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E and G-functions

We fix an embedding of Q into C.

Definition 1
A G-function is a formal power series G(z) = Y_"anz" such that
a, € Q and there exists C > 0 such that:
(i) the maximum of the moduli of the conjugates of a, is < C"*1 for
any n.
(ii) there exists a sequence of rational integers d, # 0, with
|dn| < C"*1, such that d,a, is an algebraic integer for all m < n.

(iiif) G(z) satisfies a homogeneous linear differential equation with
coefficients in Q(z).

An E-function E(z) = Y7, 22" is defined similarly.



Properties of E and G-functions

A G-function is not entire, unless it is a polynomial, but it is always
holomorphic at z = 0. The set of G-functions is a ring (for the Cauchy
product), stable by derivation and integration, it contains algebraic
functions (over Q(z)) holomorphic at z = 0 and log(1 — z) for instance.
Its group of units is formed by the algebraic functions holomorphic and
non zero at z = 0 (André).

An E-function is an entire function. The set of E-functions is a ring (for
the Cauchy product), stable by derivation and integration, it contains the
exponential function and the Bessel functions for instance. Its units are
of the form a exp(3z), where o« € Q" and 3 € Q (André).

The intersection of both classes is reduced to polynomial functions.



Three sets of numbers related to E and G-functions

Definition 2

(7)

(iif)

The set E is the set of all the values taken at algebraic points by
E-functions.

It is a ring. Its group of units contains Q" exp(Q).

The set G is the set of all the values taken at algebraic points by
(analytic continuation of) G-functions.

It is a ring. Its group of units contains @* and the Beta values

B(Q, Q).

The set S is the module generated over G by all the values of
derivatives of the Gamma function at rational points.

It is also the module generated over G[v] by all the values of T at
rational points, where v is Euler’s constant.

It is a ring.



André-Chudnovski-Katz Theorem, G-operator

Given a G-function G(z), consider the minimal linear differential
equation My = 0 of order 1 and with coefficients in Q[z], of which G(=z)
is a solution. Let &1,...,¢, denote the singularities of the operator M at
finite distance. Then,

e M is globally fuchsian, with rational exponents at each &; and at oc.

e In C minus (fixed) cuts with the ;s for origin, M has a local basis of
solutions Fi(z),..., F,y(z) at z = ¢ € Q such that

Fi(z) = Z Z sk log(z — €)°(z2 — ) Gsen(z — €)

seS, te Tk

where S C N and T, C Q are finite, as;x € Q, and if ¢ % &k,
Sk = Tx = {0}.

Gs,t.k(z) are holomorphic at z = 0; and they are G-functions.

o If £ = 0o, the same result holds provided we replace z — £ by 1/z
everywhere.

M is called a G-operator.



Connection constants for G-functions, Structure of G

Let G(z) be a G-function solution of the minimal differential equation
My(z) = 0 of order 7.

Locally around o € Q U {00}, we have
G(z) =wiFi(2) + - +wyFy(2).

where Fi(z),..., F,(z) are given by the André-Chudnovski-Katz theorem,
and wy, . ..,w, are certain complex numbers.

Theorem 1 (Fischler-R, 2012)

(i) The connection constants ws, ... ,wy, belong to G.

(i) A number £ is in G if and only if ¢ = G(1), where G is a G-function
with coefficients in Q(i), whose radius of convergence can be as
large as a priori wished.

Corollary 1

G is a ring.



Theorem 1(ii) for E-functions?

Given £ € E, can we alway find an E-function E(z) with coefficients in
Q(/) such that £ = E(1)?

No.

Theorem 2
An E-function with coefficients in a number field K takes at an algebraic
point « either a transcendental value or a value in K(«).

In particular, there is no E-function E(z) € Q[[z]] such that E(1) = /2.

This theorem is due to the referee of our 2012 paper in the case
K = Q(f) and o = 1, but his proof can be easily generalized. It is based
on Beukers' refinement of the Siegel-Shidlovskii theorem.



