Arithmetic theory of *E* **and** *G***-operators**

Tanguy Rivoal, CNRS and Université Grenoble 1

joint work with Stéphane Fischler, Université Paris-Sud

E and G-functions

We fix an embedding of $\overline{\mathbb{Q}}$ into $\mathbb{C}.$

Definition 1

A G-function is a formal power series $G(z) = \sum_{n=0}^{\infty} a_n z^n$ such that $a_n \in \overline{\mathbb{Q}}$ and there exists C > 0 such that:

- (i) the maximum of the moduli of the conjugates of a_n is $\leq C^{n+1}$ for any n.
- (ii) there exists a sequence of rational integers $d_n \neq 0$, with $|d_n| \leq C^{n+1}$, such that $d_n a_m$ is an algebraic integer for all $m \leq n$.
- (iii) G(z) satisfies a homogeneous linear differential equation with coefficients in $\overline{\mathbb{Q}}(z)$.

An *E*-function $E(z) = \sum_{n=0}^{\infty} \frac{a_n}{n!} z^n$ is defined similarly.

Properties of *E* and *G*-functions

A G-function is not entire, unless it is a polynomial, but it is always holomorphic at z=0. The set of G-functions is a ring (for the Cauchy product), stable by derivation and integration, it contains algebraic functions (over $\overline{\mathbb{Q}}(z)$) holomorphic at z=0 and $\log(1-z)$ for instance. Its group of units is formed by the algebraic functions holomorphic and non zero at z=0 (André).

An *E*-function is an entire function. The set of *E*-functions is a ring (for the Cauchy product), stable by derivation and integration, it contains the exponential function and the Bessel functions for instance. Its units are of the form $\alpha \exp(\beta z)$, where $\alpha \in \overline{\mathbb{Q}}^*$ and $\beta \in \overline{\mathbb{Q}}$ (André).

The intersection of both classes is reduced to polynomial functions.

Three sets of numbers related to E and G-functions

Definition 2

(i) The set **E** is the set of all the values taken at algebraic points by E-functions.

It is a ring. Its group of units contains $\overline{\mathbb{Q}}^* \exp(\overline{\mathbb{Q}})$.

- (ii) The set G is the set of all the values taken at algebraic points by (analytic continuation of) G-functions.
 - It is a ring. Its group of units contains $\overline{\mathbb{Q}}^*$ and the Beta values $B(\mathbb{Q},\mathbb{Q})$.
- (iii) The set **S** is the module generated over **G** by all the values of derivatives of the Gamma function at rational points.
 - It is also the module generated over $\mathbf{G}[\gamma]$ by all the values of Γ at rational points, where γ is Euler's constant.

It is a ring.

André-Chudnovski-Katz Theorem, G-operator

Given a G-function G(z), consider the minimal linear differential equation My=0 of order η and with coefficients in $\overline{\mathbb{Q}}[z]$, of which G(z) is a solution. Let ξ_1,\ldots,ξ_p denote the singularities of the operator M at finite distance. Then,

- *M* is globally fuchsian, with rational exponents at each ξ_i and at ∞ .
- In $\mathbb C$ minus (fixed) cuts with the $\xi_j's$ for origin, M has a local basis of solutions $F_1(z),\ldots,F_\eta(z)$ at $z=\xi\in\overline{\mathbb Q}$ such that

$$F_k(z) = \sum_{s \in S_k} \sum_{t \in T_k} \alpha_{s,t,k} \log(z - \xi)^s (z - \xi)^t G_{s,t,k}(z - \xi)$$

where $S_k \subset \mathbb{N}$ and $T_k \subset \mathbb{Q}$ are finite, $\alpha_{s,t,k} \in \overline{\mathbb{Q}}$, and if $\xi \neq \xi_k$, $S_k = T_k = \{0\}$.

 $G_{s,t,k}(z)$ are holomorphic at z=0; and they are G-functions.

ullet If $\xi=\infty$, the same result holds provided we replace $z-\xi$ by 1/z everywhere.

M is called a G-operator.

Connection constants for G-functions, Structure of G

Let G(z) be a G-function solution of the minimal differential equation My(z)=0 of order η .

