
André (2000): Construction of a special basis $H_{1}(z), \ldots, H_{\mu}(z)$ of formal solutions at infinity of the E-operator L that annihilates $E(z)$. Each H_{k} involves series like in (3) but with coefficients in $c_{k} \overline{\mathbb{Q}}$ for some c_{k}.

The asymptotic expansion (3) of $E(z)$ in a large sector bisected by $\{z: \arg (z)=\theta\}$ can be rewritten with this basis as

$$
\begin{equation*}
\omega_{\theta, 1} H_{1}(z)+\cdots+\omega_{\theta, \mu} H_{\mu}(z) \tag{4}
\end{equation*}
$$

with Stokes' constants $\omega_{\theta, k}$.
When θ "crosses" one of the anti-Stokes directions, the values of the $\omega_{\theta, k}$ may change. This is the Stokes phenomenon.

Stokes' constants at infinity

Setting:

$$
\begin{aligned}
E(z) & \sim \omega_{\theta, 1} H_{1}(z)+\cdots+\omega_{\theta, \mu} H_{\mu}(z) \\
& \sim \sum_{\rho \in \Sigma} e^{\rho z} \sum_{\alpha \in S} z^{\alpha} \sum_{i \in T} \log (z)^{i} \sum_{n=0}^{\infty} \frac{c_{\theta, \rho, \alpha, i}(n)}{z^{n}} .
\end{aligned}
$$

\mathbf{S} is the module generated over $\mathbf{G}[\gamma]$ by all the values of Γ at rational points.

Theorem 5 (F-R, 2014)
Let $\theta \in[0,2 \pi)$ be a direction not in some explicit finite set. Then:
(i) The Stokes constants $\omega_{\theta, k}$ belong to \mathbf{S}.
(ii) All the coefficients $c_{\theta, \rho, \alpha, i}(n)$ belong to \mathbf{S}.
(iii) Let $F(z)$ be a local solution at $z=0$ of L, with $\phi_{j, s, k} \in \overline{\mathbb{Q}}$ in (1). Then Assertions (i) and (ii) hold with $F(z)$ instead of $E(z)$.

G-approximations

Definition 4

Sequences $\left(P_{n}\right)$ and $\left(Q_{n}\right)$ of algebraic numbers are said to form G-approximations of $\alpha \in \mathbb{C}$ if

$$
\lim _{n \rightarrow+\infty} \frac{P_{n}}{Q_{n}}=\alpha
$$

and the generating functions $\sum_{n=0}^{\infty} P_{n} z^{n}$ and $\sum_{n=0}^{\infty} Q_{n} z^{n}$ are both G-functions.

Diophantine motivation: Many sequences of algebraic approximations of classical numbers are G-approximations. For instance, Apéry's approximations to $\zeta(2)$ and $\zeta(3)$.

Theorem 6 (F-R, 2012)
The set of numbers having G-approximations is Frac G.
Proof: We first show that a number α having G-approximations is the quotient of two connection constants of the G-operators related to the generating functions, and then we use Theorem $1(i)$.

E-approximations

Definition 5

Sequences $\left(P_{n}\right)$ and $\left(Q_{n}\right)$ of algebraic numbers are said to form E-approximations of $\alpha \in \mathbb{C}$ if

$$
\lim _{n \rightarrow+\infty} \frac{P_{n}}{Q_{n}}=\alpha
$$

and

$$
\sum_{n=0}^{\infty} P_{n} z^{n}=a(z) \cdot E(b(z)), \quad \sum_{n=0}^{\infty} Q_{n} z^{n}=c(z) \cdot F(d(z))
$$

where E and F are E-functions, and a, b, c, d are algebraic functions in $\overline{\mathbb{Q}}[[z]]$ with $b(0)=d(0)=0$.

Diophantine motivation: Many sequences of algebraic approximations of classical numbers are E-approximations. For instance diagonal Padé approximants to $\exp (z)$ evaluated at z algebraic, and in particular the convergents to e.