Aparté
Let Y(z) = “(E1(2), ..., En(2)) be a vector of E-functions solution of a

differential system Y’(z) = M(z)Y(z) where M(z) € M,(Q(z)). Let
T(z) be the least common denominator of the entries of M(z).

e Siegel-Shidlovskii (1929, 1956). For any a € Q such that aT(a) # 0

degtrg,)(E1(2), - ., En(2)) = degtrg(Ex(a), .. ., En(@)).

o Nesterenko-Shidlovskii (1996). There exists a finite set S such that
for any a € Q, a ¢ S, the following holds. For any P € Q[Xq, ..., X,]
such that P(Ey(),. .., E,(a)) = 0, there exists @ € Q[Z, X, ..., X,]
such that Q(«, X1,...,X,) = P(Xq,...,X,) and

Q(z, E(2),...,Ex(2)) = 0.

e Beukers (2006). We have S C {a € Q: aT(a) # 0}.

e The analogue of the Siegel-Shidlovskii theorem for G-functions is false
in general (André, Beukers, n = 2). It is believed that the polynomial
relations between values of G-functions are described by the “Period
Conjecture” of Grothendieck, through the Bombieri-Dwork Conjecture
(ie, G-functions come from geometry).



E-operators

Definition 3 (André, 2000)
d

A differential operator L € Q[x, &
M € Q[z, % obtained from L by formally changing

| is an E-operator if the operator

d d
— =z (Fourier-Laplace transform of L)

X%_E’ dx

is a G-operator, i.e. My(z) =0 has at least one G-function solution for
which it is minimal.

Motivation: Given an E-function E(x) = > 2x", there exists an

E-operator L, of order u say, such that LE(x) = 0. Moreover, let

fe's) oo
g(z) = /0 E(x)eZdx = 2_;) z‘::l (Laplace transform of E).

Then

((:Z)“ o M>g(z) 0.



Basis of solutions of L at z =10

Theorem 3 (André, 2000)

(1) An E-operator has at most 0 and co as singularities: 0 is always a
regular singularity, while oo is an irregular one in general.

(i) An E-operator L of order yi has a basis of solutions at z =0 of the

form
(Ei(2),...,Eu(2)) - zM
where M is an upper triangular . X p matrix with coefficients in Q

and the Ej(z) are E-functions.

Any local solution F(z) of Ly(z) =0 at z =0 is of the form
Z(ZZ¢JSkz log(2)* ) Ei(2) (1)
j=1  seS;kekK;

where 5; C Q, K; C N are finite and ¢; s« € C.

Interesting case for us: ¢; ., € Q.



Connection constants at finite distance
Let F(z) be a local solution of Ly(z) =0 at z =0, of the form given in

(1).

Any point a € Q \ {0} is a regular point of L.

There exists a basis of local solutions Fi(z), ..., F,(z) € Q[[z — «]],
holomorphic around z = «, such that

F(z) = wif(2) + -+ +wuFu(z) (2)
where wy,...,w, are connection constants.

Theorem 4 (F-R, 2014)

If $js.x € Q in (1), then wy,...,w, belong to E[log ], and even to E if
F(z) is an E-function.

Proof: Differentiate yn — 1 times (2) to construct a p X p linear system
with the w;’s as unknown. Solve it at z = o using the wronskian built on
the F;'s (Cramer’s rule). Use in particular the fact that, by André’s result
on singularities of E-operators, the wronskian = cz”e®? with ¢ € Q’,

p€Qand B .



Basis of solutions of L at z = o0

The situation is more complicated because of divergent asymptotic series
and of Stokes' phenomenon.

Let 6 € [0,27) not in some explicit finite set which contains the
anti-Stokes directions. We have a generalized asymptotic expansion

Zepzz Z'Og(z Z ep,a,(n) (3)

pEX a€ES ieT n=0

as |z| — oo in a large angular sector bisected by {z : arg(z) = 6}.
Thesets L C Q, SC Qand T C N are finite, and ¢p,,.4.i(n) € C.

We have found a new explicit construction of (3) by deforming the
integral

1
2im

E(x) = /g(z)ezxdz (L “vertical).
L



The series 2 o p.a,i(n)z~" in (3) are divergent, but
o0
1
Z mcayp,aﬁ,-(n)z”
n=0

are finite linear combinations of G-functions.

André (2000): Construction of a special basis Hy(z),..., H,(z) of
formal solutions at infinity of the E-operator L that annihilates E(z).
Each Hj involves series like in (3) but with coefficients in ¢,Q for some
Ck.