Locally around $\alpha \in \overline{\mathbb{Q}} \cup \{\infty\}$, we have

$$G(z) = \omega_1 F_1(z) + \cdots + \omega_{\eta} F_{\eta}(z).$$

where $F_1(z), \ldots, F_n(z)$ are given by the André-Chudnovski-Katz theorem, and $\omega_1, \ldots, \omega_n$ are certain complex numbers.

Theorem 1 (Fischler-R, 2012)

- (i) The connection constants $\omega_1, \ldots, \omega_\eta$ belong to **G**.
- (ii) A number ξ is in **G** if and only if $\xi = G(1)$, where G is a G-function with coefficients in $\mathbb{Q}(i)$, whose radius of convergence can be as large as a priori wished.

Corollary 1

G is a ring.

Theorem 1(ii) for *E*-functions?

Given $\xi \in \mathbf{E}$, can we alway find an E-function E(z) with coefficients in $\mathbb{Q}(i)$ such that $\xi = E(1)$?

No.

Theorem 2

An E-function with coefficients in a number field \mathbb{K} takes at an algebraic point α either a transcendental value or a value in $\mathbb{K}(\alpha)$.

In particular, there is no *E*-function $E(z) \in \mathbb{Q}[[z]]$ such that $E(1) = \sqrt{2}$.

This theorem is due to the referee of our 2012 paper in the case $\mathbb{K}=\mathbb{Q}(i)$ and $\alpha=1$, but his proof can be easily generalized. It is based on Beukers' refinement of the Siegel-Shidlovskii theorem.

Aparté

Let $Y(z)={}^t(E_1(z),\ldots,E_n(z))$ be a vector of E-functions solution of a differential system Y'(z)=M(z)Y(z) where $M(z)\in M_n(\overline{\mathbb{Q}}(z))$. Let T(z) be the least common denominator of the entries of M(z).

• Siegel-Shidlovskii (1929, 1956). For any $\alpha \in \overline{\mathbb{Q}}$ such that $\alpha T(\alpha) \neq 0$

$$\mathsf{degtr}_{\overline{\mathbb{Q}}(z)}(E_1(z),\ldots,E_n(z)) = \mathsf{degtr}_{\overline{\mathbb{Q}}}(E_1(\alpha),\ldots,E_n(\alpha)).$$

- Nesterenko-Shidlovskii (1996). There exists a finite set S such that for any $\alpha \in \overline{\mathbb{Q}}$, $\alpha \notin S$, the following holds. For any $P \in \overline{\mathbb{Q}}[X_1, \dots, X_n]$ such that $P(E_1(\alpha), \dots, E_n(\alpha)) = 0$, there exists $Q \in \overline{\mathbb{Q}}[Z, X_1, \dots, X_n]$ such that $Q(\alpha, X_1, \dots, X_n) = P(X_1, \dots, X_n)$ and $Q(z, E_1(z), \dots, E_n(z)) = 0$.
- **Beukers** (2006). We have $S \subset \{\alpha \in \overline{\mathbb{Q}} : \alpha T(\alpha) \neq 0\}$.
- The analogue of the Siegel-Shidlovskii theorem for G-functions is false in general (André, Beukers, n=2). It is believed that the polynomial relations between values of G-functions are described by the "Period Conjecture" of Grothendieck, through the Bombieri-Dwork Conjecture (ie, G-functions come from geometry).

E-operators

Definition 3 (André, 2000)

A differential operator $L \in \overline{\mathbb{Q}}[x, \frac{d}{dx}]$ is an E-operator if the operator $M \in \overline{\mathbb{Q}}[z, \frac{d}{dz}]$ obtained from L by formally changing

$$x \to -\frac{d}{dz}, \qquad \frac{d}{dx} \to z \qquad \text{(Fourier-Laplace transform of } L\text{)}$$

is a G-operator, i.e. My(z) = 0 has at least one G-function solution for which it is minimal.