The set of E-approximable numbers

Given two subsets X and Y of \mathbb{C}, let

$$
X \cdot Y=\{x y \mid x \in X, y \in Y\}, \quad \frac{X}{Y}=\left\{\left.\frac{x}{y} \right\rvert\, x \in X, y \in Y \backslash\{0\}\right\} .
$$

Theorem 7 (F-R, 2014)
The set of numbers having E-approximations contains

$$
\begin{equation*}
\frac{\mathbf{E} \cup \Gamma(\mathbb{Q})}{\mathbf{E} \cup \Gamma(\mathbb{Q})} \cup \operatorname{Frac} \mathbf{G} \tag{5}
\end{equation*}
$$

and it is contained in

$$
\begin{equation*}
\frac{\mathbf{E} \cup(\Gamma(\mathbb{Q}) \cdot \mathbf{G})}{\mathbf{E} \cup(\Gamma(\mathbb{Q}) \cdot \mathbf{G})} \cup(\Gamma(\mathbb{Q}) \cdot \exp (\overline{\mathbb{Q}}) \cdot \operatorname{Frac} \mathbf{G}) \tag{6}
\end{equation*}
$$

Proof of (5): Explicit constructions.
Proof of (6): Saddle point method, singularity analysis, and Theorems 4 and 5 because E-approximable numbers appear either as connection constants or as Stokes' constants.

E-approximations of Gamma values

Let

$$
E_{\alpha}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{n!(n+\alpha)}, \quad \alpha \in \mathbb{Q} \backslash \mathbb{Z}_{\leq 0}
$$

and define $P_{n}(\alpha)$ by

$$
\frac{1}{(1-z)^{\alpha+1}} E_{\alpha}\left(-\frac{z}{1-z}\right)=\sum_{n=0}^{\infty} P_{n}(\alpha) z^{n} \in \mathbb{Q}[[z]] .
$$

Then,

$$
P_{n}(\alpha)=\sum_{k=0}^{n}\binom{n+\alpha}{k+\alpha} \frac{(-1)^{k}}{k!(k+\alpha)} \longrightarrow \Gamma(\alpha) \quad \text { if } \alpha<1 .
$$

The number $\Gamma(\alpha)$ appears as a Stokes constant in the expansion

$$
E_{\alpha}(-z) \sim \frac{\Gamma(\alpha)}{z^{\alpha}}-e^{-z} \sum_{n=0}^{\infty}(-1)^{n} \frac{(1-\alpha)_{n}}{z^{n+1}} .
$$

What about Euler's constant $\gamma=-\Gamma^{\prime}(1)$?

We conjecture that γ does not have E-approximations, nor G-approximations. However, let

$$
E(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n!n}
$$

and define the sequence $\left(P_{n}\right)$ by

$$
-\frac{1}{1-z} E\left(-\frac{z}{1-z}\right)+\frac{\log (1-z)}{1-z}=\sum_{n=0}^{\infty} P_{n} z^{n} \in \mathbb{Q}[[z]] .
$$

Then

$$
P_{n}=\sum_{k=1}^{n}(-1)^{k}\binom{n}{k} \frac{1}{k}\left(1-\frac{1}{k!}\right) \longrightarrow \gamma .
$$

Again, γ appears as a Stokes' constant in the asymptotic expansion

$$
E(-z) \sim-\gamma-\log (z)-e^{-z} \sum_{n=0}^{\infty}(-1)^{n} \frac{n!}{z^{n+1}}
$$

Linear recurrences related to $\Gamma(\alpha)$ and γ

$$
\begin{aligned}
& (n+3)(n+3+\alpha) P_{n+3}(\alpha) \\
& \quad-\left(3 n^{2}+4 n \alpha+14 n+\alpha^{2}+9 \alpha+17\right) P_{n+2}(\alpha) \\
& \quad+(3 n+5+2 \alpha)(n+2+\alpha) P_{n+1}(\alpha) \\
& \quad-(n+2+\alpha)(n+1+\alpha) P_{n}(\alpha)=0
\end{aligned}
$$

with $P_{0}(\alpha)=\frac{1}{\alpha}, P_{1}(\alpha)=\frac{1+\alpha+\alpha^{2}}{\alpha(\alpha+1)}$ and $P_{2}(\alpha)=\frac{4+5 \alpha+6 \alpha^{2}+4 \alpha^{3}+\alpha^{4}}{2 \alpha(\alpha+1)(\alpha+2)}$.

$$
\begin{aligned}
(n+3)^{2} P_{n+3}-\left(3 n^{2}\right. & +14 n+17) P_{n+2} \\
& +(3 n+5)(n+2) P_{n+1}-(n+2)(n+1) P_{n}=0
\end{aligned}
$$

with $P_{0}=0, P_{1}=0$ and $P_{2}=\frac{1}{4}$.