The asymptotic expansion (3) of E(z) in a large sector bisected by
{z : arg(z) = 0} can be rewritten with this basis as

WQ’1H1(2)+"'+UJ9’MHH(Z) (4)

with Stokes’ constants wy .

When 6 “crosses” one of the anti-Stokes directions, the values of the
wg,,k may change . This is the Stokes phenomenon.



Stokes’ constants at infinity
Setting:

E(Z)nglHl( )+"‘+UJ9#H (Z)

~ 3 e 3 Y log(2) Z@ﬂ@

pEL a€S ieT

S is the module generated over G[v] by all the values of I at rational
points.

Theorem 5 (F-R, 2014)

Let 0 € [0,27) be a direction not in some explicit finite set. Then:
(i) The Stokes constants wy x belong to S.

(if) All the coefficients cy , o.i(n) belong to S.

(iii) Let F(z) be a local solution at z =0 of L, with ¢; s x € Q in (1).
Then Assertions (i) and (ii) hold with F(z) instead of E(z).



G-approximations

Definition 4
Sequences (P,) and (Q,) of algebraic numbers are said to form
G-approximations of a € C if
lim % =a
n——+00 Qn
and the generating functions Y~ Pnz" and > " Qnz" are both
G-functions.

Diophantine motivation: Many sequences of algebraic approximations
of classical numbers are G-approximations. For instance, Apéry's
approximations to ¢(2) and ¢(3).

Theorem 6 (F-R, 2012)

The set of numbers having G-approximations is Frac G.

Proof: We first show that a number o having G-approximations is the
quotient of two connection constants of the G-operators related to the
generating functions, and then we use Theorem 1(/).



E-approximations

Definition 5
Sequences (P,) and (Q,) of algebraic numbers are said to form
E-approximations of a € C if

lim — =«
n—+o0o Qp

and

Z Pn,z" = a(z) - E(b(z)), Z Qnz" = c(2) - F(d(2))

where E and F are E-functions, and a, b, c, d are algebraic functions in

Q[[z]] with b(0) = d(0) = 0.

Diophantine motivation: Many sequences of algebraic approximations
of classical numbers are E-approximations. For instance diagonal Padé
approximants to exp(z) evaluated at z algebraic, and in particular the
convergents to e.



The set of E-approximable numbers
Given two subsets X and Y of C, let

X~Yz{xy{x€X7y€ Y}, é:{;‘XGX,yG Y\{O}}

Theorem 7 (F-R, 2014)

The set of numbers having E-approximations contains

EUT(Q)
m U Frac G (5)
and it is contained in
EU(M(Q)-G) =

Proof of (5): Explicit constructions.

Proof of (6): Saddle point method, singularity analysis, and Theorems 4
and 5 because E-approximable numbers appear either as connection
constants or as Stokes’ constants.



E-approximations of Gamma values

Let -
Zn
Ea(z)zzoin!(nqLa)’ aEQ\ZSO

and define P,(a) by

(1_12)a+15a< 1_Z> ipn a)z" € Q[[z]].

n=0

Then,

= [nta) (-1 .
P,,(cu)fk:0 <k+a>k!(k—|—a) — () if o<1

The number I'(«) appears as a Stokes constant in the expansion

o0
ey (-~
Zn—t—l

n=0

Eo(—2z) ~



What about Euler’s constant v = —I'(1)?

We conjecture that « does not have E-approximations, nor
G-approximations. However, let

oo Zn
E(z) = Z .
n=1

and define the sequence (P,) by

Then

Again, v appears as a Stokes' constant in the asymptotic expansion

E(~2) ~ — — log(2) — e (-1

n=0



Linear recurrences related to '(«) and ~

(n+3)(n+3+ ) Pass(a)
— (3n® + 4na + 14n + a? 4+ 9a + 17) P, 1o(a)
+ (Bn+54+2a)(n+2+ a)Pyi1(a)
—(n+24+a)(n+1+a)Py(a)=0

with Po(a) = 2, Pi(a) = Late and Py(a) = #43ateefpderiat,

(n+43)2Poy3 — (3n% 4 14n + 17) P,y
+Bn+5)(n+2)Poy1 —(n+2)(n+1)P,=0

with Pp =0, P =0and P, = 3