Motivation: Given an *E*-function $E(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$, there exists an *E*-operator *L*, of order μ say, such that LE(x) = 0. Moreover, let

$$g(z) = \int_0^\infty E(x)e^{-xz}dx = \sum_{n=0}^\infty \frac{a_n}{z^{n+1}} \qquad \text{(Laplace transform of } E\text{)}.$$

Then

$$\left(\left(\frac{d}{dz}\right)^{\mu}\circ M\right)g(z)=0.$$

Basis of solutions of L at z=0

Theorem 3 (André, 2000)

- (i) An E-operator has at most 0 and ∞ as singularities: 0 is always a regular singularity, while ∞ is an irregular one in general.
- (ii) An E-operator L of order μ has a basis of solutions at z=0 of the form

$$(E_1(z),\ldots,E_{\mu}(z))\cdot z^M$$

where M is an upper triangular $\mu \times \mu$ matrix with coefficients in \mathbb{Q} and the $E_j(z)$ are E-functions.

Any local solution F(z) of Ly(z) = 0 at z = 0 is of the form

$$F(z) = \sum_{j=1}^{\mu} \left(\sum_{s \in S_j} \sum_{k \in K_j} \phi_{j,s,k} z^s \log(z)^k \right) E_j(z)$$
 (1)

where $S_j \subset \mathbb{Q}$, $K_j \subset \mathbb{N}$ are finite and $\phi_{j,s,k} \in \mathbb{C}$.

Interesting case for us: $\phi_{j,s,k} \in \overline{\mathbb{Q}}$.

Connection constants at finite distance

Let F(z) be a local solution of Ly(z) = 0 at z = 0, of the form given in (1).

Any point $\alpha \in \overline{\mathbb{Q}} \setminus \{0\}$ is a regular point of L.

There exists a basis of local solutions $F_1(z), \ldots, F_{\mu}(z) \in \overline{\mathbb{Q}}[[z-\alpha]]$, holomorphic around $z=\alpha$, such that

$$F(z) = \omega_1 F_1(z) + \dots + \omega_\mu F_\mu(z) \tag{2}$$

where $\omega_1, \ldots, \omega_{\mu}$ are connection constants.

Theorem 4 (F-R, 2014)

If $\phi_{j,s,k} \in \overline{\mathbb{Q}}$ in (1), then $\omega_1, \ldots, \omega_{\mu}$ belong to $\mathbf{E}[\log \alpha]$, and even to \mathbf{E} if F(z) is an E-function.

Proof: Differentiate $\mu-1$ times (2) to construct a $\mu\times\mu$ linear system with the ω_j 's as unknown. Solve it at $z=\alpha$ using the wronskian built on the F_j 's (Cramer's rule). Use in particular the fact that, by André's result on singularities of E-operators, the wronskian $=cz^\rho e^{\beta z}$ with $c\in\overline{\mathbb{Q}}^*$, $\rho\in\mathbb{Q}$ and $\beta\in\overline{\mathbb{Q}}$.

Basis of solutions of L at $z = \infty$

The situation is more complicated because of divergent asymptotic series and of Stokes' phenomenon.

Let $\theta \in [0, 2\pi)$ not in some explicit finite set which contains the anti-Stokes directions. We have a generalized asymptotic expansion

$$E(z) \sim \sum_{\rho \in \Sigma} e^{\rho z} \sum_{\alpha \in S} z^{\alpha} \sum_{i \in T} \log(z)^{i} \sum_{n=0}^{\infty} \frac{c_{\theta,\rho,\alpha,i}(n)}{z^{n}}$$
(3)

as $|z| \to \infty$ in a large angular sector bisected by $\{z : \arg(z) = \theta\}$.

The sets $\Sigma \subset \overline{\mathbb{Q}}$, $S \subset \mathbb{Q}$ and $T \subset \mathbb{N}$ are finite, and $c_{\theta,\rho,\alpha,i}(n) \in \mathbb{C}$.

We have found a new explicit construction of (3) by deforming the integral

$$E(x) = \frac{1}{2i\pi} \int_{L} g(z)e^{zx}dz \qquad (L "vertical").$$

The series $\sum_{n=0}^{\infty} c_{\theta,\rho,\alpha,i}(n)z^{-n}$ in (3) are divergent, but

$$\sum_{n=0}^{\infty} \frac{1}{n!} c_{\theta,\rho,\alpha,i}(n) z^n$$

are finite linear combinations of G-functions.

André (2000): Construction of a special basis $H_1(z), \ldots, H_{\mu}(z)$ of formal solutions at infinity of the *E*-operator *L* that annihilates E(z). Each H_k involves series like in (3) but with coefficients in $c_k \overline{\mathbb{Q}}$ for some c_k .

The asymptotic expansion (3) of E(z) in a large sector bisected by $\{z: \arg(z) = \theta\}$ can be rewritten with this basis as

$$\omega_{\theta,1}H_1(z) + \cdots + \omega_{\theta,\mu}H_{\mu}(z) \tag{4}$$

with **Stokes' constants** $\omega_{\theta,k}$.

When θ "crosses" one of the anti-Stokes directions, the values of the $\omega_{\theta,k}$ may change . This is the Stokes phenomenon.

Stokes' constants at infinity

Setting:

$$E(z) \sim \omega_{\theta,1} H_1(z) + \dots + \omega_{\theta,\mu} H_{\mu}(z)$$

 $\sim \sum_{\rho \in \Sigma} e^{\rho z} \sum_{\alpha \in S} z^{\alpha} \sum_{i \in T} \log(z)^i \sum_{n=0}^{\infty} \frac{c_{\theta,\rho,\alpha,i}(n)}{z^n}.$

S is the module generated over $\mathbf{G}[\gamma]$ by all the values of Γ at rational points.

Theorem 5 (F-R, 2014)

Let $\theta \in [0, 2\pi)$ be a direction not in some explicit finite set. Then:

- (i) The Stokes constants $\omega_{\theta,k}$ belong to **S**.
- (ii) All the coefficients $c_{\theta,\rho,\alpha,i}(n)$ belong to **S**.
- (iii) Let F(z) be a local solution at z=0 of L, with $\phi_{j,s,k} \in \overline{\mathbb{Q}}$ in (1). Then Assertions (i) and (ii) hold with F(z) instead of E(z).

G-approximations

Definition 4

Sequences (P_n) and (Q_n) of algebraic numbers are said to form G-approximations of $\alpha \in \mathbb{C}$ if

$$\lim_{n\to+\infty}\frac{P_n}{Q_n}=\alpha$$

and the generating functions $\sum_{n=0}^{\infty} P_n z^n$ and $\sum_{n=0}^{\infty} Q_n z^n$ are both *G-functions*.

Diophantine motivation: Many sequences of algebraic approximations of classical numbers are G-approximations. For instance, Apéry's approximations to $\zeta(2)$ and $\zeta(3)$.

Theorem 6 (F-R, 2012)

The set of numbers having G-approximations is $\operatorname{Frac} {f G}.$

Proof: We first show that a number α having G-approximations is the quotient of two connection constants of the G-operators related to the generating functions, and then we use Theorem 1(i).

E-approximations

Definition 5

Sequences (P_n) and (Q_n) of algebraic numbers are said to form E-approximations of $\alpha \in \mathbb{C}$ if

$$\lim_{n\to+\infty}\frac{P_n}{Q_n}=\alpha$$

and

$$\sum_{n=0}^{\infty} P_n z^n = a(z) \cdot E(b(z)), \quad \sum_{n=0}^{\infty} Q_n z^n = c(z) \cdot F(d(z))$$

where E and F are E-functions, and a, b, c, d are algebraic functions in $\overline{\mathbb{Q}}[[z]]$ with b(0) = d(0) = 0.

Diophantine motivation: Many sequences of algebraic approximations of classical numbers are E-approximations. For instance diagonal Padé approximants to $\exp(z)$ evaluated at z algebraic, and in particular the convergents to e.

The set of *E*-approximable numbers

Given two subsets X and Y of \mathbb{C} , let

$$X \cdot Y = \left\{ xy \mid x \in X, y \in Y \right\}, \quad \frac{X}{Y} = \left\{ \frac{x}{y} \mid x \in X, y \in Y \setminus \{0\} \right\}.$$

Theorem 7 (F-R, 2014)

The set of numbers having E-approximations contains

$$\frac{\mathbf{E} \cup \Gamma(\mathbb{Q})}{\mathbf{E} \cup \Gamma(\mathbb{Q})} \cup \operatorname{Frac} \mathbf{G}$$
 (5)

and it is contained in

$$\frac{\mathbf{E} \cup (\Gamma(\mathbb{Q}) \cdot \mathbf{G})}{\mathbf{E} \cup (\Gamma(\mathbb{Q}) \cdot \mathbf{G})} \cup (\Gamma(\mathbb{Q}) \cdot \exp(\overline{\mathbb{Q}}) \cdot \operatorname{Frac} \mathbf{G}). \tag{6}$$

Proof of (5): Explicit constructions.

Proof of (6): Saddle point method, singularity analysis, and Theorems 4 and 5 because *E*-approximable numbers appear either as connection constants or as Stokes' constants.

Let

$$E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!(n+\alpha)}, \quad \alpha \in \mathbb{Q} \setminus \mathbb{Z}_{\leq 0}$$

and define $P_n(\alpha)$ by

$$\frac{1}{(1-z)^{\alpha+1}}E_{\alpha}\left(-\frac{z}{1-z}\right)=\sum_{n=0}^{\infty}P_{n}(\alpha)z^{n}\in\mathbb{Q}[[z]].$$

Then,

$$P_n(\alpha) = \sum_{k=0}^n \binom{n+\alpha}{k+\alpha} \frac{(-1)^k}{k!(k+\alpha)} \longrightarrow \Gamma(\alpha) \quad \text{if } \alpha < 1.$$

The number $\Gamma(\alpha)$ appears as a Stokes constant in the expansion

$$E_{\alpha}(-z) \sim \frac{\Gamma(\alpha)}{z^{\alpha}} - e^{-z} \sum_{n=0}^{\infty} (-1)^n \frac{(1-\alpha)_n}{z^{n+1}}.$$

What about Euler's constant $\gamma = -\Gamma'(1)$?

We conjecture that γ does not have $\emph{E}\mbox{-approximations},$ nor $\emph{G}\mbox{-approximations}.$ However, let

$$E(z) = \sum_{n=1}^{\infty} \frac{z^n}{n! n}$$

and define the sequence (P_n) by

$$-\frac{1}{1-z}E\left(-\frac{z}{1-z}\right)+\frac{\log(1-z)}{1-z}=\sum_{n=0}^{\infty}P_nz^n\in\mathbb{Q}[[z]].$$

Then

$$P_n = \sum_{k=1}^n (-1)^k \binom{n}{k} \frac{1}{k} \left(1 - \frac{1}{k!}\right) \longrightarrow \gamma.$$

Again, γ appears as a Stokes' constant in the asymptotic expansion

$$E(-z) \sim -\gamma - \log(z) - e^{-z} \sum_{n=0}^{\infty} (-1)^n \frac{n!}{z^{n+1}}.$$

Linear recurrences related to $\Gamma(\alpha)$ and γ

$$(n+3)(n+3+\alpha)P_{n+3}(\alpha)$$

$$-(3n^2+4n\alpha+14n+\alpha^2+9\alpha+17)P_{n+2}(\alpha)$$

$$+(3n+5+2\alpha)(n+2+\alpha)P_{n+1}(\alpha)$$

$$-(n+2+\alpha)(n+1+\alpha)P_n(\alpha)=0$$

with
$$P_0(\alpha)=\frac{1}{\alpha}$$
, $P_1(\alpha)=\frac{1+\alpha+\alpha^2}{\alpha(\alpha+1)}$ and $P_2(\alpha)=\frac{4+5\alpha+6\alpha^2+4\alpha^3+\alpha^4}{2\alpha(\alpha+1)(\alpha+2)}$.

$$(n+3)^{2}P_{n+3} - (3n^{2} + 14n + 17)P_{n+2} + (3n+5)(n+2)P_{n+1} - (n+2)(n+1)P_{n} = 0$$

with $P_0 = 0$, $P_1 = 0$ and $P_2 = \frac{1}{4}$.